Quantum reference frames for space and...

Post on 08-Jun-2020

10 views 0 download

transcript

Quantum reference frames for space and time

Flaminia Giacomini

Joint work with: A. Belenchia, Č. Brukner, E. Castro Ruiz, P. A. Höhn, A. Vanrietvelde

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1712.07207, 2017 published in Nat. Commun. 10(494), 2019

A. Vanrietvelde, P. A. Höhn, F. Giacomini, E. Castro Ruiz, arXiv:1809.00556, 2018A. Vanrietvelde, P. A. Höhn, F. Giacomini, arXiv:1809.05093, 2018

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228, 2018E. Castro Ruiz et al., arXiv190(?).XXXXX, 2019

Naples, 1-3 July 2019Obervers in quantum gravity II

Reference frames

!2

Space and time are relational✓

AB

CWhen we describe a physical property,

we take a specific point of view

Reference frames

!2

Space and time are relational

Our “rods” and “clocks” are physical systems

✓A

B

CWhen we describe a physical property,

we take a specific point of view

Reference frames

!3

Physical systems are ultimately quantum

γ1

γ2

1

2( |γ1⟩ + |γ2⟩)

Reference frames

!3

Physical systems are ultimately quantum

γ1

γ2

1

2( |γ1⟩ + |γ2⟩)

Can we “attach” a reference frame to an object whose state is in a superposition of classical states (in some basis)?

Reference frames

!3

Physical systems are ultimately quantum

γ1

γ2

1

2( |γ1⟩ + |γ2⟩)

Can we “attach” a reference frame to an object whose state is in a superposition of classical states (in some basis)?

Quantum reference frames

Reference frames

!3

Physical systems are ultimately quantum

Disclaimer: Does not describe spacetime fuzziness, classical reference frames

which are in a quantum relationship

γ1

γ2

1

2( |γ1⟩ + |γ2⟩)

Can we “attach” a reference frame to an object whose state is in a superposition of classical states (in some basis)?

Quantum reference frames

Outlinequantum reference frames for space

quantum reference frames for time

Overview of the formalism

Results

F. Giacomini, E. Castro Ruiz, Č. Brukner, Nat. Commun. 10(494), 2019, arXiv:1712.07207, 2017F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228, 2018

E. Castro Ruiz et al., arXiv190(?).XXXXX, 2019

Motivation

Formalism

Phenomenological consequences- Relativity of interactions- Superposition of causal orders

- Frame dependence of entanglement and superposition- Extension of the covariance of quantum mechanics- Operational definition of rest frame

quantum reference frames for space

1

No absolute space

!6(see also Philipp’s talk)

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207 A. Vanrietvelde, P. A. Höhn, FG, E. Castro Ruiz (2018)

A. Vanrietvelde, P. A. Höhn, FG (2018)

No absolute space

!6(see also Philipp’s talk)

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207 A. Vanrietvelde, P. A. Höhn, FG, E. Castro Ruiz (2018)

A. Vanrietvelde, P. A. Höhn, FG (2018)

✓A

B

C

Relational approach: only relative quantities are considered.

No need of an absolute reference frame.

No absolute space

!6(see also Philipp’s talk)

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207 A. Vanrietvelde, P. A. Höhn, FG, E. Castro Ruiz (2018)

A. Vanrietvelde, P. A. Höhn, FG (2018)

✓A

B

C

Relational approach: only relative quantities are considered.

No need of an absolute reference frame.

No absolute space

!6(see also Philipp’s talk)

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207 A. Vanrietvelde, P. A. Höhn, FG, E. Castro Ruiz (2018)

A. Vanrietvelde, P. A. Höhn, FG (2018)

✓A

B

C

Relational approach: only relative quantities are considered.

No need of an absolute reference frame.

