PWM Buck Converter using Average Model

Post on 28-May-2015

4,684 views 1 download

Tags:

description

This document is Conceptkit of PWM Buck Converter using Average Model using PSpice. pre-version, Bee Technologies prepare to products now.

transcript

Concept Kit:PWM Buck Converter Average Model

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

1

Power Switches Filter & LoadPWM Controller (Voltage Mode Control)

VREF

VOUT

REF

PWM

1 / V p

-

+

U ?P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

D

U ?B U C K _ S W

L1 2

C

R lo a d

V o

E S R

Pre Version

Contents

1. Concept of Simulation

2. Buck Converter Circuit

3. Switches

4. Filter & Load

4.1 Inductor

4.2 Capacitor

5. PWM Controller

5.1 Error Amp.

5.2 PWM

6. Stabilizing the Converter (Example)

7. Load Transient Response Simulation (Example)

Type 2 Compensator Calculator

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

2

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

3

Power Switches

Averaged Buck Switch Model

Filter & Load

Parameter:• L• C• ESR• Rload

PWM Controller (Voltage Mode Control)

Parameter:• VP

• VREF

Models:

Block Diagram:

1.Concept of Simulation

VREF

VOUT

D

U ?B U C K _ S W

REF

PWM

1 / V p

-

+

U ?P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

L1 2

C

R lo a d

V o

E S R

L1 2

C

R lo a d

0

C o m p

C 2

R 2 C 1

F B

Type 2 Compensator

R u p p e r

R lo we r

0

d

V inD

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

V o

E S R

2.Buck Converter Circuit

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

4

Filter & Load

PWM Controller

Power Switches

3.Switches

• The Averaged Buck Switch Model represents relation between input and output of the switch that is controlled by duty cycle – d (value between 0 and 1).

• Transfer function of the model is

vout = d vin

• The current flow into the switch is

iin = d iout

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

5

D

U 2B U C K _ S W

vin

+

-

vout

+

-D

iin iout

4.1 Filter & Load: Inductor

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

6

Inductor Value• The output inductor value is selected to set the

converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode).

• Calculated by

Where

• LCCM is the inductor that make the converter to work in CCM.

• VI,max is input maximum voltage

• RL(max) is load resistance at the minimum output current (IOUT)

• fosc is switching frequency

L1 2

C

R lo a d

V o

E S R

max,

(max)max,

2 Iosc

LOICCM

Vf

RVVL

(1)

4.2 Filter & Load: Capacitor

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

7

Capacitor Value• The minimum allowable output capacitor value should

be determined by

Where

• IL, RIPPLE is an inductor ripple current, chosen to be 25% of IOUT.

• VO,RIPPLE is an output ripple voltage.

• fosc is switching frequency

• In addition, the output ripple voltage due to the capacitor ESR must be considered as the following equation.

L1 2

C

R lo a d

V o

E S R

RIPPLEOosc

RIPPLEL

Vf

IC

,

,

8(min)

RIPPLEL

RIPPLEO

I

VESR

,

,

(2)

(3)

• The Error Amp. compares the feedback voltage ( FB ) to the reference voltage ( Parameter: VREF ), the output signal will be fed back to the controller to regulate the converter output voltage as the above equation.

5.1 PWM Controller: Error Amp.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

8

C o m p

C 2

R 2 C 1

Type 2 Compensator

F B

R u p p e r

R lo we r

0

d

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

Error Amp.

Vo

lower

upperREFOUT

R

RVV 1 (4)

TimeV(PWM)

V(osc) V(comp)0V

2.0V

3.0V

SEL>>

5.2 PWM Controller: PWM

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

9

• The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.

• The error voltage (vcomp) will be compared with

sawtooth signal ( amplitude = VP ) to create the

pulse that the duty cycle depends on the vcomp

• Transfer function of the PWM block is

VP

Duty cycle (d) is a value from 0 to 1

d = vcomp / VP

GPWM = 1/VP

REF

PWM

1 / V p

-

+

U ?P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

vcomp

d

Error Amp.

