Quantities for Describing Radiation...

Post on 18-Jun-2018

224 views 0 download

transcript

Quantities for Describing Radiation Interactions

Ho Kyung Kimhokyung@pusan.ac.kr

Pusan National University

Radiation DosimetryAttix 2

References

F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley and Sons, Inc., 1986

G. F. Knoll, Radiation Detection and Measurement, 4th ed., John Wiley and Sons, Inc., 2010

2

Nonstochastic quantities for describing the interactions of the radiation field with matter (in terms of expectation values for the infinitesimal sphere at the point of interest)

1. Kerma 𝐾𝐾– The first step in energy dissipation by indirectly ionizing radiation (i.e., energy transfer to charged particles)

2. Absorbed dose 𝐷𝐷– The energy imparted to matter by all kinds of ionization radiations, but delivered by the charged particles

3. Exposure 𝑋𝑋– X- & 𝛾𝛾-ray fields in terms of their ability to ionize air

3

Kerma

Relevant only forβ€’ Fields of indirectly ionizing radiations (e.g., photons or neutrons)β€’ Any ionizing radiation source distributed within the absorbing medium

Energy transferred

πœ–πœ–π‘‘π‘‘π‘‘π‘‘ = (𝑅𝑅𝑖𝑖𝑖𝑖)π‘’π‘’βˆ’ π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ π‘’π‘’π‘–π‘–π‘œπ‘œπ‘–π‘–π‘‘π‘‘ + �𝑄𝑄

– πœ–πœ–π‘‘π‘‘π‘‘π‘‘ = energy transferred (stochastic quantity)– (𝑅𝑅𝑖𝑖𝑖𝑖)𝑒𝑒 = radiant energy† of uncharged particles entering 𝑉𝑉– π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ 𝑒𝑒

π‘–π‘–π‘œπ‘œπ‘–π‘–π‘‘π‘‘= radiant energy of uncharged particles leaving 𝑉𝑉, except that which originated from radiative losses‑ of KE by charged particles while in 𝑉𝑉

– βˆ‘π‘„π‘„ = net energy derived from rest mass in 𝑉𝑉‒ positive when Ξ”π‘šπ‘š ↓ (π‘šπ‘š β†’ 𝐸𝐸)β€’ negative when Ξ”π‘šπ‘š ↑ (𝐸𝐸 β†’ π‘šπ‘š)

4‑ Conversion of charged-particle KE to photon energy through either bremsstrahlung or in-flight annihilation of positrons

† The energy of particles (excluding rest energy) emitted, transferred, or received

𝐾𝐾 ≑dπœ–πœ–π‘‘π‘‘π‘‘π‘‘dπ‘šπ‘š

β€’ The expectation value of the energy transferred to charged particles per unit mass at a point of interest, including radiative-loss energy but excluding energy passed from one charged particle to another

β€’ Simply, the KE received by charged particles in the specified finite volume 𝑉𝑉‒ The kerma for x- or 𝛾𝛾-rays consists of the energy transferred to electrons & positrons per unit

mass of mediumβ€’ 1 Gy = 1 J/kg = 102 rad = 104 erg/g

For monoenergetic photons

𝐾𝐾 = Ξ¨πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘πœŒπœŒ 𝐸𝐸,𝑍𝑍

– πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘πœŒπœŒ

= mass energy-transfer coefficient (depending on 𝐸𝐸 & 𝑍𝑍)

– πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘ = linear energy-transfer coefficient

5

For spectral photons

𝐾𝐾 = �0

πΈπΈπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šΞ¨β€²(𝐸𝐸)

πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘πœŒπœŒ 𝐸𝐸,𝑍𝑍

d𝐸𝐸

An average value of mass energy-transfer coefficient for the spectrum Ξ¨β€²(𝐸𝐸) is given by

πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘πœŒπœŒ Ξ¨β€² 𝐸𝐸 ,𝑍𝑍

=𝐾𝐾Ψ

=∫0πΈπΈπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š Ξ¨β€²(𝐸𝐸) πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘

