Reporting Strand 4: Graphs of Functions...Reporting Strand 4: Graphs of Functions ! CCSS#...

Post on 27-May-2020

3 views 0 download

transcript

Reporting Strand 4: Graphs of Functions  

CCSS   Instructional  Focus  Understand  Solutions  (A.REI.10)   Understand  that  all  solutions  to  an  equation  in  two  variables  are  contained  on  the  

graph  of  that  equation.  Graph  Functions  (F.IF.7b)   Graph  a  variety  of  functions  expressed  symbolically,  including  all  of  the  following:  

linear,  piecewise,  absolute  value,  and  step    

             

 1.    The  following  equation  represents  a  linear  equation:  π‘¦   =  2π‘₯  β€“  4          Sketch  the  linear  equation  using  an  x-­‐  &  y-­‐table.          An  x-­‐  &  y-­‐table  is  a  method  that  you  can  use  to          graph  any  type  of  equation  that  is  new  to  you;        however,  once  we  learn  a  method  of  graphing        you  may  not  use  an  x-­‐  &  y-­‐table.  

               

   

                       

LINEAR  EQUATIONS      

SLOPE    

     

               

                               

   

                   

Y-­‐INTERCEPT    

SLOPE-­‐INTERCEPT  FORM    

POINT-­‐SLOPE  FORM    

STANDARD  FORM    

SLOPE-­‐REFERENCE  GUIDE                                    

                             Find  the  slope  of  the  line  that  passes  through  each  pair  of  points.  2.    (0, 0), (3, 3)        3.    (4, 4), (5, 3)            4.    (βˆ’3, 4), (4, 4)                5.    (βˆ’2,βˆ’4), (βˆ’2, 3)  

             

 

𝑦 βˆ’ 𝑦! = π‘š(π‘₯ βˆ’ π‘₯!)        (point-­‐slope  form)    

𝑦 βˆ’ 3 = 5(π‘₯ + 4)  

3π‘₯ βˆ’ 2𝑦 = 4        (standard  form)    

   

6.  Find  the  slope  given  the  following  lines.                        

 7.  Find  the  slope  from  the  following  table  of  value.      x   y  1   8  4   2  5   0  10   -­‐10  

   Find  the  slope  and  y-­‐intercepts  for  the  following  equations.  8.  π‘¦   =  6π‘₯ βˆ’ 4         9.  π‘¦   βˆ’  2   =  βˆ’3π‘₯         10.  4π‘₯ + 2𝑦 = 6          

 11a.  Which  of  the  following  points  lie  on  the  line  of  the  graph  shown  to  the  right?    a. (3,  8)  b. (-­‐1,  2)  c. (15,  20)  d. (-­‐6,  -­‐1)  e. (-­‐13,  -­‐7)  

         

 11b.  How  many  points  would  satisfy  the  equation  of  the  line  shown?        11c.  What  are  all  the  solutions  to  the  equation  of  the  line?            Given  the  following  linear  equations,  identify  which  solutions  would  lie  on  the  line  of  the  equations.    12.  π‘¦ = βˆ’ !

!π‘₯ βˆ’ 6               13.  π‘¦ βˆ’ 3 = 2(π‘₯ + 4)  

 a. (2,  7)                   a.  (3,  17)  b. (4,  -­‐8)                 b.  (-­‐5,  1)  c. (-­‐2,  -­‐5)                 c.  (-­‐0.5,  10)  d. (32,  -­‐22)                 d.  (5,  17)  e. (6,  3)                   e.  (-­‐5,  -­‐3)    

       How  many  points  would  satisfy  the  equations  in  #12-­‐13?      What  are  all  the  solutions  to  the  equations  of  these  lines?      Each  pair  of  points  lies  on  a  line  with  the  given  slope.  Find  x  or  y.  

 14.     4, 3 , 5, 𝑦 ;  π‘ π‘™π‘œπ‘π‘’   =  3                  

 15.   3, 𝑦 , 1, 9 ;  π‘ π‘™π‘œπ‘π‘’   =  βˆ’ !

!                          

           16.  (3, 5), (π‘₯, 2);  π‘’𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑  π‘ π‘™π‘œπ‘π‘’  

       

       Graph  the  following  equations.    17.  π‘¦ = βˆ’ !

