RF circuit design: Basics

Post on 02-Jan-2017

293 views 17 download

transcript

1

RF circuit design: Basics

Akira Matsuzawa

Tokyo Institute of Technology

2

Contents

• Building blocks in RF system and basic performances

• Device characteristics in RF application• Low noise amplifier design• Mixer design• Oscillator design

3

Basic RF circuit block

Receiver

Transmitter

ImpedanceMatching

1)LowNoiseAmp. 2) Mixer

3) Oscillator

PowerAmp.

Filter

RF systems are composed of limited circuits blocks.LNA, Mixer, and Oscillator will be discussed in my talk.

4

Basic functions of RF building blocks

Log (f) Log (f)

dB dB1) Amplifier3) Filter

Down conversion

Up conversion

2) Mixer+ Oscillator

Desired

Undesired

Amplifier, frequency converter (mixer +oscillator), and filerare basic function blocks in RF system.

Frequency conversion

5

RF Amplifier

• Gain: Amplify small signal or generate large signal.• Noise: Smaller noise and larger SNR.• Linearity: Smaller non-linearity.

Non-linearity generates undesired frequency components.

.....)()()()( 33

221 +++= tvtvtvtv inininout ααα

( ) ( )( ) ( ) ( ) ( )( ) ( )( )tttttt 2121212

21 coscos2cos2cos2coscos ωωωωωωωω ++−+++=+

( ) ( )( ) ( )( ) ( )( ) ....2cos212cos

21coscos 1221

321 +−+−=+ tttt ωωωωωω

6

Input and output characteristics

Pout

Pin

OIP3

IIP3

IP3

1dBPout(1dB)

Fundamental IMD3

Slope=1Slope=3

SNR minSNR min

SFDRBDR

NoiseFloor

NoiseFloor

SFDR

MDSCP1dB

Distortion and noise are important factors in RF amplifier, as well as power and gain.

7

Dynamic range

BWNFdBmFloorNoise log10174 ++−=

( ) min332 SNRFloorNoiseIIPSFDR −−=

SFDR: Spurious free dynamic rangeThe input power range over which third order inter-modulation productsare below the minimum detectable signal level.

BDR: Blocking dynamic range

kT limitation Bandwidth

MDS: Minimum detectable signal level= Noise Floor +SNRmin

min1 SNRFloorNoisePBDR dB −−=

8

Non-linearity

3

11 145.0

αα

=dBCP

CP1dB: The input level at which the small signal gain has dropped by 1dB.

IMD3: The third order inter modulation term

IP3: The metric third order intercept point. It is the point where the amplitude ofthird order inter modulation is equal to the that of fundamental.

3

13

34αα

=IPA IIP3: Input referred intercept pointOIP3: Output referred intercept point

( )inout PIIPIMDP −⋅=− 33 2

9

MOS transistor

Gate

Drain

Source

G D

S, B

rg

Cgs

Cgd

gmvg’

vg’ rds

Cds

MOS Transistor Equivalent Circuit

Body

Intrinsic gate voltage and gm are the most important factors in RF CMOS.

10

Cutoff frequency: fT

CingmViVi

CingmfT π2

=∴

Ii

Ii Io

)cos(

)sin(

tCIioVi

tIioIi

in

ωω

ω

=

=

inCtgmIiogmViIo

ωω )cos(

==

fT: Frequency at which the current gain is unity.

Input current

Gate voltageS

GD

Output current

Proportional to gmInversely proportional to Cin

For higher fT, increase gm and decrease Cin.

11

Amplifier gain

insg

Cr1

s

T

rrG 0⋅≈

ωω

inT

Cgm

=ωCin gmVg

Vgrs

Vs ro

Ig Id Log (G)

Log (f)

G=gmr0

1

rsr

Crgmr

Tins

o 00 ωω ==

For the larger gain

Fundamentally larger gmr0 oeff

dso r

VIgmrG ⋅

⎟⎠⎞

⎜⎝⎛

≈≈

2

Larger Ids or ro

Larger Q

CQLQro0

ω ==Q

Distortion and Cin increase

Veff is difficult to reduce

Higher fT and lower rs

For higher voltage gain, increase gm, fT, ro (Q), and decrease input and gate resistance

12

Characteristics of gm (Basic)

⎟⎠⎞

⎜⎝⎛

=⎟⎠⎞

⎜⎝⎛

=

2

1,

2effeff VIds

gmVIdsgm

dsox

eff IWL

CnV ⋅⋅⋅=

12μ

( )

dsOX

effOX

gs

ds

effOX

TgsOXds

ILW

nCgm

VLW

nC

dVdIgm

VLW

nCVV

LW

nCI

⎟⎠⎞

⎜⎝⎛=

⎟⎠⎞

⎜⎝⎛=≡

⎟⎠⎞

⎜⎝⎛=−⎟

⎠⎞

⎜⎝⎛=

μ

μ

μμ

2

2222

Scaling W/L ratio

Square law region

Gm is proportional to the Ids and inversely proportional to the Veff.

Veff is proportional to square root of Ids and inversely proportional to square root of (W/L) ratio.

dseff JLWIdsLV ⋅=∝

Veff is proportional to square root of drain current density.

13

Non-ideal effects to square low region

TdT

ds

T

gssods

nUsIgm

nUIgm

nUVII

1

exp

==

⎟⎟⎠

⎞⎜⎜⎝

⎛=

Sub-threshold regionLow Veff

0.2 0 0.2 0.4 0.6 0.80

5

10

15

20

25

3025.083

1.302

eff 0.4 10, Veff,( )

eff 0.2 5, Veff,( )

10.2 VeffVeff (V)

constnUIds

gmT==

1

VeffIdsgm 2

=

Gm

/Ids (

S/A

)Mobility degradationHigh Veff

LvV ceff

00

0 ,1

μθθθμμ +≈+

( Weak inversion)

This effect becomes larger at large Veff and short channel length.

At larger Veff and lower Veff, two non-ideal effects are not negligible .

14

Distortion

IIP3

Veff (V)

L=0.1umL=0.2um

L=0.4um

⋅⋅⋅⋅+++= 33

221 effeffeff VaVaVaIds

3

133

3

334

61

aaI

dVIda IPeff

ds=≡

1

10

100

0.1

1

10

-0.1 0 0.1 0.2 0.3 0.4 0.5

Veff (V)

gm/Id

s (S

/A)

IIP3

(V)

Lower Veff gives higher gm, bur results in higher distortion.To obtain lower distortion ( higher IIP3), we must increase Veff.

Higher gm and lower distortion means higher Ids.

15

LC resonator

CQLQro0

ω ==Substrate

LC

r0

Q

LC1

0 =ω

LC resonator can be regarded as resistance at the resonance frequency.

16

Substrate effect

SDSDSPAD

Gate

SDSDSPAD

GateShield layer

RF power loss and noise generation

Substrate should be treated as resistive network.

This substrate resistance causes RF power loss and noise generation.

Shielding can reduce this effect.

17

Power loss in substrate

Rp(Ω)

1 101K 10K

Cp(pF)

0.1

1Gp(mS)

100

C

RpGp Cp

Equivalent

MOS: 10ΩcmGaAs: 1GΩcmCR

CC

RG

pp

p

p

p

p

pp

1

1

1

1

1

2

2

2

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⋅=

ϖ

ϖω

ϖω

ϖω

Very low resistance or high resistance realizes low power loss.

Higher C and moderate Rsubresults in higher power loss.

18

GHz operation by CMOS

inT

Cgmfπ2

The cutoff frequency of MOS becomes higher than that of Bipolar.Over several GHz operations have attained in CMOS technology

1995 2000 2005

1G

10G

100G

100M

Freq

uenc

y (H

z)

200M

500M

2G

5G

20G

50G

fT : CMOS

fT : Bipolar (w/o SiGe)

D R/C for HDDIEEE 1394

CellularPhone

fT /10 (CMOS )

CDMA fT /60 (CMOS )

0.35um0.25um

0.18um

0.13um

Year

Digital circuits

RF circuits

eff

satTpeak

Lvfπ2

≈5GHz W-LAN

19

Effect of parasitic capacitance to fT

0 200 400 600 800 10000

2 .1010

4 .1010

6 .1010

5.786 1010.