𝜌𝜌 𝐸𝐸,𝑍𝑍d𝐸𝐸

∫0πΈπΈπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š Ξ¨β€²(𝐸𝐸) d𝐸𝐸

Kerma rate

�̇�𝐾 =d𝐾𝐾d𝑑𝑑

=dd𝑑𝑑

dπœ–πœ–π‘‘π‘‘π‘‘π‘‘dπ‘šπ‘š

6

Components of kerma𝐾𝐾 = 𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑑𝑑

– 𝐾𝐾𝑐𝑐 = kerma due to collision interactions (local or nearby the charged-particle track)β€’ Coulomb-force interactions with atomic electrons (ionization & excitation)

– 𝐾𝐾𝑑𝑑 = kerma due to radiative interactions (remote or far away from the charged-particle track)β€’ radiative interactions with the Coulomb force field of atomic nucleiβ€’ bremsstrahlung, in-flight annihilation

Net energy transferred

πœ–πœ–π‘‘π‘‘π‘‘π‘‘π‘–π‘– = (𝑅𝑅𝑖𝑖𝑖𝑖)π‘’π‘’βˆ’ π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ π‘’π‘’π‘–π‘–π‘œπ‘œπ‘–π‘–π‘‘π‘‘ βˆ’ 𝑅𝑅𝑒𝑒𝑑𝑑 + �𝑄𝑄 = πœ–πœ–π‘‘π‘‘π‘‘π‘‘ βˆ’ 𝑅𝑅𝑒𝑒𝑑𝑑

– 𝑅𝑅𝑒𝑒𝑑𝑑 = radiant energy emitted as radiative losses by the charged particles (which themselves originated in 𝑉𝑉)

7

Collision kerma

𝐾𝐾𝑐𝑐 =dπœ–πœ–π‘‘π‘‘π‘‘π‘‘π‘–π‘–

dπ‘šπ‘š

β€’ The expectation value of the net energy transferred to charged particles per unit mass at a point of interest, excluding both radiative-loss energy and energy passed from one charged particle to another

Radiative kerma

𝐾𝐾𝑑𝑑 =d𝑅𝑅𝑒𝑒𝑑𝑑

dπ‘šπ‘š

8

For monoenergetic photons

𝐾𝐾𝑐𝑐 = Ξ¨πœ‡πœ‡π‘’π‘’π‘–π‘–πœŒπœŒ 𝐸𝐸,𝑍𝑍

– πœ‡πœ‡π‘’π‘’π‘’π‘’πœŒπœŒ

= mass energy-absorption coefficient (depending on 𝐸𝐸 & 𝑍𝑍)

β€’ πœ‡πœ‡π‘’π‘’π‘’π‘’πœŒπœŒβ‰ˆ πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘

𝜌𝜌for low 𝑍𝑍 and 𝐸𝐸 (where radiative losses are small)

– πœ‡πœ‡π‘’π‘’π‘–π‘– = linear energy-absorption coefficient

9

𝐸𝐸𝛾𝛾 (MeV)

πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘ βˆ’ πœ‡πœ‡π‘’π‘’π‘–π‘–πœ‡πœ‡π‘‘π‘‘π‘‘π‘‘

Γ— 100

𝑍𝑍 = 6 29 82

0.1 0 0 0

1 0 1.1 4.8

10 3.5 13.3 26

Absorbed dose

Relevant forβ€’ All types of ionizing radiation fieldsβ€’ Any ionizing radiation source distributed within the absorbing medium

Energy imparted

πœ–πœ– = (𝑅𝑅𝑖𝑖𝑖𝑖)π‘’π‘’βˆ’ π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ 𝑒𝑒 + 𝑅𝑅𝑖𝑖𝑖𝑖 𝑐𝑐 βˆ’ (π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘)𝑐𝑐+�𝑄𝑄

– πœ–πœ– = energy imparted (stochastic quantity)– π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ 𝑒𝑒 = radiant energy of all the uncharged radiation leaving 𝑉𝑉– 𝑅𝑅𝑖𝑖𝑖𝑖 𝑐𝑐 = radiant energy of the charged particles entering 𝑉𝑉– π‘…π‘…π‘œπ‘œπ‘’π‘’π‘‘π‘‘ 𝑐𝑐 = radiant energy of the charged particles leaving 𝑉𝑉– βˆ‘π‘„π‘„ = net energy derived from rest mass in 𝑉𝑉

