Research Article The Study on Hybridized Two-Band ...

Post on 23-Oct-2021

3 views 0 download

transcript

Hindawi Publishing CorporationAdvances in Condensed Matter PhysicsVolume 2013, Article ID 528960, 7 pageshttp://dx.doi.org/10.1155/2013/528960

Research ArticleThe Study on Hybridized Two-Band Superconductor

T. Chanpoom,1,2 J. Seechumsang,2,3 S. Chantrapakajee,4 and P. Udomsamuthirun2,3

1 Program of Physics and General Science, Faculty of Science and Technology, Rajabhat Nakhon Ratchasima University, Thailand2 Prasarnmitr Physics Research Unit, Department of Physics, Faculty of Science, Srinakharinwirot University, Sukhumvit 23,Bangkok 10110, Thailand

3Thailand Center of Excellence in Physics (ThEP), Si Ayutthaya Road, Bangkok 10400, Thailand4Rajamangala University of Technology Phra Nakhon, 399 Samsen Road, Dusit, Bangkok 10300, Thailand

Correspondence should be addressed to P. Udomsamuthirun; udomsamut55@yahoo.com

Received 3 December 2012; Revised 8 March 2013; Accepted 22 March 2013

Academic Editor: Victor V. Moshchalkov

Copyright ยฉ 2013 T. Chanpoom et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The two-band hybridized superconductor which the pairing occurred by conduction electron band and other-electron band areconsidered within a mean-field approximation. The critical temperature, zero-temperature order parameter, gap-to-๐‘‡

๐‘ratio, and

isotope effect coefficient are derived. We find that the hybridization coefficient shows a little effect on the superconductor thatconduction electron band has the same energy as other-electron band but showsmore effect on the superconductor that conductionelectron band coexists with lower-energy other-electron band.The critical temperature is decreased as the hybridization coefficientincreases. The higher value of hybridization coefficient, lower value of gap-to-๐‘‡

๐‘ratio, and higher value of isotope effect coefficient

are found.

1. Introduction

Since Moskalenko [1, 2] Suhl et al. [3] introduced the two-band model that accounts for multiple energy bands in thevicinity of the Fermi energy contributing electron pairingin superconductor, the two-band model has been applied tohigh temperature superconductor in copper oxides [4โ€“10],MgB2superconductor [11โ€“13], and heavy Fermion supercon-

ductor [14, 15]. Dolgov et al. [16] studied the thermodynamicproperties of the two-band superconductor: MgB

2. The

superconducting energy gap, free energy, the entropy, andheat capacity were calculated within the framework of two-band Eliashberg theory. Mazin et al. [17] studied the effect ofinterband impurity scattering on the critical temperature oftwo-band superconductor in MgB

2. Askerzade and Tanatar

[18] and Changjan and Udomsamuthirun [19] calculated thecritical field of the two-band superconductor by Ginzburg-Landau approach and applied it to Fe-based superconduc-tors. Golubov and Koshelev [20] investigated the two-bandsuperconductor with strong intraband and weak interbandelectronic scattering rates in the framework of coupledUsadelequation.

The interplay of superconductivity and magnetism is oneof the most interesting phenomena of superconductor. Thecuprate superconductor exhibits the phase diagram havingthe magnetic ordered states in the vicinity of the super-conducting phase. The antiferromagnetic and ferromagneticphases are also found in the heavy Fermion superconductor.In ErRh

4B6[21] and HoMo

6S8[22] system, ๐‘ -wave super-

conductivity shows ferromagnetism in the ground state atintermediate temperature.

The nesting properties of Fermi surface in low dimen-sional system arise the spin density wave (SDW) state andcharge density wave (CDW) state in the interplay of super-conductivity andmagnetism system.The SDWand the CDWstates occurred by Coulomb interaction between electron,and electron-phonon interaction, respectively. Nass et al. [23]used the BCS-type pairing to explain the antiferromagneticsuperconductor. Suzumura and Nagi [24] investigated someproperties of antiferromagnetic superconductor. They pro-posed the Hamiltonian of the superconductivity associatedwith conduction ๐‘‘-electron and the antiferromagnetismassociatedwith๐‘“-electron of rare earth atoms that formed theBCS-type pairing. Ichimura et al. [25] investigated the effect

2 Advances in Condensed Matter Physics

of the CDW on BCS superconductor within a mean-fieldapproximation. In this model, the two order parametersof CDW and superconductor were introduced. The tight-binding band in 2D square lattice and nesting vector ๐‘„ =

(๐œ‹, ๐œ‹) was used in their calculations. Rout and Das [26]applied the periodic Anderson model (PAM) for calculatingthe nonmagnetic ground state of heavy Fermion super-conductor. The Hamiltonian of the heavy Fermion systemscomposed of conduction electron band, ๐‘“-electron band,the hybridization of conduction electron and ๐‘“-electronband, BCS-like pairing band, and the intra-atomic Coulombinteraction of ๐‘“-electron. The Hamiltonian was simplifiedby linearising the intra-atomic Coulomb interaction withthe Hartree-Fock approximation then the ๐‘“-electron bandenergy was ๐ธ

๐‘˜= ๐œ€๐‘“

+ ๐‘ˆ๐‘›๐œŽ, where ๐œ€

๐‘“was bare ๐‘“-electron

energy and ๐‘ˆ๐‘›๐œŽwas the Coulomb energy of ๐‘“-electron.

Finally, their Hamiltonian were consisted of conductionand ๐‘“-electron band including BCS-like pairing band andhybridization term. Panda andRout [27] studied the interplayof CDW, SDW, and superconductivity in high temperaturesuperconductor in low doping phase. The model of mean-field Hamiltonian including the CDW, SDW and supercon-ductivity was introduced.

