Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( )...

Post on 10-Jun-2018

219 views 0 download

transcript

Rotational & Rigid-Body Mechanics

Lectures 3+4

β€’ So far: point objects moving through a trajectory.

β€’ Next: moving actual dimensional objects and rotating them.

2

Rotational Motion

β€’ 𝐢 is the center of rotation.

β€’ 𝑃 a point on to the object.

β€’ π‘Ÿ is the distance vector 𝑃 βˆ’ 𝐢

β€’ π‘Ÿ = π‘Ÿ the distance between 𝐢 and 𝑃.β€’ Object rotates 𝑃

travels along a circular path

β€’ after βˆ†π‘‘, 𝑃 covered distance 𝑠, and angle πœƒ.

β€’ Unit-length axis of rotation: 𝑒.β€’ In this example, the Z axis going β€œout” from the screen.

β€’ Rotation: counterclockwise (right-hand rule).

3

Circular Motion - Definitions

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

β€’ This angle πœƒ represents the rotation of the object:

πœƒ = 𝑠/π‘Ÿ

where 𝑠 is the arc length and π‘Ÿ the radiusβ€’ unit is radian (π‘Ÿπ‘Žπ‘‘)

β€’ 1 radian=angle for arc length 1 at a distance 1.

4

Angular Displacement

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

πœ”

𝑣

β€’ Angular velocity: the rate of change of the angular displacement:

πœ” =βˆ†πœƒ

βˆ†π‘‘=πœƒ 𝑑 + βˆ†π‘‘ βˆ’ πœƒ(𝑑)

βˆ†π‘‘

β€’ unit is π‘Ÿπ‘Žπ‘‘/𝑠.

β€’ The angular velocity vector is collinear with the rotation axis:

πœ” = πœ”π‘’

5

Angular Velocity

β€’ Angular acceleration: the rate of change of the angular velocity:

𝛼 =βˆ†πœ”

βˆ†π‘‘=πœ” 𝑑 + βˆ†π‘‘ βˆ’ πœ”(𝑑)

βˆ†π‘‘

β€’ Exactly like acceleration is to velocity in a trajectory.

β€’ unit is π‘Ÿπ‘Žπ‘‘/𝑠2

6

Angular Acceleration

β€’ Deferring velocity from position and acceleration:

πœ”(𝑑 + βˆ†π‘‘) = πœ”(𝑑) + π›Όβˆ†π‘‘

πœ” =πœ”(𝑑 + βˆ†π‘‘) + πœ”(𝑑)

2

βˆ†πœƒ = 1 2 πœ”(𝑑 + βˆ†π‘‘) + πœ”(𝑑) βˆ†π‘‘

βˆ†πœƒ = πœ”(𝑑)βˆ†π‘‘ + 1 2𝛼 βˆ†π‘‘2

πœ”(𝑑 + βˆ†π‘‘)2 = πœ”(𝑑)2 + 2π›Όβˆ†πœƒ

7

Equations of Motion

β€’ The centripetal force creates curved motion.

β€’ Orthogonal to the velocity of the object.β€’ Object is in orbit.

β€’ Constant force circular rotation with constant tangential velocity.β€’ Why?

8

Kinetics of Rotational Motion

𝐢 𝑃(𝑑)

𝑃(𝑑 + βˆ†π‘‘)

𝑇(𝑑)

𝑉(𝑑)

β€’ Every point on a rigid body moves with the same angularvelocity.

β€’ Different points on a rigid body can have different tangential velocities.β€’ Different radii

9

Tangential and Angular Velocities

β€’ Angular velocity vector: direction of rotation axis

β€’ Tangential velocity vector: direction of movement direction

β€’ Relation: 𝑣 = πœ” Γ— π‘Ÿ

Or:

πœ” = π‘Ÿ Γ— 𝑣

π‘Ÿ2

β€’ Note that 𝑣 = πœ” βˆ— π‘Ÿ (abs. values), due to 𝑠 = πœƒ βˆ— π‘Ÿ.β€’ Only the tangential part of any velocity matters for rotation!

10

Tangential Velocity

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

πœ”

𝑣

β€’ Tangential acceleration defined the same way

π‘Ž = 𝛼 βˆ— π‘Ÿ

where 𝛼 is the angular acceleration.

