Recycled Asphalt Pavement -...

Post on 17-Apr-2020

11 views 4 download

transcript

Recycled Asphalt Pavement

Gerald Huber

Heritage Research Group

Two Objectives

Effect of Reclaimed

Asphalt on Mixture

Properties

How much RAP can be

put through plant?

Historical Review

1970s and 1980s

• High percentages of recycled asphalt used

– 50 to 80%

• Hot Mix acceptance based on

– Bitumen content

– Gradation

• Air voids typically not measured

Strategic Highway Research

Program

• Superpave developed

• No clear guidance for recycled asphalt

Mix Design

Guidelines

• AASHTO

Specification

Based on

NCHRP

Research Project

(late 1990s)

AASHTO SPECIFICATIONS

• 0 to 15% No change in base bitumen

grade

• 15 to 25% Reduce one grade

• >25% Bitumen evaluation (recovery,

blending, etc.)

FIELD EXPERIENCE

• <15% most common

• >15% brings increased cost

(PG 58-28 instead of PG 64-22)

• >25% almost never used

Extraction and recovery too cumbersome

FIELD EXPERIENCE cont’d

• Commercial Mixes

– Commonly 30% RAP

– Sometimes 40% RAP

• Acceptable performance

Research on Mixes

from Hot Mix Plants • Used existing design

• Designed five additional mixes

• Tested properties of materials used

– RAP

– New aggregates

– Asphalt mixture properties

– Bitumen

Experimental Design

RAP

Bitumen

Grade 0% 15% 25% 40%

PG 64-22 X

Mix A

X

Mix B

X

Mix C

X

Mix D

PG 58-28 X

Mix E

X

Mix F

Hot Mix Plant

Fine RAP

Coarse RAP

RAP Mix

Samples Taken from Truck

Samples

North Central

Superpave Center Tests • Stiffness of Bitumen

• Dynamic Modulus, E*

• Indirect Tensile Creep

– Low Temperature Cracking

• Study included five hot mix plants

Dynamic Modulus Specimens

0

0*

E

Dynamic Modulus Test

Stress

Strain

Time

• Stiffness of Hot Mix

Asphalt

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

PG64-22

MixA (0%0 RAP)

MixB (15% RAP)

MixC (25% RAP)

MixD (40% RAP)

MS PG 64-222 Mix (E*)

E&B PG 64-22 Mix (E*)

E&B Mix |E*|

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

PG64-22

MixA (0%0 RAP)

MixB (15% RAP)

MixC (25% RAP)

MixD (40% RAP)

JHR PG 64-22 Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

PG64-22

MixA (0%0 RAP)

MixB (15% RAP)

MixC (25% RAP)

MixD (40% RAP)

P&B PG 64-22 Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

PG64-22

MixA (0%0 RAP)

MixB (15% RAP)

MixC (25% RAP)

MixD (40% RAP)

RR PG 64-22 Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

PG64-22

MixA (0%0 RAP)

MixB (15% RAP)

MixC (25% RAP)

MixD (40% RAP)

E&B PG 58-28 Mix (E*)

100

1000

10000

100000

1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

Control versus PG58-28

MixA (0% RAP)

MixE (25% RAP)

MixF (40% RAP)

JHR PG 58-28 Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

Control versus PG58-28

MixA (0% RAP)

MixE (25% RAP)

MixF (40% RAP)

P&B PG 58-28Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

Control versus PG58-28

MixA (0% RAP)

MixE (25% RAP)

MixF (40% RAP)

RR PG 58-28 Mix (E*)

100

1000

10000

100000

1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Lo

g |E

*|,

MP

a

Log Reduced Frequency, Hz

Control versus PG58-28

MixA (0% RAP)

MixE (25% RAP)

MixF (40% RAP)

Indirect Tensile Strength

Example 1

-28

-22

-16

-10

2500

3000

3500

4000

PB-A PB-B PB-C PB-D PB-E PB-F

Pvm

t. Cra

ckin

g T

emp

eratu

re, C

Str

eng

th, k

Pa

Mixes

Strength

Temperature

Indirect Tensile Strength

Example 2

-28

-22

-16

-10

2000

2500

3000

3500

JH-A JH-B JH-C JH-D JH-E JH-F

Pvm

t. Cra

ckin

g T

emp

eratu

re, C

Str

en

gth

, k

Pa

Mixes

Strength

Temperature

Low Temperature Cracking

PG 64-22

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0% 15% 25% 40%

Contr A

Contr B

Contr C

Contr D

Contr E

Data from North Central Superpave Center

Low Temperature Cracking

PG64-22 and PG58-28

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

25%

PG64

25%

PG58

40%

PG64

40%

PG58

Contr A

Contr B

Contr C

Contr D

Contr E

Data from North Central Superpave Center

Conclusions

• Adding hard bitumen

– More effect bitumen

– Less effect on mix properties

• Up to 25% bitumen replacement

– No change in virgin grade

• 25 to 40%

– Change high and low one grade softer

Objective

• How much RAP can be used?