In this paper, we modified the hybridized Hamiltonianof Rout and Das [26] to be the two-band superconductorwith hybridization. Some physical properties of two-bandhybridized superconductor, that is, critical temperature, zero-temperature order parameter, gap-to-๐‘‡

๐‘ratio, and isotope

effect coefficient, were investigated.

2. Model and Calculation

According to the hybridized Hamiltonian [26] that consistedof conduction electron and๐‘“-electron band, BCS-like pairingband, and hybridization term, we have

๐ป = โˆ‘

๐‘˜,๐œŽ

๐œ€๐‘˜๐ถ+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ ๐œ€๐‘“

โˆ‘

๐‘˜,๐œŽ

๐‘“+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

+ ๐›พ0

โˆ‘

๐‘˜,๐œŽ

(๐‘“+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ ๐ถ+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

)

+๐‘ˆ

2โˆ‘

๐‘–,๐œŽ

๐‘›๐‘“

๐‘–๐œŽ๐‘›๐‘“

๐‘–,โˆ’๐œŽโˆ’ ฮ” โˆ‘

๐‘˜

(๐ถ+

๐‘˜โ†‘๐ถ+

โˆ’๐‘˜โ†“+ ๐ถโˆ’๐‘˜โ†“

๐ถ๐‘˜โ†‘

) ,

(1)

where ๐ถ+

๐‘˜๐œŽ(๐ถ๐‘˜๐œŽ

) and ๐‘“+

๐‘˜๐œŽ(๐‘“๐‘˜๐œŽ

) are the creation (annihilation)operator of conduction electron and ๐‘“-electron. ฮ” is thesuperconducting order parameter that Cooper pairs involveonly the conduction electron. ๐›พ

0is the hybridization inter-

action coefficient of ๐‘“-electron band and conduction band.๐‘›๐‘“

๐‘–= ๐‘“+

๐‘–๐œŽ๐‘“๐‘–๐œŽis the intraatomic Coulomb interaction between

๐‘“-electron. They [26] linearised the (๐‘ˆ/2) โˆ‘๐‘–,๐œŽ

๐‘›๐‘“

๐‘–๐œŽ๐‘›๐‘“

๐‘–,โˆ’๐œŽterm

by Hartree-Fock approximation that (๐‘ˆ/2) โˆ‘๐‘–,๐œŽ

๐‘›๐‘“

๐‘–๐œŽ๐‘›๐‘“

๐‘–,โˆ’๐œŽโ‰ˆ

๐‘ˆ โˆ‘๐‘–,๐œŽ

๐‘›โˆ’๐œŽ

๐‘“+

๐‘–๐œŽ๐‘“๐‘–๐œŽ; then the Hamiltonian became

๐ป = โˆ‘

๐‘˜,๐œŽ

๐œ€๐‘˜๐ถ+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ โˆ‘

๐‘˜,๐œŽ

๐ธ0๐‘“+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

+ ๐›พ0

โˆ‘

๐‘˜,๐œŽ

(๐‘“+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ ๐ถ+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

)

โˆ’ ฮ” โˆ‘

๐‘˜

(๐ถ+

๐‘˜โ†‘๐ถ+

โˆ’๐‘˜โ†“+ ๐ถโˆ’๐‘˜โ†“

๐ถ๐‘˜โ†‘

) ,

(2)

where ๐ธ0

= ๐œ€๐‘“

+ ๐‘ˆ๐‘›โˆ’๐œŽ

that is the energy collected the non-interaction with a modified ๐‘“-level.

In our model, the two-band superconductor comprise ofconduction electron and other-electron band. The supercon-ducting order parameters can occurr by conduction electronand other-electron band. The conduction band makes theintra-atomic Coulomb interaction with other-electron band.We set

๐ป = โˆ‘

๐‘˜,๐œŽ

๐œ€๐‘˜๐ถ+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ โˆ‘

๐‘˜,๐œŽ

๐ธ0๐‘“+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

+ ๐›พ0

โˆ‘

๐‘˜,๐œŽ

(๐‘“+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ ๐ถ+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

)

+๐‘ˆ

2โˆ‘

๐‘–,๐œŽ

๐‘›๐‘“

๐‘–๐œŽ๐‘›๐‘“

๐‘–,โˆ’๐œŽโˆ’ ฮ” โˆ‘

๐‘˜

(๐ถ+

๐‘˜โ†‘๐ถ+

โˆ’๐‘˜โ†“+ ๐ถโˆ’๐‘˜โ†“

๐ถ๐‘˜โ†‘

)

โˆ’ ฮ” โˆ‘

๐‘˜

(๐‘“+

๐‘˜โ†‘๐‘“+

โˆ’๐‘˜โ†“+ ๐‘“โˆ’๐‘˜โ†“

๐‘“๐‘˜โ†‘

) ,

(3)

where ๐ถ+

๐‘˜๐œŽ(๐ถ๐‘˜๐œŽ

) and ๐‘“+

๐‘˜๐œŽ(๐‘“๐‘˜๐œŽ

) are the creation (annihilation)operators of conduction electron and other-electron band. ฮ”is the superconducting order parameter. ๐›พ

0is the hybridiza-

tion interaction coefficient of other-electron band and con-duction band. ๐‘›๐‘“

๐‘–= ๐‘“+

๐‘–๐œŽ๐‘“๐‘–๐œŽis the intra-atomic Coulomb inter-

action between other-electron.The Hamiltonian is linearisedby [26]โ€™s technique; then we get the simplified two-band-hybridized Hamiltonian. We can write the Hamiltonian as

