Simulation im Bereich der Windenergie ein Überblick · Customer Feedback in ANSYS Composite...

Post on 11-Apr-2018

233 views 5 download

transcript

Simulation im Bereich der Windenergie –

ein Überblick

Dipl.-Ing. (FH) Nathalie Mattwich, CADFEM GmbH

Dipl.-Phys. oec Stephan Hecht, ANSYS Germany GmbH

Agenda

Uhrzeit Thema Referent

16:00 – 16:30 Simulation im Bereich der

Windenergie – ein Überblick

N. Mattwich, CADFEM

S. Hecht, ANSYS

16:30 – 17:00 Wirbelstromverlust- und

Temperaturberechnung für einen

permanenterregten

Windkraftgenerator

N. Götschmann, Lloyd

Dynamowerke GmbH & Co.

KG

17:00 – 17:30 Integrierte Gesamtsimulation von

Offshore Windenergieanlagen

D. Kaufer, Universität

Stuttgart

17:30 – 18:00 Windkraftanlagen mit Vertikalachse –

Entwicklung und Optimierung mit CFD

B. Hanna, CFD Consultants

GmbH

- 1 / 22 -

Clearly a System

Full of Innovation

Dynamic Operating

Conditions

High Cost of Failure

Medium sized and

relatively young

companies

ANSYS Simulation Software

- 2 / 22 -

From Single Part to System Simulation

• Structural Mechanics

• Fluid Dynamics

• Thermal Analysis

• Electromagnetics

Single Physics on Component Level

• Multiphysics

• Automated Load Transfer

• Direct and Sequential coupling Coupled Physics on

Component Level

• Power Electronics

• Control Loops

• Coupled Physics

• Reduced ModelsSystem

Simulation

ANSYS Simulation Software

- 3 / 22 -

Structural Analysis

Fatigue analysis

Component Level

Non-linear

stability analysis

Non-linear

material and

contact modelling

Composite

modeling

Courtesy of SKF

GmbH

- 4 / 22 -

Challenges in Composite Structural

Laminate & Sandwich

Free form surface from aerodynamics

Multiple material systems involved

Complex layup with huge amount of plies

Arbitrary fiber orientation

Ply and sandwich failure

Component Level

- 5 / 22 -

Customer Feedback in ANSYS Composite PrepPost

Component Level

- 6 / 22 -

Fatigue Assessment using ANSYS nCode Designlife

Integration into the Workbench environment

Load channel information and material data is passed from Mechanical to nCode

Component Level

- 7 / 22 -

Typical nCode Workflow

Fatigue Assessment using ANSYS nCode Designlife

Component Level

- 8 / 22 -

Wind Turbine Positioning

Tower Crane

dimensioning

Transportation of Spar

Truss on Heavy Lift

Vessel

Advanced Modeling of

soil structure - strength

driven problems in rock

and soil (stability, failure)

Courtesy of Liebherr, Ehingen

Courtesy of Technip Offshore Finland

Component Level

- 9 / 22 -

Challenges

Designing substructure under

combined loads of wind, current,

and waves

Proving compliance with

established codes

Benefits of CAE

Gaining a clear understanding of all

loads experienced by substructure

Including coupling to Flex5 standard

tools

Built-in code checking

Photo © Tore Johannesen.

Offshore Turbines

Component Level

- 10 / 22 -

Acoustic Simulation

Hydro-Acoustic Simulation of a

Hydraulic MENCK Hammer

Reduce of gear box and brake noises

Noise emission between blade and

tower

Component Level

- 11 / 22 -

Fluid Dynamics

Component Level

Site Selection

Aerodynamic

analysis

of a wind turbine

blade

Cooling analysis

of an electric maschine

Courtesy of GAMESA

- 12 / 22 -

Aerodynamic Blade Design

Challenges

Design of 2D profiles 3D blades

Advanced turbulence modeling:

Flow separations

Laminar to turbulent transition

Roughness effects

Tip vortices

Scale resolving simulation (LES, SAS …)

Interaction with upstream turbines

Design studies & optimization

Photo © José Luis Gutiérrez, graphic courtesy of IMPSA S.A., Argentina

Component Level

- 13 / 22 -

Nacelle / Tower Base Cooling

Challenges

Ensure effective cooling under all

environmental conditions

Complex geometries & many details

Many parameters:

Fan positions & number

Positions of electrical devices

Outside temperature &

incoming sun radiation Benefits of simulations

Virtual prototyping of different cooling

solutions

Less trial & error

Reduce thermal peak loads on

generator, gear, transformer, etc.

Pre-identify “problem” regionsCourtesy of GAMESA

Component Level

- 14 / 22 -

Wind Park Design & Site Selection

Challenges

Steep terrain, mountains, forests

Predict wind behavior & turbulences

Varying wind directions and speeds

Benefits of simulations

Power estimates

Optimize turbine placement

Wind speed & turbulence prediction

over complex terrain

Component Level

- 15 / 22 -

Example: Wind Farm & Multiple Wakes

Wind speed at hub height, wind direction 210º

Without wind turbines With wind turbines

Component Level

- 16 / 22 -

Simulation of a

rotating electrical

machines

Electromagentic

analysis of a sensor

Electromagnetic Analysis

Automated and efficient

machine design

workflow

Component Level

Electromagentic

analysis of cables

- 17 / 22 -

Improvement of efficiency

of el. Machines

Smaller stray magnetic field

Better area guidance

Less Loss

Less iron loss

Less copper loss

Less Eddy currents

High quality material

Component Level

- 18 / 22 -

ANSYS Simulation Software

Coupled Field Analysis

on Component Level

Structural deformation of

a coil due to magnetic

and thermal loads

Temperatures in a

stator of an electric

machine

- 19 / 22 -

ANSYS Workbench R13 Interface

Maxwell

B-Field, Losses

Ansys Thermal

Temperature

EM Loss

Temperature

ANSYS Simulation Software

- 20 / 22 -

Power ElectronicsTurbine Blades Gear Box Electric

Generator

System Simulation

of an Entire Wind Turbine

Mechanical Solution

Electrical Solution

ANSYS Simulation Software

Reduced Order ModelsSystem

Response

- 21 / 22 -

Conclusion

Analysis of wind energy system is multi-

level

Require: in-depth analysis of single

components

Wind energy system is multi-domain

Interactions between subsystems of

different physical domain, electrical,

mechanical, thermal, fluid dynamic…

Analysis of system interactions

- 22 / 22 -