No absolute space

!6(see also Philipp’s talk)

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207 A. Vanrietvelde, P. A. Höhn, FG, E. Castro Ruiz (2018)

A. Vanrietvelde, P. A. Höhn, FG (2018)

✓A

B

C

Relational approach: only relative quantities are considered.

No need of an absolute reference frame.

Quantum reference frames

!7

B

Cα xB

A

B

C

xB

xA

xB ↦ qB − qC

xA ↦ − qC

Transformation to relative coordinates

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207

eiℏ α pB |x⟩B = |x − α⟩B

Quantum reference frames

!7

B

Cα xB

A

B

C

xB

xA

xB ↦ qB − qC

xA ↦ − qC

Transformation to relative coordinates

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207

eiℏ α pB |x⟩B = |x − α⟩B

A

xA

Quantum reference frames

!7

B

Cα xB

A

B

C

xB

xA

xB ↦ qB − qC

xA ↦ − qC

Transformation to relative coordinates

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207

eiℏ α pB |x⟩B = |x − α⟩B

eiℏ xA pB |ϕ⟩A |ψ⟩B

A

xA

Quantum reference frames

!7

B

Cα xB

A

B

C

xB

xA

xB ↦ qB − qC

xA ↦ − qC

Transformation to relative coordinates

FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019) arXiv:1712.07207

eiℏ α pB |x⟩B = |x − α⟩B

eiℏ xA pB |ϕ⟩A |ψ⟩B

parity-swap operator

Sx = 𝒫ACeiℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

𝒫AC xA𝒫†AC = − qC

A

xA

A: new reference frame; B: quantum system; C: old reference frame

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

A BC

q

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

A BC

q

Entangled state

L LC

A B

x

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

A BC

q

Entangled state

L LC

A B

x

AC B

q

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

A BC

q

Entangled state

L LC

A B

x

AC B

q

EPR state

CBA

x

Zdx|xiA|x+XiB

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frame; B: quantum system; C: old reference frame

Localised state of A

BAC

x

AC

Bq

Product state and spatial superposition

CBA

x

A BC

q

AC B

q

Entangled state

L LC

A B

x

AC B

q

EPR state

CBA

x

Zdx|xiA|x+XiB

Relative statesSx = 𝒫ACe

iℏ xA pB ρ(A)

BC = Sxρ(C)AB

S†x

8

A: new reference frameB: quantum systemC: old reference frame

Schrödinger equation in C’s reference frame

i~d⇢(C)ABdt =

hH

(C)AB , ⇢

(C)AB(t)

i

Extended covariance

9FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019)

arXiv:1712.07207

A: new reference frameB: quantum systemC: old reference frame

Schrödinger equation in C’s reference frame

i~d⇢(C)ABdt =

hH

(C)AB , ⇢

(C)AB(t)

i

To change to the frame of A we apply the transformation

i~d⇢(A)BCdt =

hH

(A)BC , ⇢

(A)BC(t)

iS

Extended covariance

9FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019)

arXiv:1712.07207

A: new reference frameB: quantum systemC: old reference frame

Schrödinger equation in C’s reference frame

i~d⇢(C)ABdt =

hH

(C)AB , ⇢

(C)AB(t)

i

The evolution in the new reference frame is unitary.

H(A)BC = SH

(C)AB S

† + i~dSdt

S†

⇢(A)BC = S⇢(C)

AB S†

To change to the frame of A we apply the transformation

i~d⇢(A)BCdt =

hH

(A)BC , ⇢

(A)BC(t)

iS

Extended covariance

9FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019)

arXiv:1712.07207

A: new reference frameB: quantum systemC: old reference frame

Schrödinger equation in C’s reference frame

i~d⇢(C)ABdt =

hH

(C)AB , ⇢

(C)AB(t)

i

The evolution in the new reference frame is unitary.