β€’ Similarly to the velocity equation 𝑣 = πœ” βˆ— π‘Ÿ

11

Tangential Acceleration

β€’ The centripetal acceleration, orthogonal to the velocity (=towards the axis of rotation), drives the rotational movement:

π‘Žπ‘› =𝑣𝑑2

π‘Ÿ= π‘Ÿπœ”2

β€’ What is the centrifugal force?

12

Centripetal Acceleration

Rigid-Body Kinematicsβ€’ Rigid bodies have dimensions, as opposed to single points.

β€’ Relative distances between all points are invariant.

β€’ Movement can be decomposed into two components:β€’ Linear trajectory of any single points

β€’ Relative rotation around the point

β€’ Free body movement: around the center of mass (COM).

β€’ The measure of the amount of matter in the volume of an object:

π‘š = 𝑉

𝜌 𝑑𝑉

where 𝜌 is the density at each location in the object volume 𝑉.

β€’ Equivalently: a measure of resistance to motion or change in motion.

14

Mass

β€’ For a 3D object, mass is the integral over its volume:

π‘š = 𝜌(π‘₯, 𝑦, 𝑧) 𝑑π‘₯ 𝑑𝑦 𝑑𝑧

β€’ For uniform density objects (simple rigid bodies):π‘š = 𝜌 βˆ— 𝑉

where 𝜌 is the density of the object and 𝑉 is its volume.

15

Mass

β€’ The center of mass (COM) is the point at which all the mass can be considered to be β€˜concentrated’‒ obtained from the first moment, i.e. mass times distance.

β€’ point of β€˜balance’ of the object

β€’ if uniform density, COM is also the centroid

16

Center of Mass

COM

β€’ Coordinate of the COM:

𝐢𝑂𝑀 =1

π‘š 𝑉

𝜌 𝑝 βˆ— 𝑝 𝑑𝑉

where 𝑝 is the position at each location in 𝑉.

β€’ For a set of bodies:

𝐢𝑂𝑀 =1

π‘š

𝑖=1

𝑛

π‘šπ‘–π‘π‘–

where π‘šπ‘– is the mass of each COM 𝑝𝑖 in every body.

17

Center of Mass

β€’ Example for a body made of two spheres in 1D

π‘₯𝐢𝑂𝑀 =π‘š1π‘₯1 +π‘š2π‘₯2π‘š1 +π‘š2

18

Center of Mass

COMπ’ŽπŸ

π’ŽπŸ

π’™πŸ

π’™πŸ

𝒙π‘ͺ𝑢𝑴

β€’ Quite easy to determine for primitive shapes

β€’ But what about complex surface based models?

19

Center of Mass

β€’ Remember linear momentum: 𝑝 = π‘š 𝑣.

β€’ Rotational motion also produces angular momentum of a any point on the object about the center of mass (or any relative point):

𝐿 =

𝑉

π‘Ÿ Γ— 𝑝 𝑑𝑉

β€’ unit is 𝑁 βˆ— π‘š βˆ— 𝑠

β€’ Angular momentum is a conserved quantity!β€’ Just like the linear momentum.

β€’ Remember: measured around a point.

20

Angular Momentum

β€’ Plugging in angular velocity:

π‘Ÿ Γ— 𝑝 = π‘Ÿ Γ— 𝑣 π‘‘π‘š = π‘Ÿ Γ— πœ” Γ— π‘Ÿ π‘‘π‘š

β€’ Integrating, we get:

𝐿 = 𝑀

π‘Ÿ Γ— πœ” Γ— π‘Ÿ π‘‘π‘š

β€’ Note: The angular momentum and the angular velocity are not generally collinear!

21

Angular Momentum

Moment of Inertia

β€’ Defining: π‘Ÿ =π‘₯𝑦𝑧

and πœ” =πœ”π‘₯πœ”π‘¦πœ”π‘§

.

β€’ Remember that the angular velocity is constant throughout the body.

