Robert Hafley - Presentation

Post on 17-Oct-2014

21 views 5 download

Tags:

transcript

Robert.A.Hafley@nasa.gov11

Electron Beam Freeform Fabrication: A Fabrication

Process that Revolutionizes Aircraft

Structural Designs and Spacecraft

Supportability

Electron Beam Freeform Fabrication: A Fabrication

Process that Revolutionizes Aircraft

Structural Designs and Spacecraft

Supportability

Robert A. Hafley

Karen M. Taminger

NASA Langley Research Center

Robert A. Hafley

Karen M. Taminger

NASA Langley Research Center

International Conference on Additive Manufacturing

7-8 July 2010

International Conference on Additive Manufacturing

7-8 July 2010

Robert.A.Hafley@nasa.gov2

OutlineOutline

• Technology inception

• Characterization

• Technical challenges

• Current applications

• Influence on future designs

• Supportability in space

Robert.A.Hafley@nasa.gov3

• Technology inception– Motivation– EBF3 process description– Benefits

• Characterization

• Technical challenges

• Current applications

• Influence on future designs

• Supportability in space

OutlineOutline

Robert.A.Hafley@nasa.gov4

Metal Deposition ProcessesMetal Deposition Processes

Laser

5-10%5-10%

Continuous gated pulsed

Mirrors orfiber opticsMirrors orfiber optics

Inert gas

Powder,5-85%Powder,5-85%

0.5-9 lb/hr

Energy efficiencyEnergy

efficiency

Beam control

Beam deliveryBeam delivery

Environment

Feedstock efficiencyFeedstock efficiency

Max dep. rate

95%95%

Continuous,rastered

Magnetically steeredMagnetically steered

Vacuum

Wire, ~100%Wire, ~100%

> 30 lb/hr

E-Beam

Robert.A.Hafley@nasa.gov5

EBF3 Core TechnologyEBF3 Core Technology

• Rapid metal fabrication process

– Layer-additive process

– No molds or tools

– Properties equivalent to wrought

– Demonstrated on Al, Ti, Ni, Fe-based alloys

Robert.A.Hafley@nasa.gov6

• Slice CAD drawing

• E-beam creates melt pool

• Add wire to pool

• Translate layer-by-layer

EBF3 ProcessEBF3 Process

Robert.A.Hafley@nasa.gov7

LaRC EBF3 System #1LaRC EBF3 System #1

• 42 kW gun

• 60 kV max

• 6-axis positioning

• 2m x 2.8m x 2.5m vacuum chamber

• 600mm x 1200mm x 1500mm build envelope

Robert.A.Hafley@nasa.gov8

EBF3 DemonstrationEBF3 Demonstration

Robert.A.Hafley@nasa.gov9

Benefits of EBF3Benefits of EBF3

• Near-net shape– Minimize scrap– Reduces part count

• Efficient designs– Lightweight– Enhanced performance

• Complex unitized components– Integral structures– Functionally graded materials

• “Green” manufacturing – Minimal waste products– Energy and feedstock efficient

Robert.A.Hafley@nasa.gov10

EBF3 Saves ResourcesEBF3 Saves Resources

– =

3000 kg 2850 kg 150 kg

Conventional Machining:

Additive Manufacturing via EBF3:

– =

50 kg 150 kg

+

100 kg 100 kg

+ EBF3

Robert.A.Hafley@nasa.gov11

• Technology inception

• Characterization– Microstructure– Mechanical properties

• Technical challenges

• Current applications

• Influence on future designs

• Supportability in space

OutlineOutline

Robert.A.Hafley@nasa.gov12

Machined from plate Built by EBF3

2219 Al Microstructure2219 Al Microstructure

0.25 mm 0.25 mm

Robert.A.Hafley@nasa.gov13

As-deposited T6 Condition

Rapid cool cast:•Cu segregation •Dendrites

Transformed:•Grain boundaries retained

2219 Al EBF3 Microstructure2219 Al EBF3 Microstructure

100 µm100 µm

Robert.A.Hafley@nasa.gov14

2219 Al Tensile Data2219 Al Tensile Data

• EBF3 tensile properties comparable

to handbook data

0

25

50

75

Yield Ultimate Elongation

EBF3 + T62T62 typical

Ten

sil

e S

tren

gth

, ksi

0

10

Elo

ng

ati

on

, %

Robert.A.Hafley@nasa.gov15

Ti-6Al-4V MicrostructureTi-6Al-4V Microstructure

50 µm

2 mm2 mm

Robert.A.Hafley@nasa.gov16

Ti-6Al-4V Tensile DataTi-6Al-4V Tensile Data

• EBF3 Ti-6-4 equivalent to annealed wrought product

0

50

100

150

Yield Ultimate Elongation

As-deposited

Annealed (Wrought)