• Considerations

– Quality product

– Mixing plant

– Placement

– Compaction

Experiment

• Field Experiment

• Focus on High Bitumen Replacement

– RAP

– Post Consumer Asphalt Shingles

Scope

• How much RAP can go through a plant?

– Trials up to 70%

• Produce and Place on Low Volume Road

– Measure quality

– Measure properties

Is RAP Available?

Phase One Mixes

Mix Size RAP RAS AC BR

1 25.0 70 0 6.0 33

2 25.0 60 0 4.1 41

3 12.5 60 0 (47)

4 12.5 50 3 5.6 29

5 12.5 50 3 7.1 31

6 12.5 50 3 6.6 33

Discharge Temperature

0

50

100

150

200

Dis

ch

arg

e T

em

pera

ture

, C

70% 60% 60% 50% 50% 50%

Aggregate Temperature

0

100

200

300

400

500

Ag

gre

gate

Tem

pera

ture

, C

70% 60% 60% 50% 50% 50%

80 C

391 C

382 C

Drum Temperature

0

100

200

300

400

500

600

Dru

m S

hell

Tem

pera

ture

, C

70% 60% 60% 50% 50% 50%

Exhaust Temperature

0

50

100

150

200

250

Bag

ho

use T

em

pera

ture

, C

70% 60% 60% 50% 50% 50%

60% RAP

70% RAP

Decisions from Phase One

• Maximum 50% RAP

• Drum Shell Temperature

– max 425 C

• Aggregate Temperature

– max 370 C

• Exhaust Temperature

– min 105 C

– max 200 C

Phase Two Experiment

• Counterflow drum mix plant

– With mixing drum

• 19 mm NMPS

– 25 mm crushed gravel

– 12.5 mm crushed limestone

– 12.5 mm pea gravel

– Natural sand

RAP Feeder

Mixer Drum

Counter Flow Drum

Phase Two Recycled Materials

• Fine RAP

• Coarse RAP

• Post Consumer Shingles

Coarse RAP (12.5 to 25 mm)

Fine RAP (minus 12.5 mm)

Post Consumer Shingles

Bitumen Replacement

0

10

20

30

40

50

60

70

Asp

halt

Bin

der

Rep

lacem

en

t, %

Mix 9

64-22

Mix 10

52-28

Mix 11

52-28

Mix 12

52-28

Mix 13

64-22

Discharge Temperature

0

50

100

150

200

250

300

Dis

ch

arg

e T

em

pera

ture

, F

Mix 9 Mix 10 Mix 11 Mix 12 Mix 13

Aggregate Temperature

0

100

200

300

400

500

600

700

800

Ag

gre

gate

Tem

pera

ture

, F

Mix 9 Mix 10 Mix 11 Mix 12 Mix 13

Air Voids and

Bitumen Content

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Perc

en

tag

e

Mix 9

64-22

Mix 10

52-28

Mix 11

52-28

Mix 12

52-28

Mix 13

64-22

Asphalt Content

Air Voids

Bitumen Grade

-30.0-20.0-10.0

0.010.020.030.040.050.060.070.080.0

Perf

orm

an

ce G

rad

e

Mix 9

64-22

Mix 10

52-28

Mix 11

52-28

Mix 12

52-28

Mix 13

64-22

Road Existing

Condition

Placing Mix

Uncompacted Mix

Compaction

Compacted Mat

Phase 1 Conclusions

• 50% RAP is reasonable maximum

• Criteria selected for

– Drum shell temperature

• 425˚C maximum

– Virgin aggregate temperature

• 375˚C maximum

– Bag house exhaust

• 105˚C minimum

• 200˚C maximum

Phase 2 Conclusions

• 50% RAP is reasonable maximum

• Volumetric Properties Can Be Controlled

• Durable Mixtures Can Be Produced