β€’ We get:

𝐿 =

𝑦2 + 𝑧2 πœ”π‘₯ βˆ’ π‘₯π‘¦πœ”π‘¦ βˆ’ π‘₯π‘§πœ”π‘§

βˆ’π‘¦π‘₯πœ”π‘₯ + 𝑧2 + π‘₯2 πœ”π‘¦ βˆ’ π‘¦π‘§πœ”π‘§

βˆ’π‘§π‘₯πœ”π‘₯ βˆ’ π‘§π‘¦πœ”π‘¦ + (π‘₯2 + 𝑦2)πœ”π‘§

π‘‘π‘š =

𝐼π‘₯π‘₯ βˆ’πΌπ‘₯𝑦 βˆ’πΌπ‘₯π‘§βˆ’πΌπ‘¦π‘₯ 𝐼𝑦𝑦 βˆ’πΌπ‘¦π‘§βˆ’πΌπ‘§π‘₯ βˆ’πΌπ‘§π‘¦ 𝐼𝑧𝑧

πœ”π‘₯πœ”π‘¦πœ”π‘§

.

β€’ The inertia tensor only depends on the geometry of the object and the relative point (often, COM):

𝐼π‘₯π‘₯ = 𝑦2 + 𝑧2 π‘‘π‘š

𝐼𝑦𝑦 = 𝑧2 + π‘₯2 π‘‘π‘š

𝐼𝑧𝑧 = π‘₯2 + 𝑦2 π‘‘π‘š

23

Momentum and Inertia

𝐼π‘₯𝑦 = 𝐼𝑦π‘₯ = π‘₯𝑦 π‘‘π‘š

𝐼π‘₯𝑧 = 𝐼𝑧π‘₯ = π‘₯𝑧 π‘‘π‘š

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 𝑦𝑧 π‘‘π‘š

β€’ Finally the inertia can be expressed as the matrix

𝐼 =

𝑦2 + 𝑧2 π‘‘π‘š βˆ’ π‘₯𝑦 π‘‘π‘š βˆ’ π‘₯𝑧 π‘‘π‘š

βˆ’ π‘₯𝑦 π‘‘π‘š 𝑧2 + π‘₯2 π‘‘π‘š βˆ’ 𝑦𝑧 π‘‘π‘š

βˆ’ π‘₯𝑧 π‘‘π‘š βˆ’ 𝑦𝑧 π‘‘π‘š π‘₯2 + 𝑦2 π‘‘π‘š

β€’ The diagonal elements are called the (principal) moment of inertia

β€’ The off-diagonal elements are called products of inertia

24

The Inertia Tensor

β€’ Equivalently, we separate mass elements to density and volume elements:

𝐼 =

𝑉

𝜌 π‘₯, 𝑦, 𝑧

𝑦2 + 𝑧2 βˆ’π‘₯𝑦 βˆ’π‘₯𝑧

βˆ’π‘₯𝑦 𝑧2 + π‘₯2 βˆ’π‘¦π‘§

βˆ’π‘₯𝑧 βˆ’π‘¦π‘§ π‘₯2 + 𝑦2𝑑π‘₯ 𝑑𝑦 𝑑𝑧

β€’ The diagonal elements: distances to the respective principal axes.

β€’ The non-diagonal elements: products of the perpendicular distances to the respective planes.

25

The Inertia Tensor

β€’ The moment of inertia of a rigid body is a measure of how much the mass of the body is spread out.

β€’ A measure of the ability to resist change in rotational motion

β€’ Defined with respect to a specific rotation axis 𝑒.β€’ Through the central rotation origin point.

β€’ We have that: 𝐼𝑒 = 𝑉 π‘Ÿπ‘’2π‘‘π‘š

26

Moment of Inertia

Moment and Tensor

β€’ We have: π‘Ÿπ‘’2 = 𝑒 Γ— π‘Ÿ 2 = 𝑒𝑇𝐼(π‘ž)𝑒 for any point π‘ž. (Remember:

π‘Ÿ is distance to origin).

β€’ Thus:

𝐼𝑒 = 𝑀 𝑒𝑇𝐼(π‘ž)𝑒 π‘‘π‘š=𝑒𝑇𝐼𝑒

β€’ The scalar angular momentum around the axis is then 𝐿𝑒 = πΌπ‘’πœ”.

β€’ Reducible to a planar problem (axis is the new z axis).