๐ป = ๐ป1

+ ๐ป2

+ ๐ป12

, (4)

where

๐ป1

= โˆ‘

๐‘˜๐œŽ

๐œ€๐‘˜๐ถ+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

โˆ’ ฮ” โˆ‘

๐‘˜

(๐ถ+

๐‘˜โ†‘๐ถ+

โˆ’๐‘˜โ†“+ ๐ถโˆ’๐‘˜โ†“

๐ถ๐‘˜โ†‘

) , (5a)

๐ป2

= โˆ‘

๐‘˜๐œŽ

๐ธ๐‘˜๐‘“+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

โˆ’ ฮ” โˆ‘

๐‘˜

(๐‘“+

๐‘˜โ†‘๐‘“+

โˆ’๐‘˜โ†“+ ๐‘“โˆ’๐‘˜โ†“

๐‘“๐‘˜โ†‘

) , (5b)

๐ป12

= ๐›พ0

โˆ‘

๐‘˜๐œŽ

(๐‘“+

๐‘˜๐œŽ๐ถ๐‘˜๐œŽ

+ ๐ถ+

๐‘˜๐œŽ๐‘“๐‘˜๐œŽ

) . (5c)

The first Hamiltonian describes the conduction electronHamiltonian, the second Hamiltonian describes the Hamil-tonian of other-electron band, and the third Hamiltoniandescribes the interact Hamiltonian. Where ๐œ€

๐‘˜and ๐ธ

๐‘˜are the

band energies of the conduction electron and other-electronband measured from the Fermi energy.

๐ธ๐‘˜

= ๐ธ0+๐‘ˆ๐‘›โˆ’๐œŽ

is the energy collected the non-interactionwith a modified other-electron band. ๐ถ

+

๐‘˜๐œŽ(๐ถ๐‘˜๐œŽ

) and ๐‘“+

๐‘˜๐œŽ(๐‘“๐‘˜๐œŽ

)

are the creation (annihilation) operator of conduction elec-tron and other-electron. ๐›พ

0is the hybridization interaction

coefficient of other-electron band and conduction band. ฮ” isthe effective superconducting order parameter occurred byconduction electron and other-electron and assumed to behomogeneous in space. The effective superconducting orderparameters is

ฮ” =๐‘‰

2โˆ‘

๐‘˜

(โŸจ๐ถ+

๐‘˜โ†‘๐ถ+

โˆ’๐‘˜โ†“โŸฉ + โŸจ๐‘“

+

๐‘˜โ†‘๐‘“+

โˆ’๐‘˜โ†“โŸฉ) , (6)

where the ๐‘ -wave like BCS pairing interaction having thesame coupling interaction potential is assumed. The effective

Advances in Condensed Matter Physics 3

superconducting order parameters are the coupling equationof conduction electron and other-electron that can occurr inmagnetic superconductor [23โ€“25]. However for simplicity ofcalculation, the same pairing strength is taken [28].

We introduce the finite-temperature Green function:

๐บ (๐‘˜, ๐œ) = โˆ’ โŸจ๐‘‡๐œ๐œ“๐‘˜

(๐œ) ๐œ“+

๐‘˜(0)โŸฉ , (7)

where ๐œ“+

๐‘˜= (๐ถ

+

๐‘˜โ†‘, ๐ถโˆ’๐‘˜โ†“

, ๐‘“+

๐‘˜โ†‘, ๐‘“โˆ’๐‘˜โ†“

) and ๐‘‡๐œis the ordering

operator for imaginary time, ๐œ = ๐‘–๐‘ก.After some calculations, the Green function in Nambu

representation is obtained:

๐บ (๐œ”๐‘›, ๐‘˜) = (๐‘–๐œ”

๐‘›โˆ’ (

๐œ€๐‘˜

โˆ’ ๐ธ๐‘˜

2) ๐œŒ3๐œŽ3

โˆ’ (๐œ€๐‘˜

+ ๐ธ๐‘˜

2) ๐œŽ3

+ ฮ”๐œŽ1

โˆ’ ๐›พ0๐œŒ1๐œŽ3)

โˆ’1

,

(8)

where๐œ”๐‘›

= ๐œ‹๐‘‡(2๐‘›+1),๐‘‡ is temperature, ๐‘› is an integer, and๐œŒ๐‘–

and ๐œŽ๐‘–

(๐‘– = 1, 2, 3) are the Pauli matrices. Our Green functionobtained shows the same form as [25] that investigated theeffect of the CDW on BCS superconductor within a mean-field approximation, ๐บ

โˆ’1

(๐œ”๐‘›, ๐‘˜) = ๐‘–๐œ”

๐‘›โˆ’ ๐›พ๐‘˜๐œŒ3๐œŽ3

โˆ’ ๐›ฟ๐‘˜๐œŒ0๐œŽ3

+

ฮ”๐œŒ0๐œŽ1

+ ๐‘ค๐œŒ1๐œŽ3. All parameters detailed can be found in [25].

We find that (๐œ€๐‘˜

โˆ’ ๐ธ๐‘˜)/2 โ‰ก ๐›พ

๐‘˜and (๐œ€

๐‘˜+ ๐ธ๐‘˜)/2 โ‰ก ๐›ฟ

๐‘˜, where ๐›พ

๐‘˜

and ๐›ฟ๐‘˜are the band structure energies in 2D square lattice of

nearest-neighbor and next-nearest-neighbor transfer, respec-tively. And โˆ’๐›พ

0โ‰ก ๐‘ค which ๐‘ค is the order parameter of CDW.

