Signal- und Power-Integrität (SPI) von Digitalen Systemen von Digitalen Systemen... · Signal- und...

Post on 26-Apr-2020

2 views 0 download

transcript

Signal- und Power-Integrität (SPI) von Digitalen Systemen

Institut für Theoretische Elektrotechnik

A. Vogt, H.-D. Brüns, C. Schuster

ERNI Kongress 2012, Uhingen, 11.11.12

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

2

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

3

Power Plane Ground Plane

PCB

Driver Via

Receiver

A Possible Electrical Integrity Issue

http://www.tet.tu-harburg.de

4

Signal Integrity Issues: Attenuation, Reflection, Dispersion

A Possible Electrical Integrity Issue

http://www.tet.tu-harburg.de

5

Power Integrity Issues: Switching Noise, Crosstalk

A Possible Electrical Integrity Issue

http://www.tet.tu-harburg.de

6

EMC Issues: Near Field Coupling, Radiation Coupling

A Possible Electrical Integrity Issue

http://www.tet.tu-harburg.de

7

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

8

Problems of Power Delivery

Ideal:

• Both ICs see the same voltage U0 between their power

and ground terminals

• Independent of time and switching

IC #1 IC #2

U0

http://www.tet.tu-harburg.de

9

Problems of Power Delivery

Real world:

• Finite source impedance ZPDN

• First approximation: series RL

IC #1 IC #2

U0

ZPDN

http://www.tet.tu-harburg.de

10

Problems of Power Delivery

With only one IC active there is a voltage drop across ZPDN!

U0

R uIC L

iGate1, iGate2, …

Du

uIC = U0 - Du

http://www.tet.tu-harburg.de

11

The goal of power integrity is to ensure an acceptable quality

of power delivery within the system, i.e. the design of an

adequate power delivery network (PDN).

This includes:

low "resistance"

low "inductance"

hierarchical decoupling

sufficient decoupling

Power Integrity

http://www.tet.tu-harburg.de

12

PDN

Impedance

Frequency

Target

System

Based on the simple example from before:

The Concept of Decoupling

) largefor (

PDN

Lj

LjRZ

(R = 0.7

mW,

L = 40 nH)

R L

U0 ~ ZIC ( f )

http://www.tet.tu-harburg.de

13

… we ask what a so called "decoupling" or "bypass"

capacitor might do:

The Concept of Decoupling

) largefor (1

1 2PDN

Cj

LCRCj

LjRZ

R L

U0 ~ ZIC ( f ) C

R = 0.7 mW

L = 40 nH

C = 1 mF

http://www.tet.tu-harburg.de

14

The Concept of Decoupling

W m57)( 0PDN Z

R = 0.7 mW

L = 40 nH

C = 1 mF

R = 10 mW

L = 40 nH

C = 1 mF

http://www.tet.tu-harburg.de

15

Heuristic explanation:

Frequency domain:

Beyond resonance frequency: the IC sees only the

impedance of the capacitor.

Time domain:

The capacitor is like a "small battery".

The Concept of Decoupling

R L

U0 ~ ZIC ( f ) C

http://www.tet.tu-harburg.de

16

Ideal world: … and real world:

R is also is called the EQUIVALENT SERIES RESISTANCE

(ESR) and L the EQUIVALENT SERIES INDUCTANCE (ESL).

The Concept of Decoupling

C R L C

LC/10

C

http://www.tet.tu-harburg.de

17

Power/Ground Planes

http://www.tet.tu-harburg.de

18

Power/Ground Planes

Example:

11 inch

11 inch

10 mil Dielectric

Filling (er = 4)

VRM

IC

(1 inch = 2.54 cm,

1 mil = 0.001 inch)

nF11r0pp d

AC ee

Power Ground

http://www.tet.tu-harburg.de

19

Inductive Capacitive

Power/Ground Planes

Input (PDN) impedance

from before (VRM + 10

decaps)

Input (PDN)

impedance

including P/G

plane

capacitance

http://www.tet.tu-harburg.de

20

Power/Ground Planes

Operation usually above the first resonance frequency…

Distributed behavior!

IC

(VRM removed –

just the planes

present)

Distributed Behavior!

http://www.tet.tu-harburg.de

21

Discretization for Contour Integral Method (CIM)

Full-wave discretization CIM discretization

http://www.tet.tu-harburg.de

22

y

xz

y

x

z

Further Information

http://www.tet.tu-harburg.de

23

IEEE Transactions on EMC 2010

Study Case

Relative dielectric permittivity εr 4.2

Relative permeability μr 1.0

Loss tangent tanδ 0.02

Plane conductivity κ (S/m) 5.8e+7

Plane thickness (mil) 1.2

Via diameter (mil) 10

Via pad diameter (mil) 20

Via keepout/antipad (mil) 36

Board dimension in inch

Observation ports

0,0

12,11

8,2

5,10

0,11

0,2

15,8

12,0 15,0

14,6

8.02,9

8.02,2

8,9

X. Duan, R. Rimolo-Donadio, H-D. Brüns, B. Archambeault, C. Schuster, “Special Session on

Power Integrity Techniques: Contour Integral Method for Rapid Computation of

Power/Ground Plane Impedance” , DesignCon 2010, Santa Clara

http://www.tet.tu-harburg.de

24

1

2

Comparison to Full-Wave Simulation

The dielectric thickness is 10 mil.

