S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B...

Post on 13-Dec-2015

217 views 3 download

Tags:

transcript

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

1

1. Introduction

2. Theory survey

3. Charmed Pentaquark

4. Charmed Pentaquark from B decays

Physics of Pentaquarks

Su Houng LeeYonsei Univ., Korea

References: Y. Oh, H. Kim, Y. Kwon, S.H.Lee, : PRD, PLB’s S.H.Lee,k Y. Kwon : charmed pentaquark: in preparation

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

2

Mass= 1.54 GeV , width <25 MeV , quark content= uudds

1. LEPS coll., Nakano et.al. PRL 91 012002 (2003)

Introduction

)1520(

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

3

Verification

2. Verification by other group

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

4

4. NA49 hep-ex/0310014

found *(1862) in - - (ddss u) with width< 18 MeV

3. CLAS finds no ++ in K+ P invariant mass

+(udud s) belongs to anti-decuplet

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

5

I3

Y

ud

s3 8

(1232)

(1532)

(1673)

10

N ?

?

10

N(939)

(1190)

(1320)

Baryon Reprsentation

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

6

2. Could not confirm in subsequent experiments

CDF, ZEUS, FOCUS

1. H1 collaboration (Deep Inelastic scattering)

Heavy Pentaquarks (udud c)

c(3099) was found in D* p (uudd bar(c))

with width= 12+-3 MeV

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

7

Experimental summary

1. + controversial

mass 1540 MeV> KN threshold (1435 MeV)

2. c+ controversial

search was done with DN D*N final state (unbound)

> 2800 MeV +

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

8

Theory review

Soliton model + Quark model(biased and limited)

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

9

1. SU(3) soliton

2 4( ) ( )Kin Skyrme W ZL U L U L

†exp( ) 0( , ) ( ) ( )

0 1

where ( ) has 8 angles

i rU x t R t R t

R t

2. Quantizing the 8 angles, the Hamiltonian becomes

3 72 2

1 41 2

1 1ˆ ˆ' '2 2

RotA A

A A

H J JI I

10 8 8101 2

3 3,

2 2E E E E

I I

I=J Hedghog

Soliton model: original prediction (Diakanov, Petrov, Polyakov 97)

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

10

4. Diakanov Petrov Polyakov applied it to Anti decuplet

which predicted mass= 1540, width=30 MeV

8'2 3

cN BJ

1. only SU(3) representations containing Y=NcB/3+S= Nc /3 are allowed

2. moreover, the number of states 2I+1 at S=0 or Y= Nc/3 must determine the spin of the representation through 2J+1 because I=J in the SU(2) soliton

one spin state for given representation

3. With constraint coming from WZ term Y

3T

max

1 2

3 3Y p q

3cN

Y

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

11

1. Karlinear, Lipkin

diquark: C=3,F=3,S=0

triquark: C=3,F=6,S=1/2

Negative parity if all the quarks are in the lowest s-state

Positive parity if a relative p wave

But with this simple picture, it is not easy to understand small width

Quark models

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

12

2. Jaffe, Wilczek

Positive parity if a relative p wave

L=0, S=1/2 L=1 J=1/2 and 3/2 (higher mass)

color 3 3 3 1

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

13

But, a closer look revealed puzzles

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

14

1. Soliton picture is valid at large N_c:Semi-classical quantization is valid for slow rotation: ie. Valid for describing excitations of order 1/

N_c, so that it does not mix and breakdown with vibrational modes of order 1

2. Lowest representation SU(3)_f (p,q) at large N_cY

3T

max

1 2

3 3Y p q

3cN

Y

Quantization constraint requires max

2

3 3 3cNp q

Y

1. Octet

2. Decuplet

3. Anti decuplet

(lowest representation containing s=1)

1(1, )

2cN

3(3, )

2cN

3(0, )

2cN

3cN B

Y S

Naive Solition model should fail (T. Cohen)

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

15

3. Mass splitting in large N_c:

3 72 2

1 41 2

1 1ˆ ˆ' '2 2

RotA A

A A

H J JI I

1

10

82

8

0

1

3 1( ),

3(1)

4

2

c

c

NE E O

EN

I

E OI

Anit decuplet octet mass splitting is mixes with vibrational mode and inconsistent with original assumption and has undetermined correction of same order

Rotation is too fast and may couple to vibrational modes, which might be important to excite q qbar mode, hence describing anti decuplet state with naïve soliton quantization might be wrong

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

16

1. SU(2) soliton+ Kaon

2. Successful for hyperon (attractive (s qbar) ) but no pentaquark (repulsive q sbar) from WZ term

2 4( ) ( )Kin Skyrme W ZL U L U L

Bound state approach for SU(3) soliton

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

17

Summary of Solition approach for + (ududs)

1. SU(3) Soliton

Inconsistent application

2. Bound state approach

No bound +

Can not be applied to heavy pentaquark c(ududc)

predict a bound heavy pentaquark c(ududc)

ie. mass is smaller than DN continuum

Quark model also predict a bound heavy pentaquark c(ududc) but no light pentaquark +(ududs)

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

18

Color spin interaction quark model

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

19

1. In QCD q-q are also attractive if in color anti-triplet channel.

aq

aq

aq

bq

abc

Quark-antiquark, or Quark-Quark attaction in QCD

kiki

M SSmm

C

kiki

B SSmm

C

In perturbative QCD, 2CB=CM This term is called color spin interaction

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

20

Color spin interaction explains hadron spectrum

In perturbative QCD 3CB=CM = 635 MeV x ( mu )2

u u d

Nucleon

Color anti-triplet

Spin index sym s=1

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

21

Why there should be a heavy pentaquark

1. For Pentaquark L=0, S=1/2 L=1

color 3 3 3 1

2. If recombined into a D meson and Nucleon

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

22

Summary of Theory for Pentaquark

1. The only consistent Soliton approach predict only heavy pentaquark

2. Constituent quark model also predict only heavy pentaquark

may explain null result for light pentaquark

Could not observe heavy pentaqurk from DN finla state because it might be bound

Heavy pentaquark can only be observed from Weak decay

May be from B factory? But do we have sufficient data and can one conclude anything if one tries?

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

23

Anti-Charmed pentaquark from B decays

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

24

Can we understand Baryonic decay mode of B+

1. Baryonic decay mode

2. Can we explain it using Dominant hadronic decay mode

b c

W

u D

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

25

Baryonic decay mode of B+

1. Baryonic decay mode in hadronic language

Coupling ?Form factor?

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

26

Effective hadronic Lagrangian for heavy hadrons

Photo production of open charm, W.Liu, C.M.Ko, SHLee (03) NPA

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

27

Baryonic decay mode of B+

1. Baryonic decay mode in hadronic language

13.5MeV 750 ,

22

2

q

Obtain branching ratio of

experimental measurement

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

28

Pentaquark decay mode of B+

Using hadronic interactions as before, we find the branching ratio to be

Coupling=1

c

Dp

K

Branching ratio 0.092

Total events events 19)7.0)(092.0)(108.8)(10( 479

S-Y-05 S.H.LeeS-Y-05 S.H.Lee

29

SummarySummary

1.1. Theory predicts no stable light pentaquark, but bound heaTheory predicts no stable light pentaquark, but bound heavy pentaquark vy pentaquark

might explain present null results

2. Baryonic decay mode of B+ can be sensibly estimated wit previously determined hadronic parameters

3. With present B+ data, can measure c from

If found the first exotic ever, will tell us about QCD and dense matter color superconductivity