SARS Mission:iiss o P Panelael Designes gi andadd ... · SEOSAR/PAZSOS // SARS Mission:iiss o P AA....

Post on 28-Aug-2018

213 views 0 download

transcript

/ i i/ i iSEOSAR/PAZ SAR Mission: PSEOSAR/PAZ SAR Mission: PS OS / S ss oS OS / S ss oA Zurita A Solana and thA. Zurita, A. Solana and th

(1) all authors are with EADS CASA E( ) all authors are with EADS CASA E

1 I t d ti1. Introduction

SEOSAR/PAZ is the first Spanish high resolution X Band Synthetic ApertureSEOSAR/PAZ is the first Spanish high resolution X‐Band Synthetic ApertureRadar. The entire system is being developed under control and supervision ofRadar. The entire system is being developed under control and supervision ofHisdesat, who is also responsible for satellite operation and data exploitation.EADS CASA Espacio is the Satellite prime contractor company leading a widei d t i l ti hil INTA i ibl f th G d S tindustrial consortium, while INTA is responsible for the Ground Segment.

System Parameters

Lifetime 5.5 years

Orbit 514 km, polar dawn‐dusk sunsynchronous

Revisit time 1 day

Imaging 420 s (max.), 3 min (avgerage) per orbit

Modes Stripmap, Scansar, Spotlight (single, dual, quad)

SAR antenna 12 active panels (0.7 x 4.8 m each)

Weight 1350 kg

Frequency 9.65 GHz (300 MHz bandwidth)

Downlink 300 Mbps X‐Band (encrypted)

Table 1‐1 System Parameters

2 Panel Design2. Panel Design

Instrument panel consists of:Instrument panel consists of: 32 Antenna Subarrays (H&V) 32 Transmit‐Receive Modules (TRM) l b k ( ) 1 Panel Distribution Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Supply Unit 1 Panel Supply Unit 1 Panel Control Unit

Antenna SubarrayFigure 2 1 Panel functional architecture

Each subarray contains 16 circular patches

Figure  2‐1 Panel functional architecture

Each subarray contains 16 circular patchesspaced 0.7 λ x 0.8 λ and fed via a multilayerp ystripline Beam Forming Network (H&V pol.).Measured losses achieved are < 1dB.

TR Modules

Figure  2‐2 Subarray in anechoic chamber

TRM performs the following functions: P lifi i d h Power amplification and phaseadjustment the TX signaladjustment the TX signal Amplification and phase adjustmentp p jof RX echo signals TX Power>37dBm Switching between H and V C li RX d TX i l f

RX Gain>28dBN i Fi <4 3 dB Coupling RX and TX signals for

calibration purposes

Noise Fig.<4.3 dB

Figure 2 3 TR Module

Panel Distribution/Calibration Networks

calibration purposes Figure  2‐3 TR Module

Panel Distribution/Calibration Networks Stripline Wilkinson dual power dividers 1:16 and 1:2 (double stacked) Stripline Wilkinson dual power dividers 1:16 and 1:2 (double‐stacked) Parallel feeding to minimize amplitude/phase errors Parallel feeding to minimize amplitude/phase errors

Figure 2 4 1:16 dual power divider

Panel Control Unit

Figure  2‐4 1:16 dual power dividerFigure  2‐5 PAZ panel model

Panel Control Unit Control of panel 32 TRM (phase & amplitude) datatake beam configurations Control of panel 32 TRM (phase & amplitude) datatake beam configurations TRM compensation: temperature, path offsets, biasing and parasitic effectsp p , p , g p

Panel Supply Unit Generation of 32 TRM secondary voltages

3 Panel Qualification3. Panel Qualification

Figure 3‐1 Qualification test campaign

Physical measurements: mass centre of gravity (z axis)

Figure  3 1 Qualification test campaign

Physical measurements: mass, centre of gravity (z‐axis) RF pre‐environmental test: subarrays amplitude/phase offsets, antennap y p /p ,model first validation Vibration: sine and random vibration (3 axis) Th l B l /Th l V Q lifi ti f th l t l t Thermal Balance/Thermal Vacuum: Qualification of thermal control systemand evaluation of electrical and functional performancesand evaluation of electrical and functional performances RF post‐environmental: Embedded subarray beam patterns verificationp y p