β€’ For a mass point:𝐼 = π‘š βˆ— π‘Ÿπ‘’

2

β€’ For a collection of mass points:𝐼 = π‘–π‘šπ‘–π‘Ÿπ‘–

2

β€’ For a continuous mass distribution on the plane:𝐼 = 𝑀 π‘Ÿπ‘’

2 π‘‘π‘š

28

Moment of Inertia

π‘Ÿπ‘š

π‘Ÿ1π‘š1

π‘Ÿ2π‘š2

π‘Ÿ3 π‘š3

π‘Ÿπ‘‘π‘š

β€’ For primitive shapes, the inertia can be expressed with the parameters of the shape

β€’ Illustration on a solid sphereβ€’ Calculating inertia by integration of thin discs along

one axis (e.g. 𝑧).

β€’ Surface equation: π‘₯2 + 𝑦2 + 𝑧2 = 𝑅2

29

Inertia of Primitive Shapes

β€’ Distance to axis of rotation is the radius of the disc at the cross section along 𝑧: π‘Ÿ2

= π‘₯2 + 𝑦2 = 𝑅2 βˆ’ 𝑧2.

β€’ Summing moments of inertia of small cylinders of inertia 𝐼𝑍 =π‘Ÿ2π‘š

2along the z-axis:

𝑑𝐼𝑍 =1

2π‘Ÿ2π‘‘π‘š =

1

2π‘Ÿ2πœŒπ‘‘π‘‰ =

1

2π‘Ÿ2πœŒπœ‹π‘Ÿ2𝑑𝑧

β€’ We get:

𝐼𝑍 =1

2πœŒπœ‹ βˆ’π‘…π‘…π‘Ÿ4𝑑𝑧 =

1

2πœŒπœ‹ βˆ’π‘…π‘…π‘…2 βˆ’ 𝑧2 2𝑑𝑧 =

1

2πœŒπœ‹ 𝑅4𝑧 βˆ’ 2𝑅2 𝑧3 3 + 𝑧5 5 βˆ’π‘…

𝑅

= πœŒπœ‹ 1 βˆ’ 2 3 + 1 5 𝑅5.

β€’ as π‘š = 𝜌 4 3 πœ‹π‘…3, we finally obtain: 𝐼𝑍 =2

5π‘šπ‘…2.

30

Inertia of Primitive Shapes

β€’ Solid sphere, radius π‘Ÿ and mass π‘š:

β€’ Hollow sphere, radius π‘Ÿ and mass π‘š:

31

Inertia of Primitive Shapes

𝐼 =

2

5π‘šπ‘Ÿ2 0 0

02

5π‘šπ‘Ÿ2 0

0 02

5π‘šπ‘Ÿ2

𝐼 =

2

3π‘šπ‘Ÿ2 0 0

02

3π‘šπ‘Ÿ2 0

0 02

3π‘šπ‘Ÿ2

xz

y

β€’ Solid ellipsoid, semi-axes π‘Ž, 𝑏, 𝑐 and mass π‘š:

β€’ Solid box, width 𝑀, height β„Ž, depth 𝑑 and mass π‘š:

32

Inertia of Primitive Shapes

𝐼 =

1

5π‘š(𝑏2+𝑐2) 0 0

01

5π‘š(π‘Ž2+𝑐2) 0

0 01

5π‘š(π‘Ž2+𝑏2)

𝐼 =

1

12π‘š(β„Ž2+𝑑2) 0 0

01

12π‘š(𝑀2+𝑑2) 0

0 01

12π‘š(𝑀2+β„Ž2)

xz

y

wd

h

β€’ Solid cylinder, radius π‘Ÿ, height β„Ž and mass π‘š:

β€’ Hollow cylinder, radius π‘Ÿ, height β„Ž and mass π‘š:

33

Inertia of Primitive Shapes

𝐼 =

1

12π‘š(3π‘Ÿ2+β„Ž2) 0 0

01

12π‘š(3π‘Ÿ2+β„Ž2) 0

0 01

2π‘šπ‘Ÿ2

𝐼 =

1

12π‘š(6π‘Ÿ2+β„Ž2) 0 0

01

12π‘š(6π‘Ÿ2+β„Ž2) 0

0 0 π‘šπ‘Ÿ2

h

h

β€’ The object does not necessarily rotate around the center of mass.β€’ Some point can be fixed!

