Seminar 32 Intermediate HVAC Controls for Smart Grid...

Post on 27-May-2020

5 views 0 download

transcript

2016 Annual Conference

St. Louis, Missouri

Donald J. ChmielewskiAssociate Professor

Illinois Institute of Technologychmielewski@iit.edu

Seminar 32 – Intermediate HVAC Controls for Smart Grid Applications

Smart Grid Coordination in Building HVAC Systems: Computational Efficiency of Constrained ELOC

Department of Chemical and Biological Engineering

Illinois Institute of Technology

Session Learning Objectives

1. Learn how EMPC can be used to coordinate building HVAC systems with dynamic electricity prices, and why EMPC with thermal energy storage requires a large prediction horizon to yield desired performance

2. Characterize buildings and heating systems in terms of ability for load shifting, and learn about strategies of rule based, predictive and optimal control

3. Understand the role of frequency regulation ancillary service in power grid operation, and the basic infrastructure setup necessary to provide frequency regulation with HVAC equipment

4. Learn about the practical control and operational considerations when retrofitting chillers to provide frequency regulation, and list factors to consider to gauge economic feasibility

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will

be addressed at the conclusion of this presentation.

3

Acknowledgements

Former Students:Benjamin Omell (PhD, 2013) Nation Energy Technology LabDavid Mendoza-Serrano (PhD, 2013) NalcoMing-Wei Yang (PhD, 2010) Taiwan ElectricJui-Kun Peng (PhD, 2004) Argonne National LabAmit Manthanwar (MS, 2003) Texas A&M University

Current PhD Students:Oluwasanmi Adeodu Jin Zhang

Funding:National Science Foundation (CBET-0967906 & CBET-1511925)Wanger Institute for Sustainable Engineering Research (IIT)

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

Generators with Dispatch Consumer DemandTransmission

Renewable Sources

Energy Storage

Smart Homes

Commercial Buildings

Smart Manufacturing

Motivation

A Dispatch Problem for Generators

6

Dispatch Capable

Generation Power Grid

Smart Grid Electric Power Network:

Demand

(Consumers)

Renewable

Generation

Responsive

Demand Energy Storage

Existing

Components

Expected

Future

Components

0 5 10 15 20

0

200

400

600

800

time (days)

Po

wer

Req

uir

ed f

rom

Dis

pa

tch

ab

le G

ener

ato

rs

(MW

)

Baseline

Baseline with Renewable Power

0 5 10 15 20

0

200

400

600

800

time (days)

Baseline with Renewable Power

Impact of Storage and DR

Incentive for Smart Grid Coordination

7

Operate systems to exploit these time-varying electricity prices.

170 171 172 173 174 175 176 177 178 179 180

0

50

100

150

Day of the Year

Ele

ctr

icit

y P

ric

e

($/M

Wh

r)

Historic electricity prices (Chicago, 2008), [PJM, 2013]

Building HVAC Example

8

Heat from

BuildingBuilding

Heat from

Environment

Power

Consumption Chiller

Houston, TX (July, 2012)

Solid – Outside Temperature Dotted – Electricity Price

Building HVAC Example

9

Heat from

BuildingBuilding

Heat from

Environment

Power

Consumption Chiller

Heat to

TES

Thermal

Energy Storage

Heat to

Chiller

23 24 25 26

200

300

400

500

600

Chiller Cooling Load (Qc)

Time (days)

Hea

t F

low

(K

We)

Qc

Qr

23 24 25 26

2000

4000

6000

Time (days)

Hea

t F

low

(K

We)

Heat to Chiller Heat from Room

Thermal Energy Storage

Building HVAC Example

10

Heat from

BuildingBuilding

Heat from

Environment

Power

Consumption Chiller

Heat to

TES

Thermal

Energy Storage

Heat to

Chiller

Heat from

BuildingBuilding

Heat from

Environment

Power

Consumption Chiller

Heat to

TES

Thermal Energy Storage

Heat to

Chiller

23 24 25 26

200

300

400

500

600

Chiller Cooling Load (Qc)

Time (days)

Hea

t F

low

(K

We)

Qc

Qr

23 24 25 26

200

300

400

500

600

Chiller Cooling Load (Qc)

Time (days)

Hea

t F

low

(K

We)

Qc

Qr

23 24 25 26

2000

4000

6000

Time (days)

Hea

t F

low

(K

We)

Heat to Chiller Heat from Room

23 24 25 26

2000

4000

6000

Time (days)

Hea

t F

low

(K

We)

Heat to Chiller Heat from Room

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

Model Predictive Control

iii

ik

ikikikik

ikikikik

Ni

ik

ikikikms

ss

Niikqqq

pmshq

pmsfsts

pmslikik

|

max|

min

||||

||||1

1

|||,

1

),,(

),,(..

