Region-based Voting

Post on 13-Jan-2016

35 views 0 download

description

Region-based Voting. Query. Exemplar 1. Exemplar 2. 1. Region-based Voting. Query. Exemplar 1. Exemplar 2. 2. Region-based Voting. Mean Shift Clustering. Query. Query. Exemplar 1. Exemplar 2. 3. Discriminative Weight Learning. Not all regions are equally important. D IK. D IJ. - PowerPoint PPT Presentation

transcript

Region-based Voting

Exemplar 1

Query

1

Exemplar 2

Region-based Voting

Query

2

Exemplar 1

Exemplar 2

Region-based Voting

Query Query

MeanShift

Clustering

3

Exemplar 1

Exemplar 2

Computer Vision GroupUC Berkeley

Discriminative Weight Learning

• Not all regions are equally important

Frome, Singer and Malik. NIPS ‘06

image J exemplar I image K

want:

DIJ DIK

DIK > DIJMax-margin formulation results in a sparse solution of weights.

DIJ = Σi wi · diJand di

J=minj χ2(fiI, fj

J)

Computer Vision GroupUC Berkeley

Weight Learning Results

Algorithm Pipeline

Region matching based voting

Verification classifier

Constrained segmenter

Query

Exemplars

Images

Ground truths

Initial Hypotheses Segmentation

Detection

Weight learning

6

Initial Object/Background Labels

Initial Labels

Exemplar

7

Transformed Mask

Query Matched Part

: Object label: Background label: Unknown label

+

Fully automatic unlike interactive use of Graph Cuts, e.g. Blake et al. ECCV 04

Propagate Object/Background Labels

8

Arbelaez and Cohen. CVPR 08Initial Labels Final Segmentation

Computer Vision GroupUC Berkeley

ETHZ Shape (Ferrari et al. 06)• Contains 255 images of 5 diverse shape-based

classes.

Computer Vision GroupUC Berkeley

Detection Results on ETHZ

Hough baseline1 kAS 1 Shape 2 Ours

Det. rate at 0.3FPPI 31.0% 62.4% 67.2% 87.1±2.8%

1. Ferrari et al. PAMI 2008. 2. Ferrari, Jurie, Schmid. CVPR 2007

Computer Vision GroupUC Berkeley

Detection Results on ETHZ

Computer Vision GroupUC Berkeley

Detection Results on ETHZ

Computer Vision GroupUC Berkeley

Segmentation Results on ETHZ

Orig. Image Segmentation

The mean average precision is 75.7±3.2%

Orig. Image Segmentation

Computer Vision GroupUC Berkeley

Segmentation Results on ETHZ

Orig. Image Segmentation Orig. Image Segmentation

Computer Vision GroupUC Berkeley

Segmentation Results on ETHZ

Orig. Image Segmentation Orig. Image Segmentation

Computer Vision GroupUC Berkeley

Segmentation Results on ETHZ

Orig. Image Segmentation Orig. Image Segmentation

Computer Vision GroupUC Berkeley

Segmentation Results on ETHZ

Orig. Image Segmentation Orig. Image Segmentation

Computer Vision GroupUC Berkeley

Complexity Reduction

Computer Vision GroupUC Berkeley

Caltech 101 results

Computer Vision GroupUC Berkeley

Context from region tree (ICCV 09)

Computer Vision GroupUC Berkeley

MSRC dataset

Computer Vision GroupUC Berkeley

Confusion matrix (mean diagonal 67%)

Computer Vision GroupUC Berkeley

Concluding Remarks

• Our approach– Bottom up region segmentation– Hough transform style voting (learned weights)– Top down segmentation– Capture context by region tree

• Results on ETHZ , Caltech 101, MSRC competitive

• Lot more needs to be done to produce a robust solution to the problem of combining top down and bottom up information, but I think this is the central problem of vision