Six LECTURES ABOUT (ADVANCED) STATISTICAL...

Post on 23-Apr-2020

2 views 0 download

transcript

LECTURES ABOUT

(ADVANCED) STATISTICAL

PHYSICS

T.S.Biró, MTA Wigner Research Centre for Physics, Budapest

Lectures given at: University of Johannesburg, South-Africa,

November 26 – