Recent Advances in C H Activation by Rhodium Based Catalystshuizhao.pdf · C‐H Activation H RH+...

Post on 30-Mar-2019

218 views 0 download

transcript

Recent Advances in C‐H Activation by Rhodium Based Catalystsby Rhodium Based Catalysts

Hui Zhao 10/29/2008Hui Zhao 10/29/2008

C‐H ActivationC H Activation

H

R H + [LnMX] R MX+2

Ln

H

Ln

H2O R' NH2R' Br

R'HN R

h fi i i f h C b d i ll diffi l

ROH R' N RR' R

The  first step, activation of the C‐H bond is generally very difficult

C‐H bonds are ubiquitous in organic molecules, selectivity is always an issue

Labinger,  J. A.; Bercaw, J. E. Nature 2002, 417, 507.

Shilov ChemistryShilov Chemistry

• Remarkable reaction, converts methane to methanol or methyl chloridemethyl chloride

• Discovered in 1972, a famous example of alkane functionalization under mild conditionsfunctionalization under mild conditions

• After 30 years, the mechanism is still in debate, recent work is from John E. Bercaw 

Gol’dshleger, N.F.; Es’kova, V. V.; Shilov, A. E.; Shteinman, A. A. Zhurnal Fizicheskoi Khimii 1972, 46, 1353.Labinger,  J. A.; Bercaw, J. E. Nature 2002, 417, 507.

Shilov ChemistryShilov Chemistry

Cl OH2 CH C OPtIICl OH2

H2O Cl

+ CH4

- HClPtII

Cl OH2

H2O CH3

PtIVCl62-

CH3OH + HCl

Cl OHCH3

H2O

Stoichiometricloading of PtIV

PtIICl42-PtIVCl OH2

H2O ClCl

g

Gol’dshleger, N.F.; Es’kova, V. V.; Shilov, A. E.; Shteinman, A. A. Zhurnal Fizicheskoi Khimii 1972, 46, 1353.Labinger,  J. A.; Bercaw, J. E. Nature 2002, 417, 507.

Proposed mechanism for Shilov's platinum catalyzed alkane oxidation

Wilkinson’s CatalystWilkinson s Catalyst

• 1973 Nobel prize• 1973 Nobel prize

• Homogeneous catalytic hydrogenation of olefins

• Rhodium(I) tris (triphenylphosphine) chloride as the catalyst• Rhodium(I) tris‐(triphenylphosphine) chloride as the catalyst

Osbron, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Am. Chem. Soc. 1966, 88, 1711‐1732.

Wilkinson’s CatalystWilkinson s Catalyst

Osbron, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Am. Chem. Soc. 1966, 88, 1711‐1732.

Catalytic C‐H Activation 

Outline

• Introduction

Outline

Introduction

• Alkylation of N‐heterocycles

• Arylation of N‐heterocycles

• C‐H Activation by carbene insertionC H Activation by carbene insertion

• C‐H Activation by nitrene insertion

Alkylation of Heterocycles

Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013‐1025.

Alkylation of Heterocycles

Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013‐1025.

Proposed Mechanism for Alkylation of Heterocycles

Tan, K. L.; Park, S.; Ellman, J. A.; Bergman, R. G. J. Org. Chem. 2004, 69, 7329‐7335.

Alkylation of α, β‐Unsaturated IminesAlkylation of α, β Unsaturated Imines

Two Predictions:

RegioselectivitySt l ti itStereoselectivity

Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 5604‐5605.

Alkylation of α,β,‐Unsaturated Imines

Since the imine was unstable to column chromatography, the crude product was hydrolyzed to the, α,β–unsaturated aldehyde, and then purified.was hydrolyzed to the, α,β unsaturated  aldehyde, and then purified.

Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 5604‐5605.

Alkylation of α,β‐Unsaturated Imines

1. 2.5% [RhCl(coe)2]2N

C

Bn

+

[ ( )2]210% FcPCy2 2. Aluminum Chromatography

ColumnO

CR

O

CR

+50°CR H H

Entry Alkene Time(h)

ImineZ:E % Yield (Z:E)

C RH

1 12 >95:<5 91 (10:1)

2 Cl 8 >95:<5 80 (10:1)Cl 8 >95:<5

>95:<5

80 (10:1)

3O

O4 78 (5:1)

4 24 10:1 74 (5:1)

Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 5604‐5605.

Synthesis of Incarvillatein

Analgesicagent

Incarvillea SinensisIncarvillea Sinensis

Chi, Y.‐M.; Yan, W.‐M.; Li, J. –S. Phytochemistry 1990, 29, 2376‐2378.Nakamura, M.; Chi, Y.‐M.; Yan, W.‐M.; Nakasugi, Y.; Yoshizawa, T.; Irino, N.; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S. J. Nat. Prod. 1999, 62, 1293‐1294.

Ichikawa, M.; Takahashi, M.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc.  2004, 126, 16553‐16558.

Synthesis of Incarvillatein

Tsai, A. S.; Bergman, R. G.; Ellman, J. A. J. Am .Chem. Soc. 2008, 130, 6316‐6317.

Synthesis of IncarvillateinSynthesis of Incarvillatein

Me

TBSO

CO2Et

Me

MeCH2O2Et

Me+ TBSO

NaBH4, MeOH,rt then 60°C

49% overall yieldNe

Ne 49% overall yield

for two steps

Me

TBSO N

OMeH H2 (1000psi)

Pd/C, MeOH, 60°CMe

TBSO N

OMeH

TBSO N

Me

99%TBSO N

MeH

The three stereocenters established from the alkylation reaction help  establish the other two stereocenters.

Tsai, A. S.; Bergman, R. G.; Ellman, J. A. J. Am .Chem. Soc. 2008, 130, 6316‐6317.

establish the other two stereocenters.

Synthesis of Incarvillateiny

11 stepsp15.4% overall yield

Ichikawa’s Synthesis:17 steps

3.4% overall yield

Using new C‐H activation methodology, synthesis has been shortened, overall yield is increased.

Tsai, A. S.; Bergman, R. G.; Ellman, J. A. J. Am .Chem. Soc. 2008, 130, 6316‐6317.Ichikawa, M.; Takahashi, M.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2004, 126, 16553‐16558.

Outline

• Introduction

Outline

Introduction

• Alkylation of N‐heterocycles

• Arylation of N‐heterocyclesArylation of N heterocycles

• C‐H Activation by carbene insertion

• C‐H Activation by nitrene insertion

Catalytic C‐H Activation

Catalytic C‐H Activation

Arylation of Heterocycles

X[RhCl(coe)2]2(2.5-5 mol%)

i-Pr2i-BuNTHF X

N NArH ArX+

(5-7.5 mol%)PCy3

[RhCl(coe)2]2Cl

[RhCl(coe)2]2Rh Rh

Cl

PPCy3

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35‐38.

Proposed Mechanism for Arylation Reaction

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35‐38.

Side Product from Hydrogenolysis

Side Product:  ArH, comes from hydrogenolysis of substrate,f d h h d f h d ld b hfinding the hydrogen source for this side reaction could be thekey issue to optimize the chemistry

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35‐38.

Side Product from Hydrogenolysis

Side Product:  ArH, comes from hydrogenolysis of substrate,f d h h d f h d ld b hfinding the hydrogen source for this side reaction could be thekey step in optimizing the chemistry

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35‐38.

Proposed Mechanism for Hydrogenolysis

Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman J. A. Org. Lett. 2004, 6, 35‐38. 

New Ligand for ArylationNew Ligand for Arylation

HN

I 0.05 equiv [RhCl(coe)2]20 3 equiv PR H

NN

NR

+0.3 equiv PR3

3 equiv basesolvent, heat

N

NR

1 equiv 2 equiv

Entry Base (equiv) PR3 R Yield [%]Entry Base (equiv) PR3 R Yield [%]

1 Et3N (4) PCy3 H 20

2 Et3N (4) 1 H 27

Yi ld i i d ill l

2 Et3N (4)

Et3N (4)

1 H 27

3 2 H 40

PCyCy Yield is increased, still large amounts of benzen, hydrogenolysisof substrates, side reaction still

PCy2

PCy

1

Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem. Int. Ed. 2006, 45, 1589-1591.

exists.

Dehydrogenated Catalyst/Ligand Complex

Further suggests that ligandFurther suggests that ligand dehydrogenation could be the side reaction.

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Cyclooctene Ligand

• Cyclooctane may be dehydrogenated,  becoming the hydrogen source  for hydrogenolysis of substrate

• Increase  unsaturation, making it less likely to 

go through dehydrogenation.

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Removal of the Bridged System

Cy PCy

new ligand

• Bridged cyclooctene ligandis difficult to synthesizeBridged cyclooctene ligandis difficult to synthesize

• Removing the bridge simplifies the ligand while• Removing the bridge simplifies the ligand while maintaining unsaturation

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Replace Cyclohexyl with Different R Groups

• The cyclohexane  on the phosphine may also undergo dehydrogenation, causing hydrogenolysis of the substrate

• Optimize the ligand by choosing an R group which would be more difficult to dehydrogenate. 

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Results for Screening  Different R Groups

t‐Bu

Ph

Cy

Me

yi‐Pr

Me

Plot of conversion versus time for arylation using 5a‐e.

Me < i‐Pr < Cy < Ph < t‐Bu

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Better Results from New Ligands

Lewis, J. C.; Berman , A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493‐2500.

