Reliable Deniable Communication: Hiding Messages in Noise Mayank Bakshi Mahdi Jafari Siavoshani ME...

Post on 17-Dec-2015

219 views 4 download

transcript

Reliable Deniable Communication: Hiding Messages in Noise

Mayank Bakshi Mahdi Jafari Siavoshani

ME

Sidharth Jaggi

The Chinese University of Hong Kong

The Institute of Network Coding

Pak Hou (Howard) Che

Alice

Reliability

Bob

Willie(the Warden)

Reliability

Deniability

AliceBob

Willie-sky

Reliability

Deniability

AliceBob

M

T

t

�⃑�

Alice’s Encoder

𝑁=2πœƒ (βˆšπ‘›)

M

T

Message Trans. Status

BSC(pb) οΏ½Μ‚οΏ½=𝐷𝑒𝑐 (�⃑�𝑏)�⃑�𝑏�⃑�

Alice’s Encoder

Bob’s Decoder

𝑁=2πœƒ (βˆšπ‘›)

οΏ½Μ‚οΏ½

M

T

Message Trans. Status

BSC(pb) οΏ½Μ‚οΏ½=𝐷𝑒𝑐 (�⃑�𝑏)�⃑�𝑏�⃑�

Alice’s Encoder

Bob’s Decoder

BSC(pw)

οΏ½Μ‚οΏ½=𝐷𝑒𝑐 (�⃑�𝑀)

�⃑�𝑀

𝑁=2πœƒ (βˆšπ‘›)

Willie’s (Best) Estimator

οΏ½Μ‚οΏ½

οΏ½Μ‚οΏ½

Bash, Goeckel & Towsley [1]Shared secret

[1] B. A. Bash, D. Goeckel and D. Towsley, β€œSquare root law for communication with low probability of detection on AWGN channels,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2012, pp. 448–452.

€

O n .log(n)( ) bits

AWGN channels

But capacity only

€

O n( ) bits!

This workNo shared secret

BSC(pb)

BSC(pw)

pb < pw

Wicked Willie(s) Base-station Bob

Aerial Alice

Directional antenna

Steganography: Other work

Steganography: Other work

Other work: β€œCommon” modelShared secret key

Capacity O(n) message bitsInformation-theoretically tight characterization(Gel’fand-Pinsker/Dirty paper coding)

O(n.log(n)) bits (not optimized)

[2] Y. Wang and P. Moulin, "Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions," IEEE Trans. on Information Theory, special issue on Information Theoretic Security, June 2008

Stegotext(covertext,message,key)

Message,Covertext

No noise

d(stegotext,covertext) β€œsmall”

Other work: Square-root β€œlaw”(β€œempirical”)

β€’β€œSteganographic capacity is a loosely-defined concept, indicating the size of payload whichmay securely be embedded in a cover object using a particular embedding method. What constitutes β€œsecure” embedding is a matter for debate, but we will argue that capacity should grow only as the square root of the cover size under a wide range of definitions of security.” [3]

β€’β€œThanks to the Central Limit Theorem, the more covertext we give the warden, the better he will be able to estimate its statistics, and so the smaller the rate at which [the steganographer] will be able to tweak bits safely.” [4]

[3] A. Ker, T. Pevny`, J. Kodovsky`, and J. Fridrich, β€œThe square root law of steganographic capacity,” in Proceedings of the 10th ACM workshop on Multimedia and security. ACM, 2008, pp. 107–116.[4] R. Anderson, β€œStretching the limits of steganography,” in Information Hiding, 1996, pp. 39–48.

β€’β€œ[T]he reference to the Central Limit Theorem... suggests that a square root relationship should be considered. β€œ [3]

M

T

Message Trans. Status

BSC(pb) οΏ½Μ‚οΏ½=𝐷𝑒𝑐 (�⃑�𝑏)�⃑�𝑏�⃑�

Alice’s Encoder

Bob’s Decoder

BSC(pw)

οΏ½Μ‚οΏ½=𝐷𝑒𝑐 (�⃑�𝑀)

�⃑�𝑀

𝑁=2πœƒ (βˆšπ‘›)

Willie’s (Best) Estimator

οΏ½Μ‚οΏ½

οΏ½Μ‚οΏ½

Hypothesis Testing Willie’s Estimate

Alice’s Transmission

Status

𝛼=Pr ( οΏ½Μ‚οΏ½=1|𝐓=0 ) , 𝛽=Pr ( οΏ½Μ‚οΏ½=0|𝐓=1 )

Hypothesis Testing Willie’s Estimate

Alice’s Transmission

Status

Hypothesis Testing Willie’s Estimate

Alice’s Transmission

Status

Hypothesis Testing Willie’s Estimate

Alice’s Transmission

Status

Intuition

𝐓=0 , 𝐲𝑀=�⃑�𝑀 Binomial(𝑛 ,𝑝𝑀)

Intuition

Theorem 1 (Wt(c.w.))(high deniability => low weight codewords)

Too   many   codewords   with   weight  β€œmuch ” greater   than𝑐 βˆšπ‘› , h𝑑 𝑒𝑛 h𝑑 π‘’π‘ π‘¦π‘ π‘‘π‘’π‘šπ‘–π‘    β€œnot   very”   deniable

Theorems 2 & 3(Converse & achievability for reliable & deniable comm.)