!π‘₯ βˆ’ 4  

                     18.  Graph  the  equation:  βˆ’2(3π‘₯   +  4)  +  π‘¦   =  0                

     

 

19.  π‘¦   βˆ’  4   =  3 π‘₯   +  2                                                                                                                  20.  π‘¦   βˆ’  1   = !!  (π‘₯   βˆ’  2)  

                                   21.  π‘¦     = !

!  π‘₯ + 2             22.  6π‘₯ + 3𝑦 = 9  

                                           

Write  the  equation  in  slope-­‐intercept  form  of  the  line  that  passes  through  the  given  points.  Then  find  the  x-­‐  and  y-­‐intercepts  of  the  line.    23.     βˆ’2,βˆ’1 π‘Žπ‘›π‘‘   4, 2                                    24.     βˆ’2, 4 , π‘Žπ‘›π‘‘   3,βˆ’1                                          25.    (βˆ’6, 5)  π‘Žπ‘›π‘‘  (1, 0)  

   

         

                             

Write  the  equation  of  the  line  in  point-­‐slope  form.  Then  transform  the  equation  into  slope-­‐intercept  form.    26.     3,βˆ’8 ;  π‘š   = βˆ’ !

!                                                      27.  (βˆ’1,βˆ’2), (2, 4)                                                          28.  (βˆ’6, 6), (3, 3)  

                         

       29.  Evaluate  the  function  for  the  given  value  of  x.      

𝑓 π‘₯ =3, 𝑖𝑓  π‘₯ ≀ 02, 𝑖𝑓  π‘₯ > 0                              π‘” π‘₯ =

π‘₯ + 5, 𝑖𝑓  π‘₯ ≀ 32π‘₯ βˆ’ 1, 𝑖𝑓  π‘₯ > 3                        β„Ž π‘₯ =

!!π‘₯ βˆ’ 4, 𝑖𝑓  π‘₯ ≀ βˆ’23 βˆ’ 2π‘₯, 𝑖𝑓  π‘₯ > βˆ’2

 

   π‘“ 2 =                                                          π‘“ βˆ’4 =                                                          π‘“ 0 =                                                          π‘“ !

!=        

     π‘” 7 =                                                          π‘” 0 =                                                          π‘” βˆ’1 =                                                          π‘” 3 =                β„Ž βˆ’4 =                                                  β„Ž βˆ’2 =                                                              β„Ž βˆ’1 =                                                                      β„Ž 6 =                30.  Evaluate  the  function  for  the  given  value  of  x.    

𝑓 π‘₯ = 3π‘₯ βˆ’ 5,        π‘₯ > 4π‘₯!,        π‘₯ ≀ 4  

     π‘“ 7 =                                                            π‘“ 4 =                                                                    π‘“ βˆ’3 =                                                        31.  Evaluate  the  function  for  the  given  value  of  x.    

𝑓 π‘₯ =βˆ’2 π‘₯ + 1 ,        π‘₯ ≀ 13,        1 < π‘₯ < 36 βˆ’ 2π‘₯,        π‘₯ β‰₯ 3

 

   π‘“ 10 =                                                                          π‘“ 2 =                                                                          π‘“ 0 =                                                  

PIECEWISE  LINEAR  EQUATIONS    

Graph  the  following  piecewise  linear  functions.    

32.  π‘“ π‘₯ =π‘₯ + 3, 𝑖𝑓  π‘₯ ≀ 02π‘₯, 𝑖𝑓  π‘₯ > 0         33.  π‘“ π‘₯ = βˆ’2,      π‘₯ < 0

3,      π‘₯ β‰₯ 0  

                                   

34.  π‘” π‘₯ = βˆ’π‘₯ + 2,        π‘₯ < 2π‘₯ βˆ’ 2,      π‘₯ β‰₯ 2         35.  π‘“ π‘₯ =

4π‘₯ βˆ’ 2,      π‘₯ β‰₯ 2βˆ’ !