1.576 109.

fti 0.2 W, 5 10 3., 0,

fti 0.2 W, 5 10 3., 0.1 10 12.,

fti 0.2 W, 5 10 3., 0.5 10 12.,

1 103.10 W

0

20

40

60

f T(G

Hz)

W(um)

Cp=0

Cp=0.1pF

Cp=0.5pF

Ids=5mAL=0.2um

(1)

(2)

)(2 pgdgsT

CCCgmf

++≡

π

fT of actual circuit is reduced by a parasitic capacitance.There is an optimum gate width to obtain highest fT.

CingmVi

ViCp

Cin=Cgs+Cgd

Region(1); Increased by increasing gmRegion(2); Decreased by increasing Cin

20

fT: MOS vs. Bipolar

⎟⎠⎞

⎜⎝⎛

2effV

IdsgmTU

Icgm ≡

Teff nUV 2min = n: 1.4

BipCMOS gmgm41,

21

<

mVq

kTUT 26≈≡

(Same operating current)

CingmfT π2

BipCMOS CinCin41,

21

< (Same fT)

Veff/2: 50-100mV(actual ckt.)

Even if fT of MOS is the same as that of Bipolar, fT of MOS is easily lowered by a parasitic capacitance.Because, gm of MOS is ½ to ¼ of that of Bipolar at the same current.

MOS Bipolar

Small parasitic capacitance is a key for RF CMOS design.

21

VT mismatch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5

0

10

15

)(1 1−mLW

μ

ΔV

T(σ

:mV

)

0.4um Nch

0.4um Pch

0.13um Nch In w/o Halo*

0.13um Nch Boron w. Halo*

* Morifuji, et al., IEDM 2000.

VT mismatch degrades accuracy; ADC, OP amp, and Mixer.Larger gate area is needed for small VT mismatch.Scaling and proper channel structure improves mismatch.

LWTV ox

T ∝Δ

Larger gate area

Tox Scaling

Channel engineering

22

VT mismatch: Fluctuation of doping

基板

- --- - - - - - -

- - - -

-

-- -

- - -ddepl

VAVT 1=Adepl

oxVT

Aox

Adeplox

ox

deplT

Nd

LWtA

LWN

tALW

NLWdAt

CQ

V

1

4

≈′==Δ

Q

mVVnmtmWL

T

ox

205,25.0

=ΔT.Mizuno, J.Okamura and A.Toriumi, ”Experimental study o f threshold voltage

fluctuation due to statistical variation of channel dopant number in MOSFETs,”IEEE Trans. On Electron Devices, ED-41, 2216 (1994)

=== μ

Courtesy of Prof. Taniguchi, Osaka Univ.

23

1/f noise

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

L=0.4um

L=1.0um

Bipolar

nMOSVdd=3VId=1mA

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

nMOS

pMOS

W/L=800/0.4Vdd=3VId=1mA

Bipolar

2

Inpu

t ref

erre

d no

ise

volta

ge (V

2 /Hz)

Frequency (Hz) Frequency (Hz)

Inpu

t ref

erre

d no

ise

volta

ge (V

2 /Hz)

Nch/Pch 0.4um Nch 0.4um/1.0um

1/f noise of MOS is larger than that of bipolar.

22 , oxvfvf

nf TSff

LWSV ∝

Δ=

For the lower 1/f noise, the larger gate area is needed.