This result means that the CDWconsideration gives the sameresult as the hybridization consideration within a mean-fieldapproximation.

From (6) and (8), the superconducting gap equation is

1

๐‘‰=

1

4โˆ‘

๐‘˜

(

tanh (โˆšฮ”2 + ๐œ€2โˆ’/2๐‘‡)

โˆšฮ”2 + ๐œ€2โˆ’

+

tanh (โˆšฮ”2 + ๐œ€2+/2๐‘‡)

โˆšฮ”2 + ๐œ€2+

) ,

(9)

where ๐œ€+

= (๐œ€๐‘˜

+ ๐ธ๐‘˜)/2 + โˆš((๐œ€

๐‘˜โˆ’ ๐ธ๐‘˜)/2)2

+ ๐›พ2

0and ๐œ€

โˆ’=

(๐œ€๐‘˜+๐ธ๐‘˜)/2โˆ’โˆš((๐œ€

๐‘˜โˆ’ ๐ธ๐‘˜)/2)2

+ ๐›พ2

0.The ๐œ€

+and ๐œ€โˆ’represent the

upper and lower bands of quasiparticle energy spectra of thehybridization system.We can determine the superconductingcritical temperature ๐‘‡

๐‘by putting ฮ” โ†’ 0; then

1

๐‘‰=

1

4โˆ‘

๐‘˜

(tanh (๐œ€

โˆ’/2๐‘‡๐‘)

๐œ€โˆ’

+tanh (๐œ€

+/2๐‘‡๐‘)

๐œ€+

) . (10)

In the absence of the hybridization interaction, ๐›พ0

= 0; thatis,

1

๐‘‰=

1

2โˆ‘

๐‘˜

(tanh (๐œ€/2๐‘‡

๐‘0)

๐œ€) or 1

๐œ†= ln(

2๐›พ๐œ”๐ท

๐œ‹๐‘‡๐‘0

) ,

(11)

where ๐›พ = 1.78. ๐œ† = ๐‘(0)๐‘‰, ๐œ† is the coupling constant, and๐‘(0) is the constant density of state at the Fermi surface, and

๐œ”๐ทis theDebye cutoff energy.๐‘‡

๐‘0is the critical temperature of

superconductor without hybridization that the BCSโ€™s result.Because of the complicated quasi-particle energy spectra

obtained, we introduce the two approximated conditions tocalculate analytically; the superconductor with conductionelectron band having the same energy as other-electron band(๐œ€๐‘˜

โ‰ˆ ๐ธ๐‘˜) and the superconductor with conduction electron

band coexistingwith lower-energy other-electron band (๐œ€๐‘˜

โ‰ซ

๐ธ๐‘˜, ๐ธ๐‘˜

โ‰ˆ 0).

Case 1. The superconductor that the conduction electronband having the same energy as other-electron band.

In this case, the approximation is ๐œ€๐‘˜

โ‰ˆ ๐ธ๐‘˜. Then, we get

๐œ€โˆ’

โ‰ˆ ๐œ€๐‘˜

โˆ’ ๐›พ0and ๐œ€+

โ‰ˆ ๐œ€๐‘˜

+ ๐›พ0. The difference of the lower

and upper energy spectra is equal to 2๐›พ0. If ๐›พ0

= 0, theBCSโ€™s superconductor is obtained. In this case, the effect ofthe hybridization interaction on the BCS superconductor isconsidered.

We substitute above approximations into (10); then thegap equation becomes

1

๐œ†=

1

4(โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€โˆ’/2๐‘‡๐‘)

๐œ€โˆ’

๐‘‘๐œ€๐‘˜

+ โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€+/2๐‘‡๐‘)

๐œ€+

๐‘‘๐œ€๐‘˜)

โ‰ˆ ln(

2๐›พโˆš๐œ”2

๐ทโˆ’ ๐›พ2

0

๐œ‹๐‘‡๐‘

) .

(12)

The critical temperature is

๐‘‡๐‘

= 1.13โˆš๐œ”2

๐ทโˆ’ ๐›พ2

0๐‘’โˆ’1/๐œ†

. (13)

And the zero-temperature energy gap can be found as

1

๐œ†=

1

4โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

(1

โˆšฮ”2 (0) + (๐œ€๐‘˜

โˆ’ ๐›พ0)2

+1

โˆšฮ”2 (0) + (๐œ€๐‘˜

+ ๐›พ0)2

) ๐‘‘๐œ€๐‘˜

=1

2(sin hโˆ’1 (

๐œ”๐ท

โˆ’ ๐›พ0

ฮ” (0)) + sin hโˆ’1 (

๐œ”๐ท

+ ๐›พ0

ฮ” (0))) .

(14)

For ๐œ”๐ท

โ‰ซ ฮ”(0), we can get

ฮ” (0) = 2โˆš๐œ”2

๐ทโˆ’ ๐›พ2

0๐‘’โˆ’1/๐œ†

. (15)

From (13) and (15), the gap-to-๐‘‡๐‘ratio is obtained:

๐‘… =2ฮ” (0)

๐‘‡๐‘

= 3.53. (16)

In this case, we find that the hybridization interaction coeffi-cient decreases the critical temperature and zero-temperatureenergy gap but has no effect on gap-to-๐‘‡

๐‘ratio.