10

𝐷𝐷 =dπœ–πœ–dπ‘šπ‘š

β€’ The expectation value of the energy imparted to matter per unit mass at a pointβ€’ The same dimension & units with 𝐾𝐾‒ Simply, the energy per unit mass to produce any effects attributable to the radiation (the most

important quantity in radiological physics)β€’ Impossible to write a relationship 𝐷𝐷 and Ξ¨ of indirect radiationβ€’ 1 Gy = 1 J/kg = 102 rad = 104 erg/g

Absorbed dose rate

�̇�𝐷 =d𝐷𝐷d𝑑𝑑

=dd𝑑𝑑

dπœ–πœ–dπ‘šπ‘š

11

Comparative example 1 of πœ–πœ–, πœ–πœ–π‘‘π‘‘π‘‘π‘‘, & πœ–πœ–π‘‘π‘‘π‘‘π‘‘π‘–π‘–

12Attix Fig. 2.1a

Ex

Comparative example 2 of πœ–πœ–, πœ–πœ–π‘‘π‘‘π‘‘π‘‘, & πœ–πœ–π‘‘π‘‘π‘‘π‘‘π‘–π‘–

13Attix Fig. 2.1b

Ex

Ex

If the positron in Attix Fig. 2.1b had been annihilated in flight when its remaining KE was 𝑇𝑇3 , what are the values of πœ–πœ–, πœ–πœ–π‘‘π‘‘π‘‘π‘‘, & πœ–πœ–π‘‘π‘‘π‘‘π‘‘π‘–π‘– ?

14

Ex

Exposure

Nonstochastic quantity defined only for x-ray & 𝛾𝛾-ray photons

𝑋𝑋 =d𝑄𝑄dπ‘šπ‘š

– The absolute value of the total charge d𝑄𝑄 of the ions (of one sign) produced in air when all the electrons (negatrons & positrons) liberated by photons in air of mass dπ‘šπ‘š are completely stopped in air

– The ICRU says that "the ionization arising from the absorption of bremsstrahlung emitted by the electrons is not to be included in d𝑄𝑄"

β€’ Also, the radiative losses through in-flight annihilation positrons– Simply, the ionization equivalent of the 𝐾𝐾𝑐𝑐 in air for x- & 𝛾𝛾-rays

15

W-value οΏ½π‘Šπ‘Š

β€’ See Attix 12 for more detailsβ€’ The mean energy expended in a gas per ion pair formed

οΏ½π‘Šπ‘Š =βˆ‘π‘‡π‘‡π‘–π‘–(1 βˆ’ 𝑔𝑔𝑖𝑖)βˆ‘π‘π‘π‘–π‘–(1 βˆ’ 𝑔𝑔𝑖𝑖′)

– 𝑇𝑇𝑖𝑖 = initial KE of the 𝑖𝑖th electron (or positron)– 𝑔𝑔𝑖𝑖 = fraction of 𝑇𝑇𝑖𝑖 that is spent by the particle in radiative interactions along its full path in air– 1 βˆ’ 𝑔𝑔𝑖𝑖 = fraction spent in collision interactions– 𝑁𝑁𝑖𝑖 = total number of ion pairs that are produced in air by the 𝑖𝑖th electron of energy 𝑇𝑇𝑖𝑖– 𝑔𝑔𝑖𝑖′ = fraction of the ion pairs that are generated by the photons resulting from radiative loss interactions– 1 βˆ’ 𝑔𝑔𝑖𝑖′ = fraction of the ion pairs produced by collision interactions that occur along the particle track

β€’ Not count the energy going into radiative losses, nor the ionization produced by the resulting photons

16

All the KE spent by electrons in collision interactions

All the ion pairs produced in collision interactions by electrons

β€’ eV/ion pair– 33.97 eV/ip for x- & 𝛾𝛾-rays in air

β€’οΏ½π‘Šπ‘Šπ‘šπ‘šπ‘Žπ‘Žπ‘‘π‘‘π‘’π‘’

=33.97 eV

ip (or electron)

1.602Γ—10βˆ’19 C/electronΓ— 1.602 Γ— 10βˆ’19 J

eV= 33.97 J

eV

β€’ Constant values for each gas, independent of photon E, for x- & 𝛾𝛾-ray energies above a few keVβ€’ Convenient for relating (𝐾𝐾𝑐𝑐)π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘ and 𝑋𝑋