H(A)BC = SH

(C)AB S

† + i~dSdt

S†

⇢(A)BC = S⇢(C)

AB S†

We define an extended symmetry transformation as:

SH ({mi, xi, pi}i=A,B) S† + i~dS

dtS† = H ({mi, xi, pi}i=B,C)

To change to the frame of A we apply the transformation

i~d⇢(A)BCdt =

hH

(A)BC , ⇢

(A)BC(t)

iS

Extended covariance

9FG, E. Castro Ruiz, C. Brukner, Nat Commun. (2019)

arXiv:1712.07207

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

Spin is unambiguous in the rest frame

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frame

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frame

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

v1

v2

C

C

A

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frameQRF transformation to the rest

frame of a quantum particle

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

v1

v2

C

C

A

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frameQRF transformation to the rest

frame of a quantum particle

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

v1

v2

C

C

A

superposition of Lorentz boosts

SL = P(v)CAUA(⇤⇡C )

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frameQRF transformation to the rest

frame of a quantum particle

Operational way of finding a covariant spin operator.

Ξi = SL(IC ⊗ σi) S†L

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

v1

v2

C

C

A

superposition of Lorentz boosts

SL = P(v)CAUA(⇤⇡C )

Quantum rest frame

10

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228 (2018)

QRFs allow us to transform to the rest frame of a particle in a superposition

of velocities.

Spin is unambiguous in the rest frameQRF transformation to the rest

frame of a quantum particle

Operational way of finding a covariant spin operator.

Ξi = SL(IC ⊗ σi) S†L

Lack of an operational definition of spin (Stern Gerlach experiment) in special relativistic quantum mechanics.

(Pauli-Lubanski, Wigner-Pryce, Foldy-Wouthuysen, Chakrabarti, Czachor, Fradkin-Good, Fleming,…)

Opens to practical applications.

v1

v2

C

C

A

superposition of Lorentz boosts

SL = P(v)CAUA(⇤⇡C )

Quantum rest frame

10

quantum reference frames for time

2

A simple clock model

!12

E0

E1

=

HC = E0 |E0⟩⟨E0 | + E1 |E1⟩⟨E1 |1

2( |E0⟩ + |E1⟩)

t⊥ =πℏ

(E1 − E0)

Gravitating clocks lead to a non-classical spacetime

!13 E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1

1

2( |E0⟩ + |E1⟩)

H = HA + HB −G

c4xHAHB

Gravitating clocks lead to a non-classical spacetime

!13 E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1

1

2( |E0⟩ + |E1⟩)

H = HA + HB −G

c4xHAHB

t⊥ =πℏ

(E1 − E0)

Gravitating clocks lead to a non-classical spacetime

!13 E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1

1

2( |E0⟩ + |E1⟩)

Δt =G(E1 − E0)

c4xt

H = HA + HB −G

c4xHAHB

t⊥ =πℏ

(E1 − E0)

Gravitating clocks lead to a non-classical spacetime

!13 E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1

1

2( |E0⟩ + |E1⟩)

Δt =G(E1 − E0)

c4xt

H = HA + HB −G

c4xHAHB

t⊥ =πℏ

(E1 − E0) t⊥Δt =πℏGtc4x

!14

QM with no time parameter?E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1 x R � x

Option 1: Far-away observer

!14

QM with no time parameter?E.Castro Ruiz, FG, C Brukner, PNAS (2017)

E0

E1 x R � x

Option 1: Far-away observer

Option 2: Reference frames for time evolution (this talk)

S

C1

C2

C3C4

Can we “stand” on different clocks and describe quantum dynamics from their point of view?