4 Advances in Condensed Matter Physics

To investigate the effect of hybridization and the Debyecutoff on gap-to-๐‘‡

๐‘ratio, we rewrite the gap equation at crit-

ical temperature and at zero-temperature into the form [29]

โˆซ

(๐œ”๐ท+๐›พ0)/(2๐‘‡๐‘)

(โˆ’๐œ”๐ท+๐›พ0)/(2๐‘‡๐‘)

tanh๐‘ฅ

๐‘ฅ๐‘‘๐‘ฅ = โˆซ

2(๐œ”๐ท+๐›พ0)/๐‘‡๐‘

โˆ’2(๐œ”๐ทโˆ’๐›พ0)/๐‘‡๐‘

1

โˆš๐‘…2 + ๐‘ฅ2๐‘‘๐‘ฅ.

(17)

The numerical calculation of (17) is shown in Figure 2.Within the definition of isotope effect coefficient in

harmonic approximation; ๐›ผ = (1/2)(๐œ”๐ท

/๐‘‡๐‘)(๐‘‘๐‘‡๐‘/๐‘‘๐œ”๐ท

) andequation (9), we

๐›ผ =๐œ”๐ท

2(tanh (๐œ”

โˆ’

๐ท/2๐‘‡๐‘) /๐œ”โˆ’

๐ท+ tanh (๐œ”

+

๐ท/2๐‘‡๐‘) /๐œ”+

๐ท

tanh (๐œ”โˆ’

๐ท/2๐‘‡๐‘) + tanh (๐œ”

+

๐ท/2๐‘‡๐‘)

) ,

(18)

where ๐œ”+

๐ท= ๐œ”๐ท

+ ๐›พ0and ๐œ”

โˆ’

๐ท= ๐œ”๐ท

โˆ’ ๐›พ0.

Consider the limiting cases that the hybridization is sosmall with respect to Debye cutoff energy, ๐œ”

๐ทโ‰ซ ๐›พ0; for ๐œ”

๐ท>

2๐‘‡๐‘, we can get that ๐›ผ โ‰ˆ (๐œ”

๐ท/4)(1/๐œ”

โˆ’

๐ท+ 1/๐œ”

+

๐ท) โ‰ˆ 1/2, and for

๐œ”๐ท

< 2๐‘‡๐‘, we get ๐›ผ โ‰ˆ (๐œ”

๐ท/2)((1/๐‘‡

๐‘)/(๐œ”๐ท

/๐‘‡๐‘)) โ‰ˆ 1/2 that the

BCSโ€™ result.

Case 2. The superconductor that the conduction electronband coexisting with lower-energy other-electron band.

Because of the hybridization Hamiltonian having thesame Greenโ€™s function as the charge density wave model, wecan apply this model to the superconducting state found inheavy Fermion superconductor. The heavy Fermion super-conductor has its origin in the interplay of strong Coulombrepulsion in 4f- and 5f-shells and their hybridizations withthe conduction band. The ๐‘“-electron is associated with themagnetic ordering having lower energy than conductionelectron. We can make the assumption that the ๐‘“-electronband is at the Fermi level which can be taken as ๐ธ

๐‘˜โ‰ˆ 0; then

๐œ€โˆ’

โ‰ˆ๐œ€๐‘˜

2โˆ’ ๐›พ0, ๐œ€

+โ‰ˆ

๐œ€๐‘˜

2+ ๐›พ0, for

๐œ€๐‘˜

2< ๐›พ0,

๐œ€โˆ’

โ‰ˆ 0, ๐œ€+

โ‰ˆ ๐œ€๐‘˜, for

๐œ€๐‘˜

2> ๐›พ0.

(19)

Substituting above approximation into (10), we can get

1

๐œ†=

1

4(โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€โˆ’/2๐‘‡๐‘)

๐œ€โˆ’

๐‘‘๐œ€๐‘˜

+ โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€+/2๐‘‡๐‘)

๐œ€+

๐‘‘๐œ€๐‘˜)

โ‰ˆ ln(2๐›พ

๐œ‹๐‘‡๐‘

โˆš2๐œ”๐ท

๐›พ0) +

1

2(

๐œ”๐ท

2๐‘‡๐‘

โˆ’๐›พ0

๐‘‡๐‘

) ,

(20)

where,

โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€โˆ’/2๐‘‡๐‘)

๐œ€โˆ’

๐‘‘๐œ€๐‘˜

โ‰ˆ 2 (๐œ”๐ท

2๐‘‡๐‘

โˆ’2๐›พ0

2๐‘‡๐‘

) + 2 ln(4๐›พ๐›พ0

๐œ‹๐‘‡๐‘

) ,

โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

tanh (๐œ€+/2๐‘‡๐‘)

๐œ€+

๐‘‘๐œ€๐‘˜

โ‰ˆ 2 ln(2๐›พ๐œ”๐ท

๐œ‹๐‘‡๐‘

) .

(21)

The critical temperature is

๐‘‡๐‘

= 1.13โˆš2๐›พ0๐œ”๐ท

๐‘’โˆ’1/๐œ†+(1/2)(๐œ”๐ท/2๐‘‡๐‘โˆ’๐›พ0/๐‘‡๐‘). (22)

The gap equation as zero-temperature is

1

๐œ†=

1

4โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

(1

โˆšฮ”2 (0) + (๐œ€โˆ’)2

+1

โˆšฮ”2 (0) + (๐œ€+)2

) ๐‘‘๐œ€๐‘˜,

(23)

where,

โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

1

โˆšฮ”2 (0) + (๐œ€โˆ’)2

๐‘‘๐œ€๐‘˜

โ‰ˆ (2

ฮ” (0)) (๐œ”๐ท

โˆ’ 2๐›พ0) + 2 sin hโˆ’1 (

2๐›พ0

ฮ” (0)) ,

โˆซ

๐œ”๐ท

โˆ’๐œ”๐ท

1

โˆšฮ”2 (0) + (๐œ€+)2

๐‘‘๐œ€๐‘˜

โ‰ˆ 2 sin hโˆ’1 ( ๐œ”๐ท

ฮ” (0)) .