FB

• Loop gain for this configuration is

L1 2

R lo a d

C

0

C o m p

C 2

R 2 C 1

Type 2 Compensator

F B

R u p p e r3 . 0 6 6 k

R lo we r1 . 0 k

0

d

V in1 2 V d c

D

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

V o

E S R

• The purpose of the compensator G(s) is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions.

5.3 PWM Controller: Compensator

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

10

PWMGsGsHsT )()()( GPWM

G(s)

H(s)

6.Stablilizing the Converter (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

11

Specification:VOUT = 5VVIN = 7 ~ 40VILOAD = 0.2 ~ 1A

L = 330uH, C = 330uF (ESR = 100m),Rupper = 3.1k,Rlower = 1k,

PWM Controller:fOSC = 52kHzVP = 2.5VVREF = 1.23V

Task: to find out the element of the Type 2 compensator ( R2, C1, and C2 )

L3 3 0 u H

1 2

C3 3 0 u F

R lo a d5

0

0

C O L1 k F

L O L

1 k H

C 2

R 2 C 1

F B

R u p p e r3 . 1 k

Type 2 Compensator

R lo we r1 . 0 k

0

d

V 31 V a c0 V d c

V in1 2 V d c

D

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

V o

E S R1 0 0 m

G(s)

e.g. Characteristics from National Semiconductor Corp. IC: LM2575

L3 3 0 u H

1 2

C3 3 0 u F

R lo a d5

0

0

C O L1 k F

L O L

1 k H

R 20 . 7 5 6 k

F B

R u p p e r3 . 1 k

Type 2 Compensator

R lo we r1 k

0

d

V 31 V a c0 V d c

V in1 2 V d c

D

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

V o

E S R1 0 0 m

C 21 f

C 11 k

6.Stablilizing the Converter (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

12

Step2 Set C1=1kF, C2=1fF, and R2= calculated value (Rupper//Rlower) as the initial values.

Step1 Open the loop with LoL=1kH and CoL=1kF then inject the ac signal to generate Bode plot.

The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the average models (ac models).

6.Stablilizing the Converter (Example)

Type 2 Compensator Calculator

Switching frequency, fosc : 52.00 kHzCross-over frequency, fc (<fosc/4) : 10.00 kHzRupper : 3.1 kOhmRlower : 1 kOhmR2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)

PWMVref : 1.230 VVp (Approximate) : 2.5 V

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

13

Step3 Select a crossover frequency (fc < fosc/4), for this example, 10kHz is selected. Then complete the table.

Calcuted value of the Rupper//Rlower

from

d = vcomp / VP

Suppose that the error amp. gain is 100.

vcomp = gain (-vFB) then

d = (100 (-vFB) ) / VP

From the graph on the left, vFB = -25mV

VP = (100 (-vFB) ) / dVP ≈ (100 (-(-25mV)) ) / 1

≈ 2.5V

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

14

If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximate from the characteristics below.

LM2575: Feedback Voltage vs. Duty Cycle

6.Stablilizing the Converter (Example)

vFB = -25mV

d = 1 (100%)

Parameter extracted from simulationSet: R2=R1, C1=1k, C2=1fGain (PWM) at foc ( - or + ) : -44.211Phase (PWM) at foc : 65.068

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

15

Frequency

100Hz 1.0KHz 10KHz 100KHzP(v(d))

0d

90d

180d

SEL>>

(10.000K,65.068)

DB(v(d))

-80

-40

0

40

80

(10.000K,-44.211)

Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table .

6.Stablilizing the Converter (Example)

Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command.

Cursor Search

Gain: T(s) = H(s)GPWM

Phase at fc

K-factor (Choose K and from the table)K 6q -199 ° (automatically calculated)

Phase margin : 46 (automatically calculated)

R2 : 122.780 kOhm (automatically calculated)C1 : 0.778 nF (automatically calculated)C2 : 21.600 pF (automatically calculated)

6.Stablilizing the Converter (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

16

Step5 Select the desired amount of phase margin you need at fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=25 is chosen for Phase margin = 46.