β€’ parallel axis theorem:

𝐼𝑣 = 𝐼𝐢𝑂𝑀 +π‘šπ‘‘2

Where:

𝐼𝑣: inertia around axis 𝑒.

𝐼𝐢𝑂𝑀 inertia about a parallel axis through the COM.

𝑑 is the distance between the axes.

34

Parallel-Axis Theorem

β€’ More generally, for point displacements: 𝑑π‘₯ , 𝑑𝑦 , 𝑑𝑧

35

Parallel-Axis Theorem

𝐼π‘₯π‘₯ = 𝑦2 + 𝑧2 π‘‘π‘š +π‘šπ‘‘π‘₯

2

𝐼𝑦𝑦 = 𝑧2 + π‘₯2 π‘‘π‘š +π‘šπ‘‘π‘¦

2

𝐼𝑧𝑧 = π‘₯2 + 𝑦2 π‘‘π‘š +π‘šπ‘‘π‘§

2

𝐼π‘₯𝑦 = π‘₯𝑦 π‘‘π‘š +π‘šπ‘‘π‘₯𝑑𝑦

𝐼π‘₯𝑧 = π‘₯𝑧 π‘‘π‘š +π‘šπ‘‘π‘₯𝑑𝑧

𝐼𝑦𝑧 = 𝑦𝑧 π‘‘π‘š +π‘šπ‘‘π‘¦π‘‘π‘§

β€’ For a planar 2D object, the moment of inertia about an axis perpendicular to the plane is the sum of the moments of inertia of two perpendicular axes through the same point in the plane:

36

Perpendicular-Axis Theorem

π‘₯

𝑦𝑧

𝐼𝑧 = 𝐼π‘₯ + 𝐼𝑦for any planar object

π‘₯

𝑦𝑧

𝐼𝑧 = 2𝐼π‘₯ = 2𝐼𝑦for symmetrical objects

β€’ The inertia tensor is coordinate dependent.

β€’ If 𝑅 changes bases from body to world coordinate, the inertia tensor in world space is:

πΌπ‘€π‘œπ‘Ÿπ‘™π‘‘ = 𝑅 βˆ— πΌπ‘π‘œπ‘‘π‘¦ βˆ— 𝑅𝑇

37

Reference Frame

Rigid-Body Dynamics

β€’ The torque is a force F applied at a distance r from a (held) center of mass.

β€’ Tangential part causes tangential acceleration:

𝐹𝑑 = π‘š βˆ— π‘Žπ‘‘β€’ Multiplying by the distance, the torque is:

𝜏 = 𝐹𝑑 βˆ— π‘Ÿ = π‘š βˆ— π‘Žπ‘‘ βˆ— π‘Ÿ

β€’ We know that π‘Žπ‘‘ = π‘Ÿ βˆ— 𝛼

β€’ So we have 𝜏 = π‘š βˆ— π‘Ÿ βˆ— 𝛼 βˆ— π‘Ÿ = π‘š βˆ— π‘Ÿ2 βˆ— 𝛼‒ unit is 𝑁 βˆ— π‘šβ€’ rotates an object about its axis of rotation through the center of mass.

39

Torque

β€’ A force in general is not applied in the direction of the tangent.

β€’ The torque 𝜏 is then defined as: 𝜏 = π‘Ÿ Γ— 𝐹

β€’ The direction of the torque is perpendicular to both 𝐹 and π‘Ÿ.

40

Torque

β€’ The law 𝐹 = π‘š βˆ— π‘Ž has an equivalent with inertia tensor and torque:

𝜏 = 𝐼 𝛼

β€’ Force linear acceleration

β€’ Torque angular acceleration

41

Newton’s Second Law

β€’ Translating energy formulas to rotational motion.

β€’ The rotational kinetic energy is defined as:

πΈπΎπ‘Ÿ =1

2πœ”π‘‡ βˆ— 𝐼 βˆ— πœ”

42

Rotational Kinetic Energy

β€’ Adding rotational kinetic energy

𝐸𝐾𝑑 𝑑 + βˆ†π‘‘ + 𝐸𝑃 𝑑 + βˆ†π‘‘ + πΈπΎπ‘Ÿ 𝑑 + βˆ†π‘‘= 𝐸𝐾𝑑 𝑑 + 𝐸𝑃 𝑑 + πΈπΎπ‘Ÿ(𝑑) + 𝐸𝑂

β€’ 𝐸𝐾𝑑 is the translational kinetic energy.