(24)

Then, we get

ฮ” (0) = 2โˆš2๐›พ0๐œ”๐ท

๐‘’โˆ’1/๐œ†+(1/2)((๐œ”๐ทโˆ’2๐›พ0)/ฮ”(0)). (25)

According to (22) and (25), the gap-to-๐‘‡๐‘ratio is

๐‘… =2ฮ” (0)

๐‘‡๐‘

= 3.53๐‘’((๐œ”๐ทโˆ’2๐›พ0)/๐‘‡๐‘)(1/๐‘…โˆ’1/4). (26)

To investigate the effect of hybridization and the Debyecutoff on gap-to-๐‘‡

๐‘ratio, we rewrite the gap equation at crit-

ical temperature and at zero-temperature into the form [29]

โˆซ

๐œ”๐ท/๐‘‡๐‘

โˆ’๐œ”๐ท/๐‘‡๐‘

tanh(๐‘ฆ/4 โˆ’ โˆš(๐‘ฆ/4))

๐‘ฅ๐‘‘๐‘ฅ

= โˆซ

2(๐œ”๐ท+๐›พ0)/๐‘‡๐‘

โˆ’2(๐œ”๐ทโˆ’๐›พ0)/๐‘‡๐‘

1

โˆš๐‘…2 + ๐‘ฅ2๐‘‘๐‘ฅ.

(27)

The numerical calculation of this equation is shown inFigure 2.

Within the definition of isotope effect coefficient in har-monic approximation, (10) and ๐ธ

๐‘˜โ‰ˆ 0, we can get

๐›ผ = (๐œ”๐ท

2)

ร— (1 + (2๐‘‡

๐‘/๐œ”๐ท

) tanh (๐œ”๐ท

/2๐‘‡๐‘)

๐œ”๐ท

โˆ’ 2๐›พ0

+ 2๐‘‡๐‘(tanh (๐œ”

๐ท/2๐‘‡๐‘) + tanh (๐›พ

0/๐‘‡๐‘))

) .

(28)

3. Results and Discussions

We use the hybridized two-band Hamiltonian to investigatethe critical temperature, zero-temperature order parameter,gap-to-๐‘‡

๐‘ratio, and isotope effect coefficient of superconduc-

tor. The Green function and gap equation are derived ana-lytically. However, the quasi-particle energy spectra obtained

Advances in Condensed Matter Physics 5๐‘‡๐‘

40

30

20

10

00 1 2 3 4

๐›พ0/๐‘‡๐‘

Case 1๐œ”๐ท = 300 ๐œ† = 0.3Case 1๐œ”๐ท = 300 ๐œ† = 0.2Case 1๐œ”๐ท = 200 ๐œ† = 0.2

Case 2 ๐œ”๐ท = 200 ๐œ† = 0.2Case 2 ๐œ”๐ท = 300 ๐œ† = 0.2Case 2 ๐œ”๐ท = 300 ๐œ† = 0.3

Figure 1: The ๐‘‡๐‘versus hybridization coefficients of Cases 1 and 2.

are complicated; then we introduce two approximated casesas, the superconductor that conduction electron band hasthe same energy as other-electron band (๐œ€

๐‘˜โ‰ˆ ๐ธ๐‘˜) and the

superconductor that conduction electron band coexists withlower-energy other-electron band (๐œ€

๐‘˜โ‰ซ ๐ธ๐‘˜, ๐ธ๐‘˜

โ‰ˆ 0). Thecritical temperature, zero-temperature order parameter, gap-to-๐‘‡๐‘ratio, and isotope effect coefficient are shown in the

exact forms.We use the integration forms of involved equations for

more accuracy in numerical calculation. After the numericalcalculations of ๐‘‡

๐‘, (Figure 1), we find that the weak-coupling

limit (๐œ† < 0.4) can be found in range of ๐œ”๐ท

/๐‘‡๐‘

> 10. Then,we investigate the effect of hybridization in weak-couplinglimit with ๐œ”

๐ท/๐‘‡๐‘

> 10 and ๐›พ0/๐‘‡๐‘

= 0.2, 4.0. We find that ๐‘‡๐‘

is decreased when the hybridization coefficient increased inCase 2 and no effect in Case 1. In Figure 2, the gap-to-๐‘‡

๐‘ratios

(๐‘…) of Cases 1 and 2 with varied hybridization coefficientsare shown. In Case 1, the ๐‘… is tended to BCS value, 3.53, as๐œ”๐ท

/๐‘‡๐‘

โ†’ โˆž. Case 2, ๐‘… โ‰ˆ 3.3โ€“3.9 can be found to dependstrongly on the value of ๐›พ

0/๐‘‡๐‘. The higher value of ๐›พ

0/๐‘‡๐‘and

the lower value of ๐‘… are found to agree with superconductinggapโ€™s behavior of HF system of Rout et al. [30].

