Section 3 Stability - College of Engineeringweb.engr.oregonstate.edu/~webbky/MAE4421_files/Section 3...

Post on 23-Mar-2020

10 views 5 download

transcript

MAE 4421 – Control of Aerospace & Mechanical Systems

SECTION 3: STABILITY

K. Webb MAE 4421

Introduction2

K. Webb MAE 4421

3

Stability

Consider the following 2nd‐order systems

and    

has two real poles:and    

has a complex‐conjugate pair of poles:

,

The step response of each system is:

K. Webb MAE 4421

4

Stability

Both step responses are a superposition of: Natural response (transient) Driven or  forced response (steady‐state)

1.5 2.5 1

cos 2 sin 2 1

In both cases, the natural response decays to zero as 

Natural Response Driven Response

K. Webb MAE 4421

5

Stability

Both step responses are characteristic of stable systems

K. Webb MAE 4421

6

Stability

Now, consider the following similar‐looking systems:

and    

has two real polesand    

has a complex‐conjugate pair of poles

,

The step responses of these systems are:

K. Webb MAE 4421

7

Stability

Again, step responses consist of a natural response component and a driven component

1.5 2.5 1

cos 2 sin 2 1

Now, as  , the natural responses do not decay to zero They blow up – why? Exponential terms are positive

Natural Response Driven Response

K. Webb MAE 4421

8

Stability

Step responses characteristic of unstable systems

K. Webb MAE 4421

9

Stability

Why are the exponential terms positive? Determined by the system poles

For the over‐damped system, the poles areand    

And, the step response is

For the under‐damped system, the poles are

,

The step response is

K. Webb MAE 4421

10

Stability and System Poles

Sign of the exponentials determined by  , the real part of the system poles

If  Pole is in the left half‐plane (LHP) Natural response  as  System is stable

If  Pole is in the right half‐plane (RHP) Natural response  as  System is unstable

K. Webb MAE 4421

11

Purely‐Imaginary Poles

LHP poles correspond to stable systems RHP poles correspond to unstable systems It seems that the imaginary axis is the boundary for stability

What if poles are on the imaginary axis? Consider the following system

Two purely‐imaginary poles

,

K. Webb MAE 4421

12

Marginal Stability

Step response for this undamped system is

Natural response neither decays to zero, nor grows without bound Oscillates indefinitely System is marginally stable

Natural Response Driven Response

K. Webb MAE 4421

13

Marginal Stability

Step response is characteristic of a marginally‐stablesystem

K. Webb MAE 4421

14

Repeated Imaginary Poles

We’ll look at one more interesting case before presenting a formal definition for stability

Consider the following system168 16

164

Repeated poles on the imaginary axis

, 2 and     , 2 The step response for this system is

cos 2 ⋅ sin 2 1

Natural Response Driven Response

K. Webb MAE 4421

15

Repeated Imaginary Poles

Multiplying time factor causes the natural response to grow without bound An unstable system Results from repeated poles

Multiple identical poles on the imaginary axis implies an unstable system

K. Webb MAE 4421

16

Repeated Imaginary Poles

Step response shows that the system is unstable

K. Webb MAE 4421

Definitions of Stability17

K. Webb MAE 4421

18

Definitions of Stability – Natural Response

We know that system response is the sum of a natural response and a driven response

Can define the categories of stability based on the natural response:

Stable A system is stable if its natural response → 0 as  → ∞

Unstable A system is unstable if its natural response → ∞ as  → ∞

Marginally Stable A system is marginally stable if its natural response neither decays nor grows, but remains constant or oscillates

K. Webb MAE 4421

19

BIBO Stability

Alternatively, we can define stability based on the total response

Bounded‐input, bounded‐output (BIBO) stability

Stable A system is stable if every bounded input yields a bounded output

Unstable A system is unstable if any bounded input yields an unbounded output

K. Webb MAE 4421

20

Closed‐Loop Poles and Stability

Stable A stable system has all of its closed‐loop poles in the left‐half plane

Unstable An unstable system has at least one pole in the right half‐plane and/or repeated poles on the imaginary axis

