SAFE DRINKING WATER AND ADEQUATE -...

Post on 11-Dec-2018

224 views 0 download

transcript

SAFE DRINKING WATER AND ADEQUATE

SANITATION ARE CRUCIAL FOR POVERTY

REDUCTION, CRUCIAL FOR SUSTAINABLE

DEVELOPMENT AND CRUCIAL FOR ACHIEVING ANY

AND EVERY ONE OF THE MILLENNIUM

DEVELOPMENT GOALS.

OBJECTIVE01

TO EVALUATE NEW SOLUTIONS FOR THE BIOSAND FILTER

GEOMETRY AND THE OUTLET INSIDE THE FILTERS, USING

THE CFD TO SIMULATE THE FLOW IN THE MODELS:

HYDRAID, CAWST AND PEU/UEM.

PEU/UEM CAWST HYDRAID

METODOLOGY02

02

03

04

BUILDING AND OPERATING THE EXPERIMENTAL MODEL

• SUPPLY CRITERIA

• REMOVAL OF TOTAL COLIFORME AND E. COLI

• REMOVAL OF TURBIDITY AND PH

SIMULATION IN PERM. AND ITERM. REGIME• COMPARATION BETWEEN USUAL FILTER AND

ADOPTED OUTLET.

DETERMINATION OF RTD CURVE• RTD CURVE EXPERIMENTAL FILTER

• RTD CURVE NUMERICAL MODELS

CHOICE OF OUTLET• 4 DIFFERENT MODELS OF OUTLET FOR PEU/UEM

• MODELS SIMULATION.

• RESULT ANALYSIS

01

CHOICE OF OUTLET03

FOR THIS STUDY WE USED THE

PEU/UEM DESIGN.

SIMULATION OF FILTER

CONSIDERING AND NOT

CONSIDERING THE POROUS

LAYERS FOR THE FOUR OUTLET

MODELS

PEU/UEM

03.1 CHOICE OF OUTLETNOT CONSIDERING POROUS LAYERS - FLOWLINE

CENTRAL LATERAL BOTTOM WITH RING

03.2 CHOICE OF OUTLETCONSIDERING POROUS LAYERS - FLOWLINE

CENTRAL LATERAL BOTTOM WITH RING

03.2 CHOICE OF OUTLETCONSIDERING POROUS LAYERS – VELOCITY PROFILE

CENTRAL LATERAL BOTTOM WITH RING

CENTRAL LATERAL BOTTOM WITH RING

AXIS XZ[Y=0]

AXIS YZ[X=0]

03

.2

CENTRAL LATERAL BOTTOM WITH

RING

CENTRAL LATERAL BOTTOM WITH

RING

AXIS

XZ

AXIS

YZ

CHOICE OF OUTLETCONSIDERING POROUS LAYERS – VELOCITY PROFILE

04

04.1

0

10

20

30

40

50

60

70

80

90

100

0,0100 0,1000 1,0000 10,0000

D10%=0.23

D60%=0.40

PA

SS

ING

PE

RC

EN

TA

GE

(%)

GRAIN DIMMENSIONS (mm)

04.1

GRAIN SPECIFIC MASS (NBR 6508/84)

MAXIMUM VOID RATIO (NBR 12004/90)

D10%

D60%

ρ=2,75 (g/cm³)

emáx=44,22%

D10%=0,23 (mm)

D60%=0,40 (mm)

04.2SUPPLY CRITERIA

CONTINOUS

OPERATION

INTERMITTENT

OPERATION

SUPPLY 10L/DAY SUPPLY 10L/DAY

04.3BACTERIOLOGICAL REMOVAL

INDEX

REMOVAL IN CONTINUOUS

OPERATION

[log10]

REMOVAL IN INTERMMITENT OPERATION

[log10]

Filter A Filter B Filter C Filter D Filter E

avg max avg max avg max avg max avg max

Total

Coliformes1,12 2,58 0,88 2,00 0,83 1,67 0,79 1,84 1,01 2,26

E. coli 0,79 1,66 0,83 1,67 0,58 1,14 0,89 1,42 0,77 1,44

04.4TURBIDITY REMOVAL

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

0 10 20 30 40 50

Turb

idit

y (U

T)

Days

Filtro A Filtro B Filtro C Filtro D Filtro E Antes

04.5HEAD LOSS IN THE POROUS LAYERS

-

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0 10 20 30 40 50

i [m

/m]

Days

i1

i2

i3

i4

SIMULATION IN PERMANENT REGIME05

WE SIMULATED THE CAWST AND HYDRAID FILTERS IN

PERMANENT REGIME.