The isotope effect coefficient is also investigated andshown in Figure 3. In Case 2, we find that the isotope effectcoefficient can be more than the BCS (๐›ผ > 0.5) and less thanBCS value (๐›ผ < 0.5), but inCase 1we can find only for๐›ผ > 0.5.However, ๐›ผ in both cases is converse to 0.5 as ๐œ”

๐ท/๐‘‡๐‘

โ†’ โˆž.The Fe-based superconductors are mutiband system

which comprises at least two bands which propose ๐‘ -waveparing state. The ๐‘… = 3.68 [31] which shows a consistentmanner with the BCS prediction is found. The value of iso-tope effect coefficient were found to be ๐›ผ โ‰ˆ 0.35โ€“0.4 [32] and๐›ผFe = 0.81 [33]. These results indicate that electron-phononinteraction plays some role in the superconducting mecha-nism by affecting the magnetic properties [31]. According toour model, the effective superconducting order parameters

4.0

3.8

3.6

3.4

3.2

3.0

๐‘…

10 12 14 16 18 20๐œ”๐ท/๐‘‡๐‘

Case 2 ๐›พ0/๐‘‡๐‘ = 4.0Case 1๐›พ0/๐‘‡๐‘ = 4.0

Case 2 ๐›พ0/๐‘‡๐‘ = 0.2Case 1๐›พ0/๐‘‡๐‘ = 0.2

Figure 2: The gap-to-๐‘‡๐‘ratio of Cases 1 and 2 with varied

hybridization coefficients.

๐›ผ

1.00

0.75

0.50

๐œ”๐ท/๐‘‡๐‘

10 12 14 16 18 20

Case 2 ๐›พ0/๐‘‡๐‘ = 4.0Case 1๐›พ0/๐‘‡๐‘ = 4.0

Case 2 ๐›พ0/๐‘‡๐‘ = 0.2Case 1๐›พ0/๐‘‡๐‘ = 0.2

Figure 3: The isotope effect coefficient of Cases 1 and 2 with variedhybridization coefficients.

are the coupling equation of conduction electron and other-electron and the magnetic order are included in our calcu-lation as in Case 2. We can get the experimental data of Fe-based superconductor from Figures 2 and 3.

4. Conclusions

The two-band hybridized superconductor that the pairingoccurred by conduction electron band and other-electronband is studied inweak-coupling limit.The formula of criticaltemperature, zero-temperature order parameter, gap-to-๐‘‡

๐‘

ratio and isotope effect coefficient are calculated. For thesuperconductor that conduction electron band has the sameenergy as other-electron band, the hybridization coefficient

6 Advances in Condensed Matter Physics

shows a little effect. The numerical results do not differ muchfrom the BCSโ€™s results. For the superconductor that conduc-tion electron band coexists with lower-energy other-electronband, the hybridization coefficient show more effect. ๐‘‡

๐‘is

decreased when the hybridization coefficient increases. Wecan get higher and lower value of ๐‘… and ๐›ผ than BCSโ€™s resultsdepending on the hybridization coefficient. Higher value ofhybridization coefficient, lower value of ๐‘…, and higher valueof ๐›ผ are found.

Acknowledgments

The financial support of the Office of the Higher EducationCommission, Srinakhariwirout University, and ThEP Centeris acknowledged.

References

[1] V. A. Moskalenko, โ€œSuperconductivity of metals taking intoac-count the overlap of the energy bands,โ€ Fizika Metallov i Met-allovedenie, vol. 8, p. 503, 1959.

[2] V. A. Moskalenko, Physics of Metals and Metallography, vol. 8,p. 25, 1959.

[3] H. Suhl, B. T. Matthias, and L. R. Walker, โ€œBardeen-cooper-schrieffer theory of superconductivity in the case of overlappingbands,โ€ Physical Review Letters, vol. 3, no. 12, pp. 552โ€“554, 1959.

[4] S. Robaszkiewicz, R. Micnas, and J. Ranninger, โ€œSuperconduc-tivity in the generalized periodic Anderson model with stronglocal attraction,โ€ Physical Review B, vol. 36, no. 1, pp. 180โ€“201,1987.

[5] V. Z. Kresin and S. A.Wolf, โ€œMultigap structure in the cuprates,โ€Physica C, vol. 169, no. 5-6, pp. 476โ€“484, 1990.

[6] A. Bussmann-Holder, A. R. Bishop, and A. Simon, โ€œEnhance-ment of Tc in BCS theory extended by interband two-phononexchange,โ€ Zeitschrift fur Physik B, vol. 90, no. 2, pp. 183โ€“186,1993.

[7] B. K. Chakraverty, โ€œSuperconductive solutions for a two-bandHamiltonian,โ€ Physical Review B, vol. 48, no. 6, pp. 4047โ€“4053,1993.

[8] A. Bussmann-Holder, A. R. Bishop, H. Buttner, T. Egami, R.Micnas, and K. A. Muller, โ€œThe phase diagram of high-T

๐‘

superconductors in the presence of dynamic stripes,โ€ Journal ofPhysics, vol. 13, no. 23, p. L545, 2001.

[9] A. Bussmann-Holder, A. R. Bishop, H. Buttner et al., Journal ofPhysics, vol. 13, p. L168, 2001.

[10] A. Bussmann-Holder and R. Micnas, โ€œOn the possibility of s+dwave superconductivity within a two-band scenario for highT๐‘cuprates,โ€ Journal of Superconductivity and Novel Magnetism,

vol. 15, no. 5, pp. 321โ€“325, 2002.[11] A. Y. Liu, I. I. Mazin, and J. Kortus, โ€œBeyond Eliashberg super-

conductivity in MgB2: anharmonicity, two-phonon scattering,

andmultiple gaps,โ€ Physical Review Letters, vol. 87, no. 8, ArticleID 087005, 2001.

[12] H. D. Yang, J.-Y. Lin, H. H. Li et al., โ€œOrder parameter of MgB2:

a fully gapped superconductor,โ€ Physical Review Letters, vol. 87,no. 16, Article ID 167003, 2001.