R2, C1, and C2 are calculated

K Factor, introduce by Dean Venable, enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results from a few straight-forward algebraic equations.

R 21 2 2 . 7 8 0 k

Type 2 Compensator

C 22 1 . 6 p

C 10 . 7 7 8 n

L3 3 0 u H

1 2

C3 3 0 u F

R lo a d5

0

0

C O L1 k F

L O L

1 k H

F B

R u p p e r3 . 1 k

R lo we r1 k

0

d

V 31 V a c0 V d c

V in1 2 V d c

D

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

V o

E S R1 0 0 m

6.Stablilizing the Converter (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

17

The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation.

The calculated values of the type 2 elements are, C1=0.778nF, C2=21.6pF, and R2=122.780k.

*Analysis directives: .AC DEC 100 0.1 10MEG

Frequency

100Hz 1.0KHz 10KHz 100KHzP(v(d))

0d

90d

180d

(9.778K,45.930)

DB(v(d))

-40

0

40

80

-100SEL>>

(9.778K,0.000)

• Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

18

6.Stablilizing the Converter (Example)

Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command.

Cursor Search

Phase at fc

Gain: T(s) = H(s) G(s)GPWM

7. Load Transient Response Simulation (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

19

R 21 2 2 . 7 8 0 k

C 22 1 . 6 p

Type 2 Compensator

C 10 . 7 7 8 n

L o a d

V o

I 1

TD = 1 0 mTF = 2 5 u

P W = 0 . 4 3 mP E R = 1

I 1 = 0I 2 = 0 . 8

TR = 2 0 u

R lo a d2 5

0

F B

R u p p e r3 . 1 k

R lo we r1 k

0

d

V in2 0 V d c

D

U 2B U C K _ S W

REF

PWM

1 / V p

-

+

U 3P W M _ C TR L

V P = 2 . 5V R E F = 1 . 2 3

L3 3 0 u H

1 2

C3 3 0 u F

E S R1 0 0 m

The converter, that have been stabilized, are connected with step-load to perform load transient response simulation.

5V/2.5 = 0.2A step to 0.2+0.8=1.0A load

*Analysis directives: .TRAN 0 20ms 0 1u

Simulation Measurement

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

20

Output Voltage Change

Load Current

• The simulation results are compared with the measurement data (National Semiconductor Corp. IC LM2575 datasheet).

Time

9.9ms 10.1ms 10.3ms 10.5ms 10.7ms 10.9ms1 V(vo) 2 I(load)

4.4V

4.5V

4.6V

4.7V

4.8V

4.9V

5.0V

5.1V

5.2V1

0A

0.5A

1.0A

1.5A

2.0A

2.5A

3.0A

3.5A

4.0A2

>>

7. Load Transient Response Simulation (Example)

Type 2 Compensator Calculator

Switching frequency, fosc : 52.00 kHz Spec, datasheetCross-over frequency, fc (<fosc/4) : 10.00 kHz Input the chosen valueRupper : 3.1 kOhm Spec, datasheetRlower : 1 kOhm Spec, datasheetR2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)

PWMVref : 1.230 V Spec, datasheetVp (Approximate) : 2.5 V Spec, datasheet + calculating, (or leave default 2.5V)

Parameter extracted from simulationSet: R2=R2, C1=1k, C2=1fGain (PWM) at foc ( - or + ) : -44.211 dB Read from simulation resultPhase (PWM) at foc : 65.068 ° Read from simulation result

K-factor (Choos K and q from the table)K 6 Input the chosen valueq -199 ° (automatically calculated)

Phase margin : 46 (automatically calculated)

R2 : 122.780 kOhm (automatically calculated)C1 : 0.778 nF (automatically calculated)C2 : 21.60 pF (automatically calculated)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

21

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

22

Simulations Folder name

1. Stabilizing the

Converter....................................................

2. Load Transient Response..................................................

ac

stepload

Libraries :1. ..\bucksw.lib2. ..\pwm_ctr.lib

Tool :• Type 2 Compensator Calculator (Excel sheet)