0.1 1 10 100 100010

-3

10-2

10-1

100

101

102

Imp

ed

an

ce

(M

ag

nitu

de

) [ W

]

Frequency [MHz]

Z11 CIM

Z11 full-wave

Z12 CIM

Z12 full-wave

http://www.tet.tu-harburg.de

25

Comparison to Measurement

The dielectric thickness is 10 mil.

0.1 1 10 100 1000-60

-40

-20

0

20

40

Frequency [MHz]

Inp

ut

Imp

ed

an

ce Z

11

(M

ag

nit

ud

e)

[dB

W]

no decaps measured

no decaps CIM

20 decaps measured

20 decaps CIM

0.1 1 10 100 1000

-60

-40

-20

0

20

40

Frequency [MHz]T

ran

sfer

Imp

ed

an

ce Z

12

(M

ag

nit

ud

e)

[dB

W]

no decaps measured

no decaps CIM

20 decaps measured

20 decaps CIM

http://www.tet.tu-harburg.de

26

Electric Field Distribution @ 190MHz

Port 1 excited by 1 Watt power and port 2 terminated with 50 Ω

The dielectric thickness is 10 mil.

Full-wave CIM

http://www.tet.tu-harburg.de

27

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

28

Signal Integrity

The goal of signal integrity is to insure an acceptable quality of

signals within the system.

This includes:

high transmission

low reflection

low crosstalk

low losses

(low power consumption)

Signal to

Noise Ratio

Frequency

Target

System

http://www.tet.tu-harburg.de

29

Effects on Signal Integrity

The ideal interconnect will simply delay the signal:

Any real interconnect will additionally change timing and

amplitude:

t

Tx Rx

t

Tx Rx

http://www.tet.tu-harburg.de

30

Effects on Signal Integrity

The deviations in timing and amplitude are in general called:

t

Timing jitter or simply: JITTER

Amplitude noise or simply: NOISE

http://www.tet.tu-harburg.de

31

More precise definitions of jitter and noise use the EYE

DIAGRAM. For such a diagram the received bit stream is

partioned in bit periods:

and the individual

partitions overlayed

on top of each other:

Eye Diagrams

t

t

BT

Eye

Opening

http://www.tet.tu-harburg.de

32

Besides S-parameters and

step response eye diagrams

are another useful method

to analyze transmission

characteristics:

Eye Diagrams

Tx

Rx

Tx

Rx

http://www.tet.tu-harburg.de

33

Further Information

http://www.tet.tu-harburg.de

34

IEEE SPI 2012

Common Interconnect Problems

Insufficient

Shielding

Discontinuities

IC (Transmitter)

IC (Receiver)

Impedance

Mismatch

Insufficient Termination

We have seen that a realistic interconnect for digital signals

can suffer from many problems:

Insufficient Line Pitch and Width

http://www.tet.tu-harburg.de

35

SI Problems Inside the Motherboard

• Layer-layer inter-

connects: VIAs

• Striplines

Both „radiate“

Cross-talk

http://www.tet.tu-harburg.de

36

Parallel plane modes are excited whenever a current is flowing on

a via that crosses the cavity (either signal or power/ground via):

via currents

parallel plane modes

The Physics of Vias

http://www.tet.tu-harburg.de

37

Picture © TET, TUHH

Picture © IBM

Via Cross Section

Zp

Zpp

Zp

viu

vil

iiu

iil

v'il

i'iu

i'il

vi

l

l

u

u

i

ipp

i

i

i

vZ

i

v

10

1

u

u

uu

u

i

i

pi

i

i

v

Zi

v

1/1

01

'

'

l

l

ll

l

i

i

pi

i

i

v

Zi

v

'

'

1/1

01Via

Plane

Plane Cp

Cp

Zpp:

(Parallel Plate

Impedance)

Current

The Model for Vias

http://www.tet.tu-harburg.de

38

Picture © IBM

Decoupling capacitor model

Cavity

representation

Cavities joined by

segmentation

techniques

R. Rimolo-Donadio et al., “Physics-based via and trace models for efficient link simulation on multilayer structures

up to 40 GHz", IEEE Trans. Microw. Theory and Techn., vol. 57, no. 8, p.p. 2072-2083, August 2009.

Zpp Ztl

Decap

Linterc.

Zpp Ztl

Decap

Linterc.

Decap

Linterc.