24

Noise figure: General

sss jXRZ +=

( )nis

s

nv

s

nis

s

nv

rsn

ngsngrsn GRRR

RGZ

RR

V

IZVVF ++≈++=

++= 11

2

2,

22,

ningnvng kTGIkTRV 44 2,

2 ==

NoiselessCircuit

Vs

ZsVn,rs Vng

Ing

The lower Rnv and Gni realizes the better for a lower noise figure.

ni

nv

ng

ngsopt

GR

IVR == ninvGRF 21min +≈

25

Noise figure: MOS transistor

niss

nv GRRRF ++≈1

gmRgs

51

≈231NL

WRR totsrg =gsgnv RRR +=

20

5⎟⎠⎞

⎜⎝⎛≈

Tni

gmGωω

20

5511 ⎟

⎠⎞

⎜⎝⎛++≈

T

gmRsgmRs

Fωω

00

11ωω

ωgs

Tsopt

CgmR =⎟

⎠⎞

⎜⎝⎛≈

TF

ωω0

min 21+≈

26

Lg

Ls

Cpi

Rsub

M1

M2

Z0 rg

Cgs rgs

( ) sTsgsg

gsin LLCgm

ssCLLsZ ω≈⎟

⎠⎞

⎜⎝⎛+++≈

1

( )gsgs LLC +=

10ω

Impedance matching

Low noise amplifier design

Narrowband LNA uses inductor degeneration for impedance matching.

27

Low NF design

0

20

00

141Z

rrgmZZ

rrF ggs

T

ggs ++≈⎟

⎠⎞

⎜⎝⎛+

++≈

ωωγ

gmrgs

51

S

D

S

D

S

S

D

Divide the gate

LWRr tot

srg =

231NL

WRr totsrg =

Rsr: Sheet resistanceN:The # of division

Low noise figure

1) Lower the gate resistance

Dived the gate or lower the gate sheet resistance

2) Reduce substrate loss

Use shield technique to the input bonding PAD.

Use high resistive substrate, if possible.

3) Increase drain current ( )ds

effgs

IV

gmr

1051

≈≈4) Increase Z0, if possible.

Reduce parasitic capacitance

28

Ids and Veff optimization

WIV ds

eff ∝

001

3 ZIVgmZF

IIPDR dseffLNA

LNA ≈∝−

Veff

NF

Gain

3rd distortion

dB

Adjust the Ids and Veff for optimization of gain, noise and distortion.

Lower Ids

Higher Ids

effVIIP ∝3

Dynamic range of LNA is proportional to Ids.

29

NF progress in MOS LNA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.11

Gate length (μm)

0.35 0.250.5

NF

(dB

)NF of MOS LNA is reaching 1dB.

30

Mixer

( )( )tAV LOsso ωωπ

±= cos2Vs

VLO

Vo( )tAV sss ωcos=

( )tAV LOLOLO ωcos=

If VLO>>4Veff (Full swing)

FIF FIF

Freq

dB

FIF

Freq

dB

FLO

Fdes

Fimage

RF spectrum IF spectrum

Mixer converts frequency, but image signal is converted to the same frequency.

31

Image-reject mixers

( )tLOωcos

LPF

+

LPF °− 45

Vin (t) Vout(t)

( )tLOωsin

°45

( ) ( )tAtAtV imimdesdesin ωω coscos)( +=

( ) ( )tIAAtAAtV IFRcimIFcdesout ωω coscos)( +=

Ac: Conversion gain, IR: Image rejection

IR=0 if I/Q phase difference is 90° and Channel conversion gains are equal.

The quadrature mixing realizes image-suppression.Gain and phase matching is needed.

32

Gain mismatch and phase error

φγγφγγ

cos21cos21

2

2

++−+

=desired

spur

PP γ

φ: Gain ratio

:Phase error

A. Rofougaran, et al., IEEE J.S.C. Vol.33, No.4, April 1998. PP. 515-534.

33

Passive FET mixer

Lo Lo

LoLo

Vin

Vin

Vo Vo

Low powerHigh linearityNo 1/F noise

No conversion gainNo isolation, Bi-directional

Passive FET mixer

MOS can realize a passive mixer easily.

Ultimately low power, but take care of isolation.