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

|Ψ⟩ph ∝ ∫ dαeiℏ Cα |ϕ⟩

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

|Ψ⟩ph ∝ ∫ dαeiℏ Cα |ϕ⟩

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

i⟨ti |Ψ⟩Ph = |ψ(ti)⟩(i)

Perspective of clock iCi

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

|Ψ⟩ph ∝ ∫ dαeiℏ Cα |ϕ⟩

iℏ 1 + ∑k≠i

λikHkd |ψ(ti)⟩(i)

dti= ∑

k≠i

Hk + ∑j<k

λjkHjHk |ψ(ti)⟩(i)

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

i⟨ti |Ψ⟩Ph = |ψ(ti)⟩(i)

Perspective of clock iCi

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

|Ψ⟩ph ∝ ∫ dαeiℏ Cα |ϕ⟩

iℏ 1 + ∑k≠i

λikHkd |ψ(ti)⟩(i)

dti= ∑

k≠i

Hk + ∑j<k

λjkHjHk |ψ(ti)⟩(i)

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

λik → 0 Clock hamiltonian from far-away observer

i⟨ti |Ψ⟩Ph = |ψ(ti)⟩(i)

Perspective of clock iCi

!15

Timeless quantum mechanics

D. Page, W. Wootters, PRD (1983) M. Reisenberger, C. Rovelli, PRD (2002)

|Ψ⟩ph ∝ ∫ dαeiℏ Cα |ϕ⟩

iℏ 1 + ∑k≠i

λikHkd |ψ(ti)⟩(i)

dti= ∑

k≠i

Hk + ∑j<k

λjkHjHk |ψ(ti)⟩(i)

C |Ψ⟩ph = 0 C =N

∑k=1

Hk + ∑j<k

λjkHjHk

λjk = −G

c4xjk

λik → 0 Clock hamiltonian from far-away observer

iℏd |ψ(ti)⟩(i)

dti= ∑

k≠i

Hk + ∑j<k

λjkHjHk |ψ(ti)⟩(i)λik small

Hk = Hk(1 − λikHk)λjk = λjk − λij − λik

i⟨ti |Ψ⟩Ph = |ψ(ti)⟩(i)

Perspective of clock iCi

!16

Relativity of interactionsH(i) = ∑

k≠i

Hk + ∑j<k

λjkHjHk

Hk = Hk(1 − λikHk)

λjk = λjk − λij − λik

C1

C3

C2

C4

C5

λ12 λ14

!16

Relativity of interactionsH(i) = ∑

k≠i

Hk + ∑j<k

λjkHjHk

Hk = Hk(1 − λikHk)

λjk = λjk − λij − λik

C1

C3

C2

C4

C5

λ12 λ14

Perspective of clock 3

λ5k = 0 ∀k ≠ 3 No interactions between clock 5 and the other clocks

!16

Relativity of interactionsH(i) = ∑

k≠i

Hk + ∑j<k

λjkHjHk

Hk = Hk(1 − λikHk)

λjk = λjk − λij − λik

C1

C3

C2

C4

C5

λ12 λ14

Perspective of clock 3

λ5k = 0 ∀k ≠ 3 No interactions between clock 5 and the other clocks

Perspective of clock 1

λ54 ≠ 0λ52 ≠ 0

Interactions between clock 5 and clocks 2 and 4

!17

Introducing the measurement

S

C1

C2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

S

C1

C2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

C1

C2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

C1

C2System S

Ancilla M

Clocks 1 and 2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

M

C1

C2System S

Ancilla M

Clocks 1 and 2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

M

C1

C2

C = H1 + H2 + HS + λH1H2 + (1 + λH1)∑i

δ( T2 − ti)KMSi

Previous Hamiltonian

System S

Ancilla M

Clocks 1 and 2

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

M

C1

C2

C = H1 + H2 + HS + λH1H2 + (1 + λH1)∑i

δ( T2 − ti)KMSi

Previous Hamiltonian

System S

Ancilla M

Clocks 1 and 2

Time of measurement controlled by clock 2F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007)

V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

M

C1

C2

C = H1 + H2 + HS + λH1H2 + (1 + λH1)∑i

δ( T2 − ti)KMSi

Previous Hamiltonian

System S

Ancilla M

Clocks 1 and 2

Time of measurement controlled by clock 2

Observable on S and M

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!17

Introducing the measurement

[C, O] = 0 Non-evolving quantities?Restriction of observables?