FOR EACH ONE WE USED:

• CONVENCIONAL MODEL

• MODEL WITH RING

CAWST HYDRAID

SIMULATION IN PERMANENT REGIME05.1CAWST FILTER– FLOW LINES

CONVENTIONAL WITH RING

05.1 SIMULATION IN PERMANENT REGIMECAWST FILTER – CUT YZ

CONVENTIONAL[Y=0cm]

WITH RING [Y=6cm]

05.1 SIMULATION IN PERMANENT REGIMECAWST FILTER – CUT XY [Z=1cm]

CONVENTIONAL WITH RING

05.2 SIMULATION IN PERMANENT REGIMEHYDRAID FILTER – FLOW LINES

CONVENTIONAL WITH RING

05.2 SIMULATION IN PERMANENT REGIMEHYDRAID FILTER – CUT YZ

CONVENTIONAL[Y=0cm]

WITH RING[Y=6cm]

05.2 SIMULATION IN PERMANENT REGIMEHYDRAID FILTER – CUT XY [Z=1cm]

CONVENTIONAL WITH RING

06

06.1

THREE SUPPLIES

IN THE 1st ADDITIONAL CONCENTRATION OF 2g/L OF NaCl.

06.1

(0,50)

-

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

NaC

lCO

NC

ENTR

ATI

ON

(g

/L)

FILTERED VOLUME (L)

FILLED FILTERS

A (Preenchido e Contínuo) B (Preenchido e Interm.)

1ST SUPPLY. 2ND SUPPLY 3RD SUPPLY

06.2

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0,000 0,500 1,000 1,500 2,000 2,500 3,000

E(θ

)

θ

CHARACTERISTIC VOLUME

Dead Volume 1,52%

Slug Volume 61,53%

Mixture Volume 36,95%

06.3

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00 160,00

PEU/UEM com anel - Empírico PEU/UEM com anel - COmputacional

06.4

0,000

1,000

2,000

3,000

4,000

5,000

6,000

0,000 0,500 1,000 1,500 2,000 2,500 3,000

E(θ

)

Dimensionless time θPEU UEM convencional HydrAid Conv PEU UEM anel

CAWST conv CAWST conv HydrAid anel

06.4

PEU/UEM convenc.

PEU/UEM ring

CAWST convenc.

CAWST ring

HydrAidconvenc.

HydrAidring

τ [min] 64,32 64,23 61,7 64,23 54,95 55,14

θmin 0,72 0,73 0,74 0,72 0,52 0,59

θmax 0,84 0,8 0,85 0,82 0,89 0,86

Dead volume 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Slug volume 78,13% 76,42% 79,42% 77,22% 70,37% 72,69%

Mixture volume 21,87% 23,58% 20,58% 22,78% 29,63% 27,31%

CONCLUSIONS07

• IN THE EVALUATION OF THE FOUR MODELS OF PEU/UEM

FILTER THE CENTRAL AND RING OUTLETS PRESENTED

BETTER RESULTS

• FOR THE CAWST AND HYDRAID FILTERS THE RING

OUTLET PRESENTED BETTER RESULTS REGARDING THE

FLOW LINES AND VELOCITY PROFILES.

• THE EXPERIMENTAL FILTER ASSISTED IN THE

COMPREHENSION AND DETERMINATION OF

MATHEMATIC PARAMETERS. THE TURBIDITY AND PH

PARAMETERS WERE IN ACCORDANCE WITH THE

BRAZILIAN POTABILIZATION NORMS.

• IN THIS STUDY ALL THE MATHEMATICAL SOLUTIONS

PRESENTED EQUIVALENCE FOR THE RTD CURVES.

FUTURE RECOMMENDATIONS08

• EMPIRICALLY EVALUATE THE POTABILIZATION

PARAMETERS IN THE VARIATIONS OF BIOSAND FILTERS

DESIGNS .

• ADD POTABILIZATION PARAMETERS IN THE VARIATIONS

OF MATHEMATIC MODELS.