Conclusion from Parts I and II

A l Rh di N h li b l i

Conclusion from Parts I and II

• A novel Rhodium N‐heterocyclic carbene complex is invovled as an intermediate in the alkylation and arylation of N heterocyclesarylation of N‐heterocycles.

A l i f N h l i PC li d• Arylation of N‐heterocycles using PCy3 ligands are limited by competing C‐H activation of the ligand.D i i li d f C H i i f• Designing new ligands to frustrate C‐H activation of the ligand led to improved arylation of N‐heterocyclesheterocycles.  

Metal Carbene or Nitrene C‐H Functionalization ‘ d l’VS ‘Traditional’ C‐H Activation

Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417‐424.

Outline

• Introduction

Outline

Introduction

• Alkylation of N heterocycles• Alkylation of N‐heterocycles

• Arylation of N‐heterocycles

• C‐H Activation by nitrene insertion

C H A ti ti b b i ti• C‐H Activation by carbene insertion

C‐H Activation by Nitrene Insertion

PhI(OAc)2: reacts with sulfamateto form nitreneto form nitrene

MgO: removes AcOH produced from nitrene productionfrom nitrene production

• Present study is confined to intramolecular process

• Regioselectivity: sulfamate has strong bias to form six‐member ring, 3 position is activated

St l ti it C t lli t l ti it i th k i !• Stereoselectivity: Controlling stereoselectivity is the key issue!

Espino, C. G.; When, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935‐6936.

Stereoselectivity

b t t j d t l ti it i ldsubstrate major product selectivity yield

OS

H2N

O O

OS

HN

O O

15:1 91%2CO2Et CO2Et15:1 91%

OS

H N

O O

OS

HN

O O

12

3

OH2N OHN

R R

R=CF3OMe

20:120:1

70%85%

123

OS

H2N

O O

Me

OS

HN

O O

Me 87%20:112

3

When, P. M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823.

CO2Me CO2Me

Substrates with Two Syn Groups Fail

• Reaction fails with two substituents in syn position

When, P. M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823.

C‐H Activation by Nitrene Insertion

• Reaction of hydroxyl group and sulfamoyl chloride installs a sulfamate group, which sets the C‐H amination reaction.

h h l h l k l• Protect the amine group, then nucleophile attack cleave oxathiazinane ring give the aminated compound, with a new substituent in 1 position.

Espino, C. G.; When, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935‐6936.

C‐H Activation of α,β‐Ether Hydrocarbon Bond

Fleming, J. J.; Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc. 2003, 125, 2028.Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.Stevens, R. V.; Acc. Chem. Res. 1984, 17, 289.

Iminium Ion Equivalent

• Because of the instability of the N O‐acetal structure theBecause of the instability of the N, O‐acetal structure, the reactions are conducted sequentially, without isolation of the intermediate.

• During iminium formation, stereochemistry is lost at carbon 3, hat happens after the formation of imini m ion determineswhat happens after the formation of iminium ion determines 

the stereo‐outcome of the product.

Fleming, J. J.; Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc. 2003, 125, 2028.Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.Stevens, R. V.; Acc. Chem. Res. 1984, 17, 289.

Four Different Situations

Fleming, J. J.; Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc. 2003, 125, 2028.Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.Stevens, R. V.; Acc. Chem. Res. 1984, 17, 289.

Trans Selectivity

Substitution at position 1 results in amination at position 3 with good trans selectivity .

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

Trans Selectivity 

Two factors control stability:  1,3‐diaxial interaction of the iminium structureFelkin –Ahn model with the nucleophile attack

Fleming, J. J.; Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc. 2003, 125, 2028.

e ode e uc eop e a ac

Trans Selectivity 

syn substituents at positions 1 and 2 favorsyn substituents at positions 1 and 2 favor trans amination products at the 3 position.

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

Trans Selectivity 

Top transition state does not have 1,3‐diaxial interactions, and also is preferred by the Felkin Anh model

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

and also is preferred by the Felkin‐Anh model

No Selectivity 

When two substituents at 1,2 position have a trans relationship, there is no no selectivity in terms of the aminated product at 3 position.

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

No Selectivity 

S NH

O

O

O R2

HH SOO

HN H

R2

H

OS

HNO H

R2O

SHN

O O

R3

SO O

HOR3

SO

H

Nuc

SOR3 Nu R2

Nu R3

1,3- diaxiali t tiO

SHN

R2

R3Nuc

O O

interaction

OSO

OO N

HHR2

H

S NH

O

OR2

H

SHN

O

O

ONu

HR2

OS

HN

O O

RNu

R3 R3 R3

R3

H R2

Felkin-Ahndisfavored

Top TS  is disfavored by the 1, 3‐diaxial interactionBottom TS is disfavored by the Felkin‐Ahn model 

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

Model Fails with One Stereocenter at Position 2 

In these cases, the trans product can be explained by the model.