),,(min||

At time the current time, i, optimize over model prediction:

Then, the manipulated variable is set as:*

|iii mm

12

),,(1 iiii pmsfs

imis

Process to be Controlled

???

Controller

1

|||,

),,(min||

Ni

ik

ikikikms

pmsgikik

Traditional vs. Economic MPC

13

In traditional MPC the objective is minimize deviations:

1

||||,

)()()()(min||

Ni

ik

ikT

ikikT

ikms

mmRmmssQssikik

In Economic MPC (EMPC) the objective is minimize expenditures:

See Rawlings et al. (2012) or Ellis et al. (2014) for additional information on EMPC

Outside

Environment

(T3)

...

Windows

...

Walls

To T3T21T12 T11T11To To

...

Outside

Environment

(T3)

Room

Room

Room

Room

Room

Room

5 State Building Example

14

1

|,|,|,

minNi

ik

ikcikeP

Pcikc

opo

scooo

VC

QQTTAKTTAKT

0

2122111111 )()(

111

121112111111

)()(

xC

TTKTTKT

p

o

111

12111212

)(2

xC

TTKT

p

222

21212132221

)()(

xC

TTKTTKT

p

o

ss QE

Economic Objective:

Houston, TX (July, 2012)

EMPC Simulation

15

Solid – EMPC with TES Dotted – EMPC without TES

EMPC Simulation with Smaller Storage

16

Solid – EMPC with TES Dotted – EMPC without TES

At time the current time, i, optimize over model prediction:

Predicting Future Disturbances

iii

ik

ikikikik

ikikikik

Ni

ik

ikikikms

ss

Niikqqq

pmshq

pmsfsts

pmslikik

|

max|

min

||||

||||1

1

|||,

1

),,(

),,(..

),,(min||

Need forecasts of ikp ik for |

17

if Full Future Information (FFI) is not assumed

Disturbance Forecasting

18

Zero Future Information (ZFI) Forecasts

Assume this the present time

Disturbance Forecasting Model

19

Impact of Forecasting Model

20

4th order model

3rd order model

Incorporating a High Fidelity Forecast Model

21

Pseudo Future Measurement

Impact of High Fidelity Forecast Data

22

Pseudo Future Information (PFI) Forecasts

Impact of Forecasting on EMPC

23

All cases for 1.5 MWh of storage over 28 days and with EMPC horizon of 24h

Controller ExpenditurePercent

Reduction

EMPC (FFI) No TES $759 ---

EMPC (FFI) $521 31.4%

EMPC (ZFI) $556 26.7%

EMPC (PFI) $539 29.0%

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

Prediction Horizon

25

24 hours

Model Predictive Control

iii

ik

ikikikik

ikikikik

Ni

ik

ikikikms

ss

Niikqqq

pmshq

pmsfsts

pmslikik

|

max|

min

||||

||||1

1

|||,

1

),,(

),,(..

),,(min||

At time the current time, i, optimize over model prediction:

26

),,(1 iiii pmsfs

imis

Process to be Controlled

???

Controller

Smaller horizon, N, will reduce computational effort!

3 4 5 6

-1500

-1000

-500

0

Time (days)

En

erg

y i

n

Sto

rag

e (k

WT

hr)

Impact of Horizon Size on EMPC

27

Solid – 24 hr horizon Dotted – 2 hr horizon

3 4 5 6

0

200

400

Time (days)

Hea

t to

C

hil

ler

(kW

T)

28

Controller ExpenditurePercent

Reduction

Computational

Effort (sec)

EMPC (FFI) with No TES $827 --- 13

EMPC (ZFI) N = 24 hrs $575 30.5% 13

EMPC (ZFI) N = 2 hrs $673 18.6% 7

Impact of Horizon Size on EMPC

All cases for 1.5 MWh of storage over 28 days

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

Economic Linear Optimal Control (ELOC)