β€’ 𝐸𝑃 is the potential energy.

β€’ πΈπΎπ‘Ÿ is the rotational kinetic energy.

β€’ 𝐸𝑂 the β€œlost” energies (surface friction, air resistance etc.).

43

Conservation of Mechanical Energy

Torque and Angular Momentum

β€’ Remember, in the linear case: 𝐹 =𝑑 𝑝

𝑑𝑑( 𝑝 is the linear momentum).

β€’ Similarly with torque and angular momentum:𝑑𝐿

𝑑𝑑=𝑑 π‘Ÿ

𝑑𝑑× 𝑝 + π‘Ÿ Γ—

𝑑 𝑝

𝑑𝑑= 𝑣 Γ— π‘š 𝑣 + π‘Ÿ Γ— 𝐹 = 0 + 𝜏

β€’ Force derivative of linear momentum.

β€’ Torque derivative of angular momentum.

β€’ We may apply off-center forces for a very short amount of time.

β€’ Such β€˜angular’ impulse results in a change in angular momentum, i.e.in angular velocity:

πœβˆ†π‘‘ = βˆ†πΏ

45

Impulse

β€’ A force can be applied anywhere on the object, producing also a rotational motion.

46

Rigid Body Forces

𝑭

π‘ͺ𝑢𝑴

𝒂

𝜢

β€’ Remember: the object moves linearly as the COM moves.

β€’ Rotation: the movement for all points relatively to the COM.

β€’ Total motion: sum of the two motions.

47

Position of An Object

𝑭

β€’ Most simple instance of a physics systemβ€’ Each object (body) is a particle

β€’ Each particle have forces acting upon itβ€’ Constant, e.g. gravity

β€’ Position dependent, e.g. force fields

β€’ Velocity dependent, e.g. drag forces

β€’ Event based, e.g. collision forces

β€’ Restrictive, e.g. joint constraint

β€’ So net force is a function 𝐹 π‘π‘œ, 𝑣, π‘Ž,π‘š, 𝑑, …

β€’ Discretization: e.g., 𝑉 𝑓 π‘ž π‘‘π‘š becomes a sum: 𝑖=1𝑛 𝑓 π‘žπ‘– π‘šπ‘–

48

Particle System

β€’ Use the equations of motion to find the position of each particle at each frame.

β€’ At the start of each frame:β€’ Sum up all of the forces for each particle.

β€’ From these forces compute the acceleration.

β€’ Integrate into velocity and position.

β€’ Rigid body: all particles receive the same rotation and translation.

49

Particle System

β€’ When an object consists of multiple primitive shapes:β€’ Calculate the individual inertia of each shape.β€’ Use parallel axis theorem to transform to inertia about an

axis through the COM of the object.β€’ Add the inertia matrices together.

50

Complex Objects

β€’ A rigid body may not be free to move β€˜on its own’.

β€’ We wish to constrain its movement:β€’ wheels on a chair

β€’ human body parts

β€’ trigger of a gun

β€’ opening door

β€’ actually almost anything you can think of in a game...

51

Motion Constraints

β€’ To describe how a body can move in space, specify its degrees of freedom (DOF):β€’ Translational

β€’ Rotational

52

Degree of freedom

β€’ A kinematic pair is a connection between two bodies that imposes constraints on their relative movementβ€’ Lower pair, constraint on a point, line or plane:

β€’ Revolute pair, or hinged joint: 1 rotational DOF.

β€’ Prismatic joint, or slider: 1 translational DOF.

β€’ Screw pair: 1 coordinated rotation/translation DOF.

β€’ Cylindrical pair: 1 translational + 1 rotational DOF.

β€’ Spherical pair, or ball-and-socket joint: 3 rotational DOF.

β€’ Planar pair: 3 translational DOF.

β€’ Higher pair, constraint on a curve or surface.

53

Kinematic pair