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

pb>pw

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

𝑁=0

(Symmetrizability)

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2pw=1/2

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

€

N β‰ˆ 2(1βˆ’H (pb ))n

(BSC(pb))

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

pb=0

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

𝑁=2𝑂 (βˆšπ‘› log𝑛) ,( π‘›βˆšπ‘›)=2𝑂 (βˆšπ‘› log𝑛)

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

pw>pb

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2𝑁=2𝑂 (βˆšπ‘›)

β€œStandard” IT inequalities+

Wt(β€œmost codewords”)<√n(Thm 1)

Theorems 2 & 3

𝑝𝑏

𝑝𝑀

0 1/2

1/2

Main thm:

𝑀𝑑𝐻 (π’šπ‘€ )

0 n

logarithm of# codewords

log ( 𝑛𝑛/2)β‰ˆπ‘›

𝑀𝑑𝐻 (𝐲𝑀)0 n𝑝𝑀𝑛+𝑂 (βˆšπ‘›)𝑝𝑀𝑛

log(# codewords)

Pr�⃑�𝑀

(𝑀𝑑𝐻 (𝐲𝑀 ))

𝑂 (1/βˆšπ‘›)

𝑛𝐻 (𝑝𝑀 )

𝐱=0βƒ—

𝑀𝑑𝐻 (𝐲𝑀)0 n

(π‘ΒΏΒΏπ‘€βˆ—πœŒ)𝑛+𝑂(βˆšπ‘›)ΒΏ(π‘ΒΏΒΏπ‘€βˆ—πœŒ)𝑛¿(π‘ΒΏΒΏπ‘€βˆ—πœŒ)π‘›βˆ’π‘‚(βˆšπ‘›)ΒΏ

log(# codewords)

Pr𝐌 ,𝐙𝑀

(𝑀𝑑𝐻 (𝐲𝑀 ))

𝑛𝐻 (π‘π‘€βˆ—πœŒ)

𝑐 βˆšπ‘›

𝑂 (1/βˆšπ‘›)

Theorem 3 – Reliability proof sketch

0 n

Noise magnitude >> Codeword weight!!!

Theorem 3 – Reliability proof sketch

.

.

.

1000001000000000100100000010000000100

0001000000100000010000000010000000001

0010000100000001010010000000100010011

0000100000010000000000010000000010000

Random code

2O(√n) codewords

Weight O(√n)

Theorem 3 – Reliability proof sketch

.

.

.

1000001000010000100100000010000000100

0001000000100000010000000010000000001

0010000100000001010010000000100010011

0000100000010000000000010000000010000

β€’E(Intersection of 2 codewords) = O(1)

Weight O(√n)

β€’Pr(dmin(x) < c√n) < 2-O(√n)

β€’β€œMost” codewords β€œwell-isolated”

Theorem 3 – dmin decoding

β€’Pr(x decoded to x’) < 2-O(√n)

+ O(√n)

x

x’

β€’ Recall: want to show

Theorem 3 – Deniability proof sketch

Theorem 4 – unexpected detour

𝑀𝑑𝐻 (π’šπ‘€ )

0 n

logarithm of# codewords

𝑀𝑑𝐻 (π’šπ‘€ )

0 n

logarithm of# codewords

Too few codewords=> Not deniable

Theorem 4 – unexpected detour

𝑀𝑑𝐻 (𝐲𝑀)0 n

(π‘ΒΏΒΏπ‘€βˆ—πœŒ)𝑛+𝑂(βˆšπ‘›)ΒΏ(π‘ΒΏΒΏπ‘€βˆ—πœŒ)𝑛¿(π‘ΒΏΒΏπ‘€βˆ—πœŒ)π‘›βˆ’π‘‚(βˆšπ‘›)ΒΏ

log(# codewords)

Pr𝐌 ,𝐙𝑀

(𝑀𝑑𝐻 (𝐲𝑀 ))

𝑛𝐻 (π‘π‘€βˆ—πœŒ)

𝑐 βˆšπ‘›

𝑂 (1/βˆšπ‘›)

β€’ Recall: want to show

𝐏0 𝐏1

Theorem 3 – Deniability proof sketch

0 n

log(# codewords)

𝑛𝐻 (𝑝𝑀 )

Theorem 3 – Deniability proof sketch

𝑀𝑑𝐻 (π’šπ‘€ )

0 n

logarithm of# codewords

Theorem 3 – Deniability proof sketch

𝐏0 𝐏1

!!!

Theorem 3 – Deniability proof sketch

𝐏0 𝐏1

!!!

Theorem 3 – Deniability proof sketch

𝐏1𝑬π‘ͺ(𝐏¿¿1)ΒΏ

Theorem 3 – Deniability proof sketch

𝑀𝑑𝐻 (π’šπ‘€ )

0 n𝑝𝑀𝑛+𝑂 (βˆšπ‘›)𝑝𝑀𝑛

logarithm of# codewords

Theorem 3 – Deniability proof sketch

# codewords of β€œtype”

𝑇 1𝑇 2

𝑇 3

Theorem 3 – Deniability proof sketch

Theorem 3 – Deniability proof sketch

Theorem 3 – Deniability proof sketch

Theorem 3 – Deniability proof sketch

β€’ w.p.

Theorem 3 – Deniability proof sketch

β€’ w.p.

Theorem 3 – Deniability proof sketch

β€’ w.p. β€’ close to w.p.

Theorem 3 – Deniability proof sketch

β€’ w.p. β€’ close to w.p. β€’ , w.h.p.

Theorem 3 – Deniability proof sketch

Summary