Exposure rate

�̇�𝑋 =d𝑋𝑋d𝑑𝑑

17

𝑋𝑋 to Ξ¨β€’ For monoenergetic photons

𝑋𝑋 = Ξ¨πœ‡πœ‡π‘’π‘’π‘–π‘–πœŒπœŒ 𝐸𝐸,π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

π‘’π‘’οΏ½π‘Šπ‘Š π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

= (𝐾𝐾𝑐𝑐)π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘π‘’π‘’οΏ½π‘Šπ‘Š π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

=(𝐾𝐾𝑐𝑐)π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘33.97

– 1 R = 1 esu0.001293 g

Γ— 1 C2.998Γ—109 esu

Γ— 103 g1 kg

= 2.580 Γ— 10βˆ’4 C/kg

– Conversion factorsβ€’ 𝑋𝑋 (in C/kg) = 2.58 Γ— 10-4𝑋𝑋 (in R)β€’ 𝑋𝑋 (in R) = 3876 𝑋𝑋 (in C/kg)

β€’ For spectral photons

𝑋𝑋 = οΏ½0

πΈπΈπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šΞ¨β€²(𝐸𝐸)

πœ‡πœ‡π‘’π‘’π‘–π‘–πœŒπœŒ 𝐸𝐸,π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

π‘’π‘’οΏ½π‘Šπ‘Š π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

d𝐸𝐸 β‰ˆπ‘’π‘’οΏ½π‘Šπ‘Š π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

οΏ½0

πΈπΈπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šΞ¨β€²(𝐸𝐸)

πœ‡πœ‡π‘’π‘’π‘–π‘–πœŒπœŒ 𝐸𝐸,π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘

d𝐸𝐸

18

Significance of exposure

1. Ξ¨ is proportional to 𝑋𝑋 for any given photon energy or spectrum2. The measurement of 𝑋𝑋 may estimate the effects of x- or 𝛾𝛾-ray in tissue because air is an

approximately "tissue-equivalent" material (π‘π‘π‘Žπ‘Žπ‘–π‘–π‘‘π‘‘ β‰ˆ π‘π‘π‘šπ‘šπ‘’π‘’π‘šπ‘šπ‘π‘π‘šπ‘šπ‘’π‘’)3. The value of 𝐾𝐾𝑐𝑐 in muscle, per unit 𝑋𝑋, is nearly independent of photon E4. One can characterize a photon field at a point

19Attix Figs. 2.2a & b

Other quantities for radiation protection

Quality factor 𝑄𝑄‒ Weighting factor to provide an estimate of the relative human hazard of different types &

energies of ionizing radiationsβ€’ Dimensionlessβ€’ Determined from the experimental relative biological effectiveness (RBE) & the unrestricted linear

energy transfer (𝐿𝐿∞) or the collision stopping power

20Attix Fig. 2.3

Dose equivalent 𝐻𝐻𝐻𝐻 ≑ 𝐷𝐷𝑄𝑄

– Defined at a point (i.e., a point quantity)– Sievert, 1 Sv = 1 J/kg– 1 rem = 10-2 J/kg (equivalently to "rad")– Not strictly a physical quantity

Equivalent dose 𝐻𝐻𝑇𝑇,𝑅𝑅𝐻𝐻𝑇𝑇,𝑅𝑅 = 𝐷𝐷𝑇𝑇,𝑅𝑅𝑀𝑀𝑅𝑅

– Equivalent dose in an organ or in tissue 𝑇𝑇 due to radiation 𝑅𝑅– Not a point quantity but an average over a tissue or organ– 𝐻𝐻𝑇𝑇 = βˆ‘π‘…π‘…π»π»π‘‡π‘‡,𝑅𝑅 = βˆ‘π‘…π‘…π·π·π‘‡π‘‡,𝑅𝑅𝑀𝑀𝑅𝑅– Not a measurable quantity

Effective dose

𝐸𝐸 = �𝑇𝑇

𝐻𝐻𝑇𝑇𝑀𝑀𝑇𝑇

– Not a measurable quantity

21Knoll 2