34

Active mixers

Zs

ZL

Lo Lo

Vo Vo

Vin

ZL

Single balanced mixer

Zs

Lo Lo

Vo

Vin

ZL

Zs

ZL

Lo

Vin

Vo

Double balanced mixer

M1

M2 M3

M1 M1’

M2 M3 M2’ M3’

Very small direct feed through and even order distortion

35

Active mixer design

s

LLmix

ZZorZgmG

ππ22

,1 ==

eff

ds

eff

L

onin

LLLO

LLon

VIIP

IVkT

gmkT

Rgm

vSSBv

gmkTRRgmAIRkTRv

≅≈

⎟⎠⎞

⎜⎝⎛

=

≈⎟⎠⎞

⎜⎝⎛ ++=

3

22

8218

2

1

22

1

22

12

12

γπγπ

π

γγπγ

Mixer gain

Thermal noise

A larger dynamic range needs larger current

RL: Resistive component in ZL

when Zs is used

Ts TLO

1/F noise

1) Switch transistor (M2, M3)

CgsWLswn

swnLO

on

v

vTTsv

11,

2

,,4

∝≈

=

2) Load transistors Directly produces

Phase modulation

Shorter switching time or larger Ts/TLo ratio

The larger Ids is needed for high dynamic rangeand shorter switching time for low 1/f noise.

36

Oscillator

πo

oscIrV 4

=

QCV

rVI odd

o

ddopt

ωππ==

2

CQLQro0

ω ==

L CQr0-1/gm

1) Amplitude condition

Oscillationamplitude

Vdd

2) Oscillation condition

-1/gm

Headroomlimit

2Vdd

QCVI

rgm effo

o

3,2,3,2 ,2 ω

>>

L

C

L

C

Vb

Vc

Vo Vo

(a)

M1

M2 M3

I

There is an optimum Ids for low phase noise.

37

Phase noise of oscillator

( )ωjZ

0

21ω

LQBw

=

Bw

ω

R

0.7R

[ ])(cos)( 0 ttAtv φω +=

ωφφω jdtd

m ==mω : Offset angular frequency

( )mmm SS ωωω φω2)( = )( mS ωω

( )mS ωφ

:Noise spectrum densityon offset angular frequency

:Noise spectrum densityon phase

mLm Q

Bwω

ωωθ

0

2==Δ

ω

ωω

φ dQd L

0

2=φ

θΔ Phase error between in and out

( )mL

m SQ

S ωωω θω Δ⎟⎟⎠

⎞⎜⎜⎝

⎛=

20

2)(

( ) ( )mmL

m

mLm S

QS

QS ω

ωωω

ωωω θθφ ΔΔ ⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=

20

2

20

21

2)(

( )mS ωθΔ

Bwm

:Noise spectrum densityon phase error

Phase-frequency relation and resonator characteristics determine phase noise.

38

Phase noise of oscillator

202

22

24 ⎟⎟

⎞⎜⎜⎝

⎛=⋅

Δ=

Δ monn

QkTrZ

fi

fv

ωω

( )

0

00

2ωω

ωωωm

mLjZ ≈+

LrQ0

0

ω=

( )ωjZ

0

21ωQ

Bw=

Bw

ω

R

0.7R

L CQ

-1/gm -1/gmr0

( )m

mQrZωωωω

200

0 ≈+

{ }⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

20

22log10

msigm

QPkTL

ωωω

0ωω <<m

Noise spectrum density

Phase noise

(Filter action)

39

Frequency characteristics of Phase noise in oscillator

0

LQBw =

3

20 1

2 mLa

Q ωω

⎟⎟⎠

⎞⎜⎜⎝

⎛( )mS ωφ

2

20 12

2 mL PsFkT

Q ωω

⎟⎟⎠

⎞⎜⎜⎝

PsFkT2

coω

-9dB/oct(Slope =-3)

-6dB/oct(Slope=-2)

m

Phas

e no

ise

spec

trum

ω

1/f noise Thermal

( )

Thermal

mm

aSω

ωθ =Δ

( )PsFkTS m

2=Δ ωθ

( )mmL

m SQ

S ωωωω θφ Δ⎟⎟

⎞⎜⎜⎝

⎛=

20

21)(

1/f noise and thermal noise is converted to 1/f3 and1/f2, respectively.