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

Model Fails with One Stereocenter at  Position 2

No preference in terms of iminium stability, Felkin-Ahn model predictsthat bottom TS should be favored.

Fiori, K. W.; Fleming, J. J. ; Du Bois, J.; Angew. Chem. Int. Ed. Engl. 2004, 43, 4349.

that bottom TS should be favored.

Some Cases Could not be Explained by the Model

In these cases, the product adopts a trans conformation, which couldIn these cases, the product adopts a trans conformation, which couldnot be explained by the model, Chelation effects between zinc ion and hydroxyl group may direct the nucleophile to syn face

Fleming, J. J.; Fiori, K. W.; Du Bois, J.; J. Am. Chem. Soc. 2003, 125, 2028.

nucleophile to syn‐face.

OutlineOutline

• IntroductionIntroduction

• Alkylation of N heterocycles• Alkylation of N‐heterocycles

• Arylation of N‐heterocycles

• C‐H Activation by nitrene insertion

C H A ti ti b b i ti• C‐H Activation by carbene insertion

Related ReferencesRelated References

Davies, H. M. L.; Jin, Q. Proc. Natl. Acad. Sci. USA 2004, 101, 5472‐5475.

Davies, H. M. L.; Walji, A. M. Angew. Chem. Int. Ed. 2005, 44,1733‐1735.1733 1735.

Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006,128, 2485‐2490.

Davies H M L ; Manning J R Nature 2008 451 417 424Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417‐424.

Surrogate for Aldol Mannich Reaction

Davies, H. M. L.; Beckwith, R. E.; Antoulinakis, E. G.; Jin, Q.  J. Org. Chem. 2003, 68, 6126‐6132.Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D. W. J. Am. Chem. Soc. 2003, 125, 6462‐6468.

Proposed Mechanism for Carbene‐Induced C‐H Insertion

Davies, H. M. L.; Jin, Q. Org. Lett. 2001, 3, 3587.

Combined C‐H Activation/Cope Rearrangement

HR1

R2N2

CO2Me+ Cat. R1R2 CO2Me

R1R2

CO2Me

R3 R R3 R

R

R3 R

Main Product

R1

R2

R

CO2MeR1

R2CO2Me

+

R3

R R3 R

Direct C-H activationproduct

cyclopropanationproduct

Side Products

productproduct

Davies, H. M. L.; Jin, Q. Proc. Natl. Acad. Sci. USA 2004, 101, 5472‐5475.

Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2495‐2490.

Not a Tandem C‐H Activation/Cope Rearrangement

PreliminaryMechanism Study

Davies, H. M. L.; Jin, Q. Proc. Natl. Acad. Sci. USA 2004, 101, 5472‐5475.

Enantio‐differentiation

S‐enantiomerR‐enantiomer

Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2495‐2490.

Catalyst Structure

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

Simplified Model of the Catalyst

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

Most Stable Conformation of the Catalyst

C1

CC2

, , , , , ,

C4D2

, , ,

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

, , ,, , ,

Most Stable Conformation of the Catalyst

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

Catalyst Structure

1010

SO2O2S

RhO

O

O

O

O

O

NHSO2

N HO2S

RhO O

O OH

NSO2

HN

O2S

101010

Rh2(S-dosp)4

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

Further Simplification

OSO2Ar

When one rhodium atom di t t th b th

RhO

O

O

O

O

ONSO2Ar

H NH coordinates to the carbene, the other rhodium atom is deactivated, 

RhO O

O O

NH

ArO2S

NSO2Ar

H only one face of the catalyst is effective.

Only one face of the catalyst is effective

Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545‐555. 

Enantio‐differentiation

MeTBSOMeTBSO

MeO

Me H

Me

MeO

TBSO

Me H

Me

MeO

TBSO

MeO2C

MeMeO2C

Me

MeHH (S)

TBSOMeO

Me

MeHH (R)

TBSOMeO

CO2MeMe

Rh

TBSO

CO2MeMe

Rh

TBSO

Rh

(R-dosp)catalyst

Rh

(R-dosp)catalyst

Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2495‐2490.

Enantio‐differentiation

Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2495‐2490.

ConclusionsConclusions

• Direct functionalization of nitrogen heterocycles through C‐H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents withregioselectively introducing a variety of substituents with diverse functional groups on to the heterocycle scaffold.

• Alternative approaches by carbene or nitrene insertion for C‐H activation has been developed, which show a great promise p , g pin application of organic synthesis.

Acknowledgements

• Dr. Baker

Acknowledgements

• Dr. Borhan• Dr. Maleczka• Dr. SmithDr. Smith

• Qin Sampa Tom GinaQin, Sampa, Tom, Gina

• Xiaoyong Li Munmun Yong Quanxuan Anil• Xiaoyong, Li, Munmun, Yong, Quanxuan, Anil, Hong,