Cavity

representation

Stacking the Deck

S-Parameter

Matrix

Port 1 Port n

http://www.tet.tu-harburg.de

39

Further Information

http://www.tet.tu-harburg.de

40

IEEE EMC Zürich 2008

MLSS – Multi-Layer Substrate Simulator

• Simulation tool for signal and power integrity issues.

http://www.tet.tu-harburg.de

41

6 Vias, 4 traces case

Centered striplines at

two levels, and thru vias

in a 6 cavity stackup

Full-wave model

Mag

nit

ude

of

S1

2 [

dB

]

Frequency [GHz]

Model

FEM simulation

FIT simulation Full-wave model M

agnit

ude

of

S1

4 [

dB

]

Frequency [GHz]

Model

FEM simulation

FIT simulation

Comparison with Full-Wave Results

http://www.tet.tu-harburg.de

42

• 119 vias (76 signal,

43 ground)

• 14 differential

striplines (2D)

• 6 cavities

• Terminations

Comp. time: < 3 min

Assumption

of infinite

plates

Comparison with Full-Wave Results

http://www.tet.tu-harburg.de

43 Pictures © TET, TUHH

Picture © IBM

Comparison with Measurements

Models capture the salient features of the

hardware response despite the drastic

model simplification

|S13| [dB] - FEXT |S12| [dB] - IL

Link 10 -

S3 Stripline

Link 17 - S5

Stripline

Link 10 -

S3 Stripline

Link 17 - S5

Stripline

Measurement Link 10

Measurement Link 17

Model Link 10

Model Link 17

http://www.tet.tu-harburg.de

44

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

45

Electromagnetic Compatibility

The goal of electromagnetic compatibility is to insure

acceptable levels of electromagnetic interference (EMI) of the

system with the outside.

This includes:

EMI source control

return current control

proper shielding

proper filtering

proper SI and PI

EMI

Frequency

Target

System

http://www.tet.tu-harburg.de

46

Sources of EMC Problems Digital Systems

Picture © TET, TUHH

Backplane

Dau

gh

terc

ard

• Switching Noise, ICs

• Cavity resonances

• Interconnects

• Differential to Common-

mode conversion

http://www.tet.tu-harburg.de

47

Picture © TET, TUHH

Length mismatch Asymmetrical

ground pins

Via fields

Bends

Crosstalk

Impedance

discontinuity

There is no Truly Differential Signal

http://www.tet.tu-harburg.de

48

Further Information

http://www.tet.tu-harburg.de

49

IEEE EMC Symposium 2009

Development of the MoM Code CONCEPT-II

Full-wave solver suite based on the Method of Moments

Windows

http://www.tet.tu-harburg.de

50

Linux

Radiation due to Cavity Resonances

• PCB: height << other dimensions

→ TM-modes

→ CIM

http://www.tet.tu-harburg.de

51

• Radiated fields expressed with magnetic surface current

• CIM: no electric currents (PMC)

→ no radiation

• MoM: magnetic currents as

excitation

→ electric fields

Radiation due to Cavity Resonances

http://www.tet.tu-harburg.de

52

• External ports with both MoM and CIM

Coupling to the Outside World

http://www.tet.tu-harburg.de

53

Multi-Step Approach

• Interaction of a PCB with PEC scatterers

• Excited by a dipole generator in the center (1mW) of the

power plane pair

• PCB calculated with CIM, 3D interaction calculated with

MoM

http://www.tet.tu-harburg.de

54

x

z

y

Excitation: 1mV

0.3 mm d

5 cm

Region for field plots

The virtual plane

for the MoM step

Multi-Step Approach – Electric Field

http://www.tet.tu-harburg.de

55

Multi-Step Approach – Comparison to Full-Wave MoM

• Good correlation (outside the PCB)

• Significant speed-up:

– Full-wave MoM: 80 s/freq

– CIM/MoM: 15 s/freq

http://www.tet.tu-harburg.de

56

Multi-Step Approach – Backscattering

• Induced noise voltage insignificant (less than 1%)

http://www.tet.tu-harburg.de

57

0 1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

2

2.5

3

3.5

Frequency [GHz]

Induced n

ois

e v

olta

ge a

t in

put port

[

V]

d = 2cm

d = 1cm

d = 0.5cm

d = 0.2cm

x

z

y

Excitation: 1mV

0.3 mm

d 5 cm

Further Information

http://www.tet.tu-harburg.de

58

IEEE EMC Europe 2012

Problem: Huge systems

• Reduce number of

unknowns

• Approximate Models

Roadmap

http://www.tet.tu-harburg.de

59

Overview

1. Introduction

2. Power Integrity

3. Signal Integrity

4. Electromagnetic Compatibility

5. Outlook

http://www.tet.tu-harburg.de

60

Goals of SI, PI, and EMC

The basic goals of EMC, SI, and PI for an electrical system

are complementary to each other.

PI: insure acceptable quality

of power delivery within

SI: insure acceptable quality of

signals within

EMC: insure acceptable level

of interference with the outside

EMI

Frequency

Target

System

Frequency

SNR

Frequency

Target System

http://www.tet.tu-harburg.de

61

PDS

Impedance

Target

System

Electrical Integrity

http://www.tet.tu-harburg.de

62

Picture © TET, TUHH

Thank you for your attention!

Alexander Vogt Institut für Theoretische Elektrotechnik

Technische Universität Hamburg-Harburg

Harburger Schloßstr. 20

21079 Hamburg, Germany

alexander.vogt@tuhh.de

http://www.tet.tu-harburg.de

63