Marginally Stable A marginally‐stable system has non‐repeated poles on the imaginary axis and (possibly) poles in the left half‐plane

K. Webb MAE 4421

Determining System Stability21

K. Webb MAE 4421

22

Determining Stability

Stability determined by pole locations Poles determined by the characteristic polynomial, Δ

Factoring the characteristic polynomial will always tell us if a system is stable or not Easily done with a computer or calculator

Would like to be able to detect RHP poles without a computer Form of Δ may indicate RHP poles directly, or Routh‐Hurwitz Criterion

K. Webb MAE 4421

23

Stability from  Coefficients

A stable system has all poles in the LHP

⋯ Poles:  For all LHP poles,  0, ∀ Result is that all coefficients of Δ are positive

If any coefficient of Δ is negative, there is at least one RHP pole, and the system is unstable

If any coefficient of Δ is zero, the system is unstable or, at best, marginally stable

If all coefficients of Δ are positive, the system may be stable or may be unstable 

K. Webb MAE 4421

24

Routh‐Hurwitz Criterion

Need a method to detect RHP poles if all coefficients of  are positive:  Routh‐Hurwitz criterion

General procedure:1. Generate a Routh table using the characteristic 

polynomial of the closed‐loop system

2. Apply the Routh‐Hurwitz criterion to interpret the table and determine the number (not locations) of RHP poles

K. Webb MAE 4421

25

Routh‐Hurwitz – Utility 

Routh‐Hurwitz was very useful for determining stability in the days before computers Factoring polynomials by hand is difficult

Still useful for design, e.g.:

Stable for some range of gain,  , but unstable beyond that range

Routh‐Hurwitz allows us to determine that range

6 8

K. Webb MAE 4421

26

Routh Table

Consider a 4th‐order closed‐loop transfer function:

Routh table has one row for each power of  in  First row contains coefficients of even powers of  (odd if the order of Δ is odd)

Second row contains coefficients of odd (even) powers of  Fill in zeros if needed – if even order

0

K. Webb MAE 4421

27

Routh Table

Remaining table entries calculated using entries from two preceding rows as follows:

0

000 0

00 0

00 0

000 0

00 0

K. Webb MAE 4421

28

Routh Table – Example

Consider the following feedback system

The closed‐loop transfer function is5000

20 124 5240

The first two rows of the Routh table are

1 124201 5240262

Note that we can simplify by scaling an entire row by any factor

K. Webb MAE 4421

29

Routh Table – Example

Calculate the remaining table entries:

1 124

201 5240262

1 1241 262

1 1381 01 01 0

1 262138 0

138 2621 0138 01 0

How do we interpret this table? Routh‐Hurwitz criterion

K. Webb MAE 4421

30

Routh‐Hurwitz Criterion

Routh‐Hurwitz Criterion The number of poles in the RHP is equal to the number of sign changes in the first column of the Routh table

Apply this criterion to our example:1 1241 262138 0

262 0

Two sign changes in the first column indicate two RHP poles system is unstable

K. Webb MAE 4421

31

Routh‐Hurwitz – Stability Requirements

Consider the same system, where controller gain is left as a parameter

Closed‐loop transfer function:100

20 124 240 100

Plant itself is stable Presumably there is some range of gain,  , for which the closed‐loop system is also stable