ESA E h Ob i S S h l 2010 ESRIN A 2010ESA Earth Observation Summer School 2010, ESRIN, August 2010                                                                             

l i d fl i d fPanel Design and PerformancePanel Design and Performancea e es g a d e o a cea e es g a d e o a cehe PAZ Team (1)he PAZ Team (1)

SPACIO Madrid SpainSPACIO, Madrid, Spain

4 Instrument Performance4. Instrument Performance

Antenna ModelAntenna ModelAn accurate knowledge of SAR radiation patterns is needed for precise on‐An accurate knowledge of SAR radiation patterns is needed for precise onground image processing and data products calibration. End‐to‐endg g p g pcalibration shall take minimum operation time minimizing performancedegradations and long re‐calibration periods.

Figure  4‐1 Panel functional architecture

Validation & Verificationg

Each performance parameter is verified by review of design, analysis or test ofa set of contributions. These contributions are addressed in a first

i i P l lifi i l lapproximation at Panel qualification level.Stripmap‐Single Performance RequirementsStripmap‐Single Performance Requirements

Parameter Value First results

Polarization HH, VV

ll f l ° ° Full performance angle range 20° ‐ 45°

Data collection angle range 15° ‐ 45° Data collection angle range 15 45

Azimuth resolution ≤ 3m

Range  resolution ≤ 3m

Swath ≥ 30 km

Swath 3 Swath 14

NESZ (worst case) ≤ ‐19 dB

Swath‐3 Swath‐14

‐19.5 dB ‐21.2 dB

RASR (worst case) ≤ ‐17 dB ‐37.1 dB ‐28.5 dB

AASR ≤ 17 dB 26 0 dB 25 9 dBAASR ≤ ‐17 dB ‐26.0 dB ‐25.9 dB

Radiometric stability ≤ 0.5 dB 0.20 dB 0.10 dBy

Relative radiometric accuracy ≤ 0.5 dB 0.31 dB 0.22 dB

Absolute radiometric accuracy ≤ 1 dB 0.57 dB 0.34 dB

Phase stability (50 sec window) ≤ 5 degrees 4 37 ± 0 48 degrees

Table  4‐1 SM‐S performance requirements

Phase stability (50 sec. window) ≤ 5 degrees 4.37 ± 0.48 degrees

p q

5. Conclusions5. Conclusions

Consolidated panel design to allow for full performance compliance ofcustomer requirements S t lib ti d t h t i ti t f t System calibration and accurate characterization measurements of antennapatterns and subsystems to validate on‐ground instrument performancespatterns and subsystems to validate on ground instrument performances

6. References

[1] F. Cerezo, M. Fernández, A. Borges, J. Sánchez‐Palma, J. Lomba, R. Trigo, J. Ureña, E. Vez,M López ‘The Spanish Earth Observation Programme’ Advanced RF Sensors and RemoteM. López, The Spanish Earth Observation Programme , Advanced RF Sensors and RemoteSensing Instruments 2009[2] F. Monjas Sanz, M. I. Martín‐Hervás, ‘Dual polarized subarray for Spaceborne SAR at X‐band’, EUCAP 2009band , EUCAP 2009[3] M. Labriola, J.M. Gonzalez Arbesu, J. Romeu, I. Calafell, J. Closa, P. Saameno, J. Sanchez, A.

‘ f ( )’Solana, ‘AMOR: an Antenna MOdeleR for the Spanish SAR Satellite (PAZ)’, Advanced RFSensors and Remote Sensing Instruments 2009, Noordwijk, November 2009Sensors and Remote Sensing Instruments 2009, Noordwijk, November 2009[4] P. Saameño, J. Closa, M. Labriola, J. Sánchez Palma, A. Solana, F. López Dekker, A.García

d ‘ d d h f dMondejar, A. Broquetas, ‘Radiometric Budget Characterization of X‐Band SAR Instrument On‐Board PAZ’, Advanced RF Sensors and Remote Sensing Instruments, 2009Board PAZ , Advanced RF Sensors and Remote Sensing Instruments, 2009

Alb Z i @ i d                                             Alberto.Zurita@astrium.eads.net