Second Derivative Test - Faculty Site Listing...Joseph Lee Second Derivative Test Point of In ection...

Post on 01-Jan-2020

0 views 0 download

transcript

Second Derivative Test

Joseph Lee

Metropolitan Community College

Joseph Lee Second Derivative Test

Concave Upward and Concave Downward

A function f is concave upward on an open interval (a, b) iff ′′(x) > 0 for every x in (a, b).

A function f is concave downward on (a, b) if f ′′(x) < 0 for everyx in (a, b).

Joseph Lee Second Derivative Test

Point of Inflection

A point of inflection is any point where the function switchesconcavity.

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) =

3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) =

6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 2

0 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x =

− 13

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 1.

Find any points of inflection and discuss the concavity of thefunction.

f (x) = x3 + x2 − 9x − 9

Solution.f ′(x) = 3x2 + 2x − 9

f ′′(x) = 6x + 20 = 6x + 2x = − 1

3

(−∞,−13) (−1

3 ,∞)

f ′′(x) < 0 f ′′(x) > 0

Concave downward on (−∞,−13)

Concave upward on (−13 ,∞)

Point of inflection at (−13 ,−

16027 )

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1

Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =

(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=

−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =

−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=

−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1

Joseph Lee Second Derivative Test

Example 2.

Find any points of inflection and discuss the concavity of thefunction.

g(x) =x

x2 − 1Solution.

g ′(x) =(x2 − 1)− x(2x)

(x2 − 1)2

=−x2 − 1

(x2 − 1)2

g ′′(x) =−2x(x2 − 1)2 + (x2 + 1)[2(x2 − 1)(2x)]

(x2 − 1)4

=−2x(x2 − 1) + 4x(x2 + 1)

(x2 − 1)3=

2x3 + 6x

(x2 − 1)3=

2x(x2 + 3)

(x2 − 1)3

Values where g ′′(x) = 0 or g ′′(x) undefined: −1, 0, 1Joseph Lee Second Derivative Test

Example 2. (continued)

Determine the open intervals on which the graph is concaveupward or concave downward.

g(x) =x

x2 − 1

Solution.

g ′′(x) =2x(x2 + 3)

(x2 − 1)3

(−∞,−1) (−1, 0) (0, 1) (1,∞)

g ′′(x) < 0 g ′′(x) > 0 g ′′(x) < 0 g ′′(x) > 0

Concave upward on (−1, 0) ∪ (1,∞)Concave downward on (−∞, 1) ∪ (0, 1)Point of inflection at (0, 0)

Joseph Lee Second Derivative Test

Example 2. (continued)

Determine the open intervals on which the graph is concaveupward or concave downward.

g(x) =x

x2 − 1

Solution.

g ′′(x) =2x(x2 + 3)

(x2 − 1)3

(−∞,−1) (−1, 0) (0, 1) (1,∞)

g ′′(x) < 0 g ′′(x) > 0 g ′′(x) < 0 g ′′(x) > 0

Concave upward on (−1, 0) ∪ (1,∞)Concave downward on (−∞, 1) ∪ (0, 1)Point of inflection at (0, 0)

Joseph Lee Second Derivative Test

Example 2. (continued)

Determine the open intervals on which the graph is concaveupward or concave downward.

g(x) =x

x2 − 1

Solution.

g ′′(x) =2x(x2 + 3)

(x2 − 1)3

(−∞,−1) (−1, 0) (0, 1) (1,∞)

g ′′(x) < 0 g ′′(x) > 0 g ′′(x) < 0 g ′′(x) > 0

Concave upward on (−1, 0) ∪ (1,∞)Concave downward on (−∞, 1) ∪ (0, 1)

Point of inflection at (0, 0)

Joseph Lee Second Derivative Test

Example 2. (continued)

Determine the open intervals on which the graph is concaveupward or concave downward.

g(x) =x

x2 − 1

Solution.

g ′′(x) =2x(x2 + 3)

(x2 − 1)3

(−∞,−1) (−1, 0) (0, 1) (1,∞)

g ′′(x) < 0 g ′′(x) > 0 g ′′(x) < 0 g ′′(x) > 0

Concave upward on (−1, 0) ∪ (1,∞)Concave downward on (−∞, 1) ∪ (0, 1)Point of inflection at (0, 0)

Joseph Lee Second Derivative Test

Second Derivative Test

Let c be a critical number of f .

If f ′′(c) > 0, then f has a relative minumum at c .

If f ′′(c) < 0, then f has a relative maximum at c .

If f ′′(c) = 0, then the Second Derivative Test is inconclusive.

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) =

− 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x =

− 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) =

− 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) =

− 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 3.

Use the second derivative test to identify any extrema.

f (x) = −x2 − 2x + 3

Solution.f ′(x) = − 2x − 2

0 = 2(x + 1)

x = − 1

f ′′(x) = − 2

f ′′(−1) = − 2

Relative maximum at (−1, 4)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) =

x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) =

1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =

2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 4.

Use the second derivative test to identify any extrema.

f (x) =x2 + 1

x

Solution.

f (x) = x +1

x

f ′(x) = 1− 1

x2

Critical numbers: −1, 1

f ′′(x) =2

x3

f ′′(−1) = −2f ′′(1) = 2

Relative maximum at (−1,−2)Relative minimum at (1, 2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) =

cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =

π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) =

− sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)=

−√

2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=

√2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test

Example 5.

Use the second derivative test to identify any extrema.

g(x) = sin x + cos x , 0 < x < 2π

Solution.g ′(x) = cos x − sin x

sin x = cos x

x =π

4,

4

g ′′(x) = − sin x − cos x

g ′′ (π4

)= −

√2

g ′′ (5π4

)=√

2

Relative maximum at(π4 ,√

2)

Relative minimum at(5π4 ,−√

2)

Joseph Lee Second Derivative Test