!+ 4,      π‘₯ < 2  

                                   

36.  π‘“ π‘₯ = π‘₯ + 5,      π‘₯ < βˆ’2βˆ’2π‘₯ βˆ’ 1,      π‘₯ β‰₯ βˆ’2         37.  π‘“ π‘₯ =

2π‘₯ + 1,      π‘₯ β‰₯ 1!!π‘₯ βˆ’ 3,      π‘₯ < 1  

                                             We  will  graph  the  absolute  value  equation  of  π‘¦ = |π‘₯|  to  see  the  general  shape  of  absolute  value  functions.                                        

x   y  -­‐3    -­‐2    -­‐1    0    1    2    3    

ABSOLUTE  VALUE  EQUATIONS      

Graph  the  following  absolute  value  functions.      38.  π‘“ π‘₯ = !

!π‘₯ βˆ’ 2 + 5             39.  π‘“ π‘₯ = |π‘₯ + 3|  

                             40.  π‘“ π‘₯ = βˆ’2 π‘₯ βˆ’ 1             41.  π‘“ π‘₯ = 3 π‘₯ βˆ’ !

!  

                                             

41.  π‘“ π‘₯ = βˆ’ π‘₯ βˆ’ 3 βˆ’ 4                                                                                      

STEP  EQUATIONS    Floor  functions           Ceiling  Functions  

         (round  down  always)                            (round  up  always)    

𝑓 π‘₯ =   π‘₯                        π‘“ π‘₯ =   π‘₯    

GENERAL  TIPS    

42.  π‘” π‘₯ = π‘₯ + 4             43.  π‘“ π‘₯ = π‘₯ + 2  

             

   44.  β„Ž π‘₯ = 3 π‘₯             45.  π‘“ π‘₯ = !

!π‘₯  

                         46.  π‘¦ = 2π‘₯               47.  π‘¦ = βˆ’ !

!π‘₯  

                           

                                                                                     

PARENT  FUNCTIONS                              Linear                            Absolute  Value                              

         Square  Root                              Quadratic                            

           Cubic    

TRANSFORMATIONS    

Transformation   Appearance  in  Function  Vertical  Translation  Up   𝑓 π‘₯ + π‘˜  

Vertical  Translation  Down   𝑓 π‘₯ βˆ’ π‘˜  Horizontal  Translation  Left   𝑓(π‘₯ + β„Ž)  Horizontal  Translation  Right   𝑓(π‘₯ βˆ’ β„Ž)  Stretch/Compress  Vertically   π‘Žπ‘“ π‘₯  

Reflection  in  x-­‐axis   βˆ’π‘“(π‘₯)  Reflection  in  y-­‐axis   𝑓(βˆ’π‘₯)  

 Describe  the  transformation  that  occurred.      48.  π‘¦ = βˆ’2 π‘₯ + 3 ! + 5       49.  π‘¦ = π‘₯! βˆ’ 1       50.  π‘“ π‘₯ = 2 π‘₯ βˆ’ 1              51.  β„Ž π‘₯ = π‘₯ βˆ’ 2                            52.𝑔 π‘₯ = π‘₯! + 3                                                53.  π‘“ π‘₯ = βˆ’π‘₯ + 5 βˆ’ 2              54.  π‘” π‘₯ = 3 π‘₯            55.  π‘¦ = βˆ’π‘₯! + 1       56.  π‘¦ = π‘₯ βˆ’ 4          Given  the  parent  function  and  a  description  of  the  transformation(s),  write  the  equation  of  the  transformed  function.    57.  Absolute  value  β€“  Vertical  shift  up  5,  horizontal  shift  right  3    58.  Square  root  β€“  vertical  compression  (stretch)  by  !

!  

 59.  Cubic  β€“  reflected  over  the  x-­‐axis  and  vertical  shift  down  2    60.  Quadratic  β€“  horizontal  shift  left  8  &  reflected  over  the  y-­‐axis      61.  Linear  β€“  vertical  stretch  by  5,  vertical  shift  down  3      

Graph  the  following  functions  using  the  parent  graph.    62.  π‘¦ = 3(π‘₯ + 1)!             63.  π‘¦ = 2 π‘₯ + 2 βˆ’ 3  

                       

             64.  π‘¦ = βˆ’ π‘₯ βˆ’ 5             65.  π‘¦ = π‘₯! + 4