Use Routh‐Hurwitz to determine this range

K. Webb MAE 4421

32

Routh‐Hurwitz – Stability Requirements

10020 124 240 100

Create the Routh table

1 124

201 240 100 12 5

1 1241 12 5

1 112 51 01 01 0

1 12 5112 5 0

112 5 12 51 0138 01 0

K. Webb MAE 4421

33

Routh‐Hurwitz – Stability Requirements

Since  0, only the third element in the first column can be negative

Stable for 112 5 0

22.4 Unstable (two RHP poles) for

112 5 022.4

1 1241 12 5112 5 012 5 0

K. Webb MAE 4421

34

Routh Table – Special Cases

Two special cases can arise when creating a Routh table:1. A zero in only the first column of a row Divide‐by‐zero problem when forming the next row

2. An entire row of zeros Indicates the presence of pairs of poles that are mirrored 

about the imaginary axis

We’ll next look at methods for dealing with each of these scenarios

K. Webb MAE 4421

35

Routh Table – Zero in the First Column

If a zero appears in the first column1. Replace the zero with 2. Complete the Routh table as usual3. Take the limit as  → 04. Evaluate the sign of the first‐column entries

For example:10

3 2 6 6 9

First two rows in the Routh table:

1 2 631 62 93

K. Webb MAE 4421

36

First‐Column Zero – Example 

Replace the first‐column zero with  and proceed as usual

1 2 61 2 3

1 21 21 0

1 61 31 3

1 01 01 0

1 23 2 3

1 30 3

1 00 0

32 3 32 3 3

32 3

02 3 02 3 0

02 3 02 3 0

Continuing on the next page …

K. Webb MAE 4421

37

First‐Column Zero – Example 

1 2 61 2 3

3 02 3 3 0

33

2 30 0

2 3 3

3 32 3 0

3 32 3

3

2 3 0

3 32 3 0

3 32 3

0

2 3 0

3 32 3 0

3 32 3

0

Next, take the limit as  → 0

K. Webb MAE 4421

38

First‐Column Zero – Example 

11

2 3

33

2 3

3

Taking the limit as  → 0 and looking at the first column:

110

0

3

Two sign changes Two RHP poles System is unstable

lim→

K. Webb MAE 4421

39

Routh Table – Row of Zeros

A whole row of zeros indicates the presence of pairs of poles that are mirrored about the imaginary axis: 

At best, the system is marginally stable Use a Routh table to determine if it is unstable

K. Webb MAE 4421

40

Routh Table – Row of Zeros

If an entire row of zeros appears in a Routh table1. Create an auxiliary polynomial from the row above 

the row of zeros, skipping every other power of 

2. Differentiate the auxiliary polynomial w.r.t. 

3. Replace the zero row with the coefficients of the resulting polynomial

4. Complete the Routh table as usual

5. Evaluate the sign of the first‐column entries

K. Webb MAE 4421

41

Row of Zeros – Example 

Consider the following system

15 11 23 28 12

The first few rows of the Routh table:

1 11 285 23 12

1 115 235 6.41

1 285 125 25.64

1 05 05 0

5 231 41 31

5 121 01 124

5 01 01 0

Continuing on the next page …

K. Webb MAE 4421

42

Row of Zeros – Example 

A row of zeros has appeared Create an auxiliary polynomial from the  row

4 Differentiate

2

Replace the  row with the  / coefficients 

1 11 285 23 121 4 01 4 0

1 41 41 0

1 41 41 0

5 01 01 0

K. Webb MAE 4421

43

Row of Zeros – Example 

2

Replacing the  row with the coefficients of 

1 11 285 23 121 4 01 4 002 0 0

1 42 02 4

1 02 02 0

1 02 02 0

No sign changes, so RHP poles, but Row of zeros indicates that system is marginally stable

K. Webb MAE 4421

44

Stability Evaluation – Summary

If coefficients of  have different signs System is unstable

If some coefficients of  are zero System is, at best, marginally stable

If all  coefficients have the same sign System may be stable or unstable Generate a Routh table and apply Routh‐Hurwitz criterion Replace any zero first‐column entries with  and let take the limit as  → 0

Replace a row of zeros with coefficients from the derivative of the auxiliary polynomial If no RHP poles are detected, the system is marginally stable