Solution: “Purify” the measurement

S

M

C1

C2

C = H1 + H2 + HS + λH1H2 + (1 + λH1)∑i

δ( T2 − ti)KMSi

Previous Hamiltonian

System S

Ancilla M

Clocks 1 and 2

Time dilation factor due to clock 1

Time of measurement controlled by clock 2

Observable on S and M

F Hellmann, M Mondragon, A Perez, C Rovelli PRD (2007) V Giovannetti, S Lloyd, L Maccone, PRD (2015)

!18

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

!18

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!18

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!18

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!18

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!18

The gravitational switch

A B

UA

UB

τA = 2 τB = 2

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!18

The gravitational switch

A B

UA

UB

τA = 2 τB = 2

UAUB |ψ⟩S |L⟩E

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

UA

UB

τA = 2 τB = 2

E

!19

The gravitational switch

A B

M Zych, F Costa, I Pikovski, C Brukner (2017)

UBUA |ψ⟩S |R⟩E

UA

UB

τA = 2 τB = 2

E

!20

The gravitational switch

A B

UA UB

M Zych, F Costa, I Pikovski, C Brukner (2017)

( |L⟩E + |R⟩E)

2|ψ⟩S

!20

The gravitational switch

A B

UA UB

M Zych, F Costa, I Pikovski, C Brukner (2017)

UAUB |ψ⟩S |L⟩E + UBUA |ψ⟩S |R⟩E

2

( |L⟩E + |R⟩E)

2|ψ⟩S

!21

Relative localisation of events

A B

C

S

E E

!21

Relative localisation of events

A B

C

S

Far-away observer

E E

!21

Relative localisation of eventsC = ∑

i=A,B,C

Hi(1 + ϕi) + ∑i=A,B

δ( Ti − t*)KSi (1 + ϕi) ϕi = −

GME

c2 xi

A B

C

S

Far-away observer

E E

!21

Relative localisation of eventsC = ∑

i=A,B,C

Hi(1 + ϕi) + ∑i=A,B

δ( Ti − t*)KSi (1 + ϕi) ϕi = −

GME

c2 xi

A B

C

S

Far-away observer

Distance between E and the clocks

E E

!22

Relative localisation of eventsC = ∑

i=A,B,C

Hi(1 + ϕi) + ∑i=A,B

δ( Ti − t*)KSi (1 + ϕi) ϕi = −

GME

c2 xi

From C’s point of view

A B

t⇤

t⇤

M(C)R

M(C)LA B

t⇤ � �

t⇤ + �

t⇤ + �

t⇤ � �

A B

t⇤

t⇤

A B

M(A)R

M(A)L

t⇤ + ✏t⇤ � ✏

!23

Relative localisation of eventsC = ∑

i=A,B,C

Hi(1 + ϕi) + ∑i=A,B

δ( Ti − t*)KSi (1 + ϕi) ϕi = −

GME

c2 xi

From A’s point of view

!24

SummaryOperational and relational formalism for quantum reference frames

for space and time.

For space:Frame-dependence of entanglement and superposition

Generalisation of covarianceGeneralisation of the weak equivalence principle (not covered)

Operational definition of the rest frame of a quantum system (relativistic spin)

For time:Hamiltonian for interacting clocks (with gravitational time dilation)

Relativity of interactionsSuperposition of causal orders

Thank you

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1712.07207, 2017 published in Nat. Commun. 10(494), 2019

A. Vanrietvelde, P. A. Höhn, F. Giacomini, E. Castro Ruiz, arXiv:1809.00556, 2018A. Vanrietvelde, P. A. Höhn, F. Giacomini, arXiv:1809.05093, 2018

F. Giacomini, E. Castro Ruiz, Č. Brukner, arXiv:1811.08228, 2018E. Castro Ruiz et al., arXiv190(?).XXXXX, 2019