[13] X. K. Chen, M. J. Konstantinovi, J. C. Irwin et al., โ€œEvidencefor two superconducting gaps inMgB

2,โ€ Physical Review Letters,

vol. 87, Article ID 157002, 2001.

[14] G. C. Rout and S. Das, โ€œTemperature dependence of supercon-ducting gap of heavy fermion system,โ€ Physica C, vol. 339, no. 1,pp. 17โ€“26, 2000.

[15] A. Bussmann-Holder, A. Simon, and A. R. Bishop, โ€œExotic pair-ing instability in the heavy-fermion superconductor CeCoIn

5,โ€

Europhysics Letters, vol. 75, article 308, 2006.[16] O. V. Dolgov, R. K. Kremer, J. Kortus, A. A. Golubov, and S. V.

Shulga, โ€œThermodynamics of two-band superconductors: thecase of MgB

2,โ€ Physical Review B, vol. 72, no. 5, Article ID

059902, 2005.[17] I. I. Mazin, O. K. Andersen, O. Jepsen et al., โ€œSuperconductivity

in MgB2: clean or dirty?โ€ Physical Review Letters, vol. 89, no. 10,

pp. 10700โ€“10704, 2002.[18] I. N. Askerzade and B. Tanatar, โ€œAngular dependence of upper

critical field in two-band Ginzburg-Landau theory,โ€ Physica C,vol. 459, no. 1-2, pp. 56โ€“61, 2007.

[19] A. Changjan and P. Udomsamuthirun, โ€œThe critical magneticfield of anisotropic two-band magnetic superconductors,โ€ SolidState Communications, vol. 151, no. 14-15, pp. 988โ€“992, 2011.

[20] A. A. Golubov and A. E. Koshelev, โ€œMixed state in dirty two-band superconductors: application to MgB

2,โ€ Physica C, vol.

408โ€“410, no. 1โ€“4, pp. 338โ€“340, 2004.[21] W. A. Fertig, D. C. Johnston, L. E. DeLong, R.W.McCallum,M.

B. Maple, and B. T. Matthias, โ€œDestruction of superconductivityat the onset of long-range magnetic order in the compoundErRh4B4,โ€ Physical Review Letters, vol. 38, no. 17, pp. 987โ€“990,

1977.[22] M. Ishikawa, O. Fischer, M. Ishikawa, and O. Fischer, โ€œDestruc-

tion of superconductivity bymagnetic ordering inHo1.2Mo6S8,โ€

Solid State Communications, vol. 23, no. 1, pp. 37โ€“39, 1977.[23] M. J. Nass, K. Levin, andG. S. Grest, โ€œBardeen-cooper-schrieffer

pairing in antiferromagnetic superconductors,โ€ Physical ReviewLetters, vol. 46, no. 9, pp. 614โ€“617, 1981.

[24] Y. Suzumura and A. D. S. Nagi, โ€œEffect of a homogeneous mag-netic field on one-dimensional antiferromagnetic superconduc-tors,โ€ Physical Review B, vol. 24, no. 9, pp. 5103โ€“5109, 1981.

[25] M. Ichimura, M. Fujita, and K. Nakao, โ€œCharge-density wavewith imperfect nesting and superconductivity,โ€ Physical ReviewB, vol. 41, no. 10, pp. 6387โ€“6393, 1990.

[26] G. C. Rout and S. Das, โ€œTemperature dependence of supercon-ducting gap of heavy fermion system,โ€ Physica C, vol. 339, no. 1,pp. 17โ€“26, 2000.

[27] S. K. Panda andG. C. Rout, โ€œInterplay of CDW, SDWand super-conductivity in high-T

๐‘cuprates,โ€ Physica C, vol. 469, no. 13, pp.

702โ€“706, 2009.[28] B. K. Sahoo and B. Panda, โ€œEffect of hybridization and disper-

sion of quasiparticles on the coexistent state of superconductiv-ity and antiferromagnetism in RNi

2B2C,โ€ Pramana Journal of

Physics, vol. 77, no. 4, pp. 715โ€“726, 2011.[29] P. Udomsamuthirun, S. Ratanaburi, N. Saentalard, and S. Yok-

san, โ€œThe ratio 2ฮ”0/T๐‘in BCS superconductivity,โ€ Journal of

Superconductivity, vol. 9, no. 6, pp. 603โ€“604, 1996.[30] G. C. Rout, M. S. Ojha, and S. N. Behera, โ€œSuperconducting gap

anomaly in heavy fermion systems,โ€Pramana Journal of Physics,vol. 70, no. 4, pp. 711โ€“730, 2008.

[31] H. Oh, J. Moon, D. Shin, C. Moon, and H. J. Choi, โ€œBrief reviewon iron-based superconductors: are there clues for unconven-tional superconductivity?โ€ Progress in Superconductivity, vol. 13,pp. 65โ€“84, 2011.

[32] R. Khasanov, M. Bendele, A. Bussmann-Holder, and H. Keller,โ€œIntrinsic and structural isotope effects in iron-based supercon-ductors,โ€ Physical Review B, vol. 82, Article ID 212505, 2010.

Advances in Condensed Matter Physics 7

[33] R. Khasanov, M. Bendele, K. Conder, H. Keller, E. Pom-jakushima, and V. Pomjakushima, โ€œIron isotope effect on thesuperconducting transition temperature and the crystal struc-ture of FeSe

1โˆ’๐‘ฅ,โ€ New Journal of Physics, vol. 12, Article ID

073024, 2010.

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Physics Research International

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Solid State PhysicsJournal of

โ€ŠComputationalโ€Šโ€ŠMethodsโ€Šinโ€ŠPhysics

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

ThermodynamicsJournal of