Steady-State

Operating

Line

Steady-State

Operating

Line

Optimal Steady-State

Operating Point

Expected

Dynamic

Operating

Region

Steady-State

Operating

Line

Optimal Steady-State

Operating Point

Minimally

Baked-off

Operating

Point

Expected

Dynamic

Operating

Regions

Steady-State

Operating

Line

Optimal Steady-State

Operating Point

30

Different Controller

Tuning Values

Expected

Dynamic

Operating

Regions

Steady-State

Operating

Line

Optimal Steady-State

Operating Point

Minimally

Baked-off

Operating

Point

Different Controller

Tuning Values

Expected

Dynamic

Operating

Regions

Steady-State

Operating

Line

Optimal Steady-State

Operating Point

ssx

mmu

xLu

ii

ii

iELOCi

Comparison of EMPC and ELOC

31

3 4 5 6

10

20

30

40

Time (days)

E

lect

rici

ty

O

uts

ide

P

rice

T

emp

eratu

re

($/M

Wh

r)

(

°C)

T3

Ce

3 4 5 6-400

0

400

800

Time (days)

Hea

t to

C

hil

ler

(kW

T)

ELOC EMPC

3 4 5 6

-2000

0

2000

Time (days)

En

ergy i

n

Sto

rage

(kW

hr T

)

ELOC EMPC

Disturbances Simulated by Forecast Model

Both with ZFI

Comparison of EMPC and ELOC

3 4 5 6

10

20

30

40

Time (days)

Ele

ctr

icit

y

O

uts

ide

P

ric

e

Tem

pera

ture

(

$/M

Wh

r)

C)

T3

Ce

3 4 5 6

-400

0

400

Time (days)

Hea

t to

C

hil

ler

(kW

T)

ELOC EMPC

32

Disturbances taken from Historic Data

Both with ZFI

3 4 5 6

-4000

-2000

0

Time (days)

En

erg

y i

n

Sto

rag

e (k

Wh

r T)

ELOC EMPC

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

iii

ikikik

iNi

T

iNi

Ni

ik

ik

T

ikik

T

ikux

xx

BuAxx

tsPxxRuuQxxikik

|

|||1

||

1

||||,

..)(min||

34

iLQRi xLu

Predictive Form of ELOC

iii

ikikik

iNiELOC

T

iNi

Ni

ik

ikELOC

T

ikikELOC

T

ikux

xx

BuAxx

tsxPxuRuxQxikik

|

|||1

||

1

||||,

..)(min||

iELOCi xLu

* see Chmielewski & Manthanwar (2004) for details

Linear Quadratic Regulator

Predictive Form of ELOC Constrained ELOC

35

max

|

min

|||

zzz

uDxDz

ik

ikuikxik

iii

ikikik

iNiELOC

T

iNi

Ni

ik

ikELOC

T

ikikELOC

T

ikux

xx

BuAxx

tsxPxuRuxQxikik

|

|||1

||

1

||||,

..)(min||

Comparison of EMPC and Constrained ELOC

3 4 5 6

10

20

30

40

Time (days)

Ele

ctr

icit

y

O

uts

ide

P

ric

e

Tem

pera

ture

(

$/M

Wh

r)

C)

T3

Ce

36

Disturbances taken from Historic Data

Both with ZFI

3 4 5 6

0

400

Time (days)

Hea

t to

C

hil

ler

(kW

T)

CELOC EMPC

3 4 5 6

-1500

-1000

-500

0

500

Time (days)

En

erg

y i

n

Sto

rag

e (k

Wh

r T)

CELOC EMPC

Outline/Agenda

• Motivation and Background

• Review of Economic Model Predictive Control (EMPC)

• Impact of Horizon Size on EMPC

• Economic Linear Optimal Control (ELOC)

• Constrained ELOC

• Impact of Horizon Size on Constrained ELOC

Constrained ELOC and Horizon Size

3 4 5 6

10

20

30

40

Time (days)

Ele

ctr

icit

y

O

uts

ide

P

ric

e

Tem

pera

ture

(

$/M

Wh

r)

C)

T3

Ce

38

Disturbances taken from Historic Data

Both with ZFI

3 4 5 6

0

400

Time (days)

Hea

t to

C

hil

ler

(kW

T)

CELOC, N=2 CELOC, N=24

3 4 5 6

-1500

-1000

-500

0

500

Time (days)

En

ergy i

n

Sto

rage

(kW

hr T

)

CELOC, N=2 CELOC, N=24

39

Controller ExpenditurePercent

Reduction

Computational

Effort (sec)

EMPC (FFI) with No TES $827 --- 13

EMPC (FFI) N = 24 hrs $520 37.1% 13

EMPC (ZFI) N = 24 hrs $575 30.5% 13

EMPC (ZFI) N = 2 hrs $673 18.6% 7

Constrained ELOC (ZFI) N = 24 hrs $567 31.4% 13

Constrained ELOC (ZFI) N = 2 hrs $552 33.3% 7

All cases for 1.5 MWh of storage over 28 days

Impact of Horizon Size on Constrained ELOC

Why Does Constrained ELOC Work?

40

iii

ikikik

iNiELOC

T

iNi

Ni

ik

ikELOC

T

ikikELOC

T

ikux

xx

BuAxx

tsxPxuRuxQxikik

|

|||1

||

1

||||,

..)(min||

max

|

min

|||

zzz

uDxDz

ik

ikuikxik

Conclusions

• EMPC with TES can reduce building HVAC expenditures significantly if under dynamic electricity prices.

• EMPC requires a large prediction horizon.

• Constrained ELOC approximates EMPC, but can use a smaller prediction horizon size.

• Disturbance model is central to Constrained ELOC.

Bibliography• D. J. Chmielewski (2014) "Special Section - Energy: Smart Grid: The Basics — What? Why? Who? How?," Chem.

Eng. Prog., vol. 110 (8), August Issue, pp. 28-34.• D. J. Chmielewski and A. M. Manthanwar (2004) "On the tuning of predictive controllers: Inverse optimality and

the minimum variance covariance constrained control problem," Ind. Eng. Chem. Res., vol. 43, pp. 7807-7814.• M. Ellis, H. Durand, and P. D. Christofides (2014) "A tutorial review of economic model predictive control

methods," J. Proc. Contr., vol. 24, pp. 1156-1178.• Ercot (2012) Historic real time data electricity prices for Houston texas. http://www.ercot.com/mktinfo/prices/• R. M. Lima, I. E. Grossmann, and Y. Jiao (2011) "Long-term scheduling of a single-unit multi-product continuous

process to manufacture high performance glass," Comp. Chem. Eng., vol. 35, pp. 554-574.• D. I. Mendoza-Serrano and D. J. Chmielewski (2012) "HVAC control using infinite-horizon economic MPC," in Proc.

of 51st IEEE Conf. Dec. Cont., Hawaii.• D. I Mendoza-Serrano and D. J Chmielewski (2014) "Smart grid coordination in building HVAC systems: EMPC and

the impact of forecasting," J. Proc. Contr., vol. 24, no. 8, pp. 1301-1310.• D. I Mendoza-Serrano and D. J Chmielewski (2015) “Smart grid coordination in building HVAC systems:

Computational efficiency of constrained economic linear optimal control” Science and Technology for the Built Environment vol. 21(6), pp 812-823

• (NCDC) National climatic data center. (2012) Hourly climate data for Houston Texas. http://www.ncdc.noaa.gov/oa/climate/climatedata.html

• B. P. Omell and D. J. Chmielewski (2013) "IGCC power plant dispatch using infinite-horizon economic model predictive control," Ind. Eng. Chem. Res., vol. 52, no. 9, pp. 3151-3164.

• J. K. Peng, A. M. Manthanwar, and D. J. Chmielewski (2005) "On the tuning of predictive controllers: The minimally backed-off operating point selection problem," Ind. Eng. Chem. Res., vol. 44, pp. 7814-7822.

• J. B. Rawlings, D. Angeli, and C. N. Bates (2012) "Fundamentals of economic model predictive control," in Proc. Of 51st IEEE Conf. Dec. Cont., Hawaii.

Questions?

Donald J. Chmielewski

chmielewski@iit.edu

ELOC Optimization Problem

Primal Problem (SDP solver)

Master Problem (BARON)

Master Problem

Primal Problem

44

0)(

)(

0)(

)(

))((

..

)(min

2

minmax

cos.

,,,,,,

XYDXD

YDXD

XBYAX

BYAXGGX

diagsqrt

qqqq

mDsDqpGmBsAsts

qg

T

ux

uxz

T

T

w

z

zz

ux

top

YXqms

zz

Generalized Benders Decomposition

1YXLELOC