0

5

10

15

Elo

ng

ati

on

, %

Ten

sil

e S

tren

gth

, ksi

Robert.A.Hafley@nasa.gov17

• Technology inception

• Characterization

• Technical challenges– Preferential vaporization– Process control– Residual stress

• Current applications

• Influence on future designs

• Supportability in space

OutlineOutline2219

Robert.A.Hafley@nasa.gov18

Loss of Al in Ti-6Al-4VLoss of Al in Ti-6Al-4V

• Al loss in vacuum

• Function of temperature and pressure

• Process repeatability

• Issue with other alloys too

89.5

90.5

5.4

6.6

Ti

Al

5 mm5 mm

Robert.A.Hafley@nasa.gov19

Need for Process ControlNeed for Process Control

• Melt pool changes with temperature

• Monitor for process control

Robert.A.Hafley@nasa.gov20

Thermal Residual StressesThermal Residual Stresses

• Localized heat induces distortion and residual stress

Robert.A.Hafley@nasa.gov21

• Technology inception

• Characterization

• Technical challenges

• Current applications– Replace existing parts– Enable new complex parts

• Influence on future designs

• Supportability in space

OutlineOutline

Robert.A.Hafley@nasa.gov22

Add Details onto ForgingsAdd Details onto Forgings

• Add features onto

simplified preform

• Reduces billet sizes and

buy-to-fly ratio

Robert.A.Hafley@nasa.gov23

Cryotank ConceptCryotank Concept

• Form cylinder

• EBF3 stiffeners

• Tailored stiffener arrays

Robert.A.Hafley@nasa.gov24

Complex ShapesComplex Shapes

• Build entire part

• Unitized structures

• Allows internal cavities

Robert.A.Hafley@nasa.gov25

• Technology inception

• Characterization

• Technical challenges

• Current applications

• Influence on future designs– New unitized structural designs– Functionally-graded structures– Integrated systems

• Supportability in space

OutlineOutline

Robert.A.Hafley@nasa.gov26

Novel Structural DesignsNovel Structural Designs

Curved stiffeners can be

optimized for:

• Performance• Low weight• Low noise• Damage tolerance

Robert.A.Hafley@nasa.gov27

Aeroelastic TailoringAeroelastic Tailoring

Coupled bending-

torsion wingMonocoque wing

Robert.A.Hafley@nasa.gov28

Design for AcousticsDesign for Acoustics

• Optimize stiffeners to tailor natural

resonance frequencies

Robert.A.Hafley@nasa.gov29

Functional GradientsFunctional Gradients

Lengthwise gradient

Build height gradient

Locally control:

• Chemistry

• Microstructure

• Properties

Robert.A.Hafley@nasa.gov30

• Technology inception

• Characterization

• Technical challenges

• Current applications

• Influence on future designs

• Supportability in space– In-space repair– Spin-off applications

OutlineOutline

Robert.A.Hafley@nasa.gov31

• Long duration

missions

• Support autonomy

• Minimize resupply

from Earth

• Fab or repair parts

• Enhances mission

success

Need for SupportabilityNeed for Supportability

Robert.A.Hafley@nasa.gov32

Remote Terrestrial RepairsRemote Terrestrial Repairs

Similar self-supportability needs

on Earth:

• Navy ships• Army supply in-theater• Remote science bases

Robert.A.Hafley@nasa.gov33

SummarySummary

• Led by LaRC since inception

• Disruptive technology

• Cross-cutting:– Aeronautics– Space– Other industry sectors

• Enables new structural designs

• Demonstrated in 0-g for use in-space