40

Up and down converted noise

)/( HzVVnoise

ωo 2ωo 3ωo

P (dBm)

ω

ω

Noiseshaping

Down-conv.Up-conv.

Noises around N*fo are up and down converted to fo.

41

FoM and minimum phase noise

IVfLffFoM

ddmm )(1

20

⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⎟⎟

⎞⎜⎜⎝

⎛⋅⋅=⋅⎟⎟

⎞⎜⎜⎝

⎛⋅⋅=

roVFkT

ff

QPFkT

ff

QfL

om

o

RFm

om

2

1211

21)(

2

2

2

2

2

19882 mo

o

o grV

IrF ⋅++= γπγ

Fm: Offset frequencyL(fm): Phase noise at offset freq.

F: Noise factor

indo

ddodd

o

ddopt

LQV

QCV

rVI

ωπωππ

22===

2

1,

2

93242

14 Q

VVkT

QFoM

eff

dd∝

++=

γπγπ

FoM is basically proportional to Q2.

at Iopt

42

Oscillator design

Bias currentIopt

Phase noise Oscillationamplitude

2Vdd

C

L L

C

Vb

Vc

Vo Vo

M1

M2 M3

I

Larger VddLarge Veff1, but take care of Vo reductionLarge L1, W1 to reduce 1/f noiseEnough W/L for M2, M3Higher QLarger QLind for Lower Iopt

2

1,min

212

)( ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +⋅⋅⋅=

m

o

effdd

indo

ddm

ff

VVQL

VkTfL ωγ

2

1,2min

212

12

)( ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +⋅⋅⋅=

m

o

effddoptm

ff

VVQIkTfL γ

indo

ddodd

o

ddopt

LQV

QCV

rVI

ωπωππ

22===

Careful optimization reduces the oscillator phase noise.

43

L

C

L

CVc

Vb

Vo VoL

C

L

C

Vb

Vc

Vo Vo

L

C

L

C

Vb

Vc

Vo Vo

Cx

LxCsHi-Z at 2fo

(a) (b)(c)

CMOS oscillator circuits

Basic Low power (gm is higher) Low noise by filtering

E. Hegazi, ISSCC 2001

44

Filtering of 2fo component in OSC.

Noise filtering of 2fo component reduces the OSC phase noise to -10dB.

E. Hegazi, ISSCC 2001

45

-150.0

-140.0

-130.0

-120.0

-110.0

-100.0

-90.0

1994 1995 1996 1997 1998 1999 2000 2001 2002

SSB

Pha

se N

oise

[d

Bc/

Hz]

(@1

GH

z,10

mW

,600

kHz)

◆CMOS

■Si-bipolar/BiCMOS

▲SiGe-BiCMOS

Year

Oscillator phase noise progress

Phase noise in CMOS oscillator becomes lower than that of bipolar.

46

Acknowledgment and references

• AcknowledgmentI would like to thank Prof. Asad Abidi in UCLA for his advices.

• References– Asad A. Abidi, “Power-Conscious design of Wireless circuits and

systems,” pp.665-695, “Trade-offs in Analog Circuit Design,” KluwerAcademic Publishers, 2002. (Edited by Chris Toumanzou, George Moschytz, and Barrie Gilbert)

– Thomas. H. Lee, “The design of CMOS RF ICs,” Cambridge University Press, Jan. 1998.

– Bezad, Razavi, “RF micro-electronics,” Prentice Hall, Nov. 1999.– Domine Leenaerts, Johan van der Tang, and Ciero Vaucher, “Circuit

Design for RF Transceivers,” Kluwer Academic Publishers, 2001.– Charles Chien, “Digital Radio Systems on A chip,” Kluwer Academic

Publishers, 2001.– E. Hegazi, et. Al., ”A Filtering Technique to Lower Oscillator Phase

Noise,” ISSCC 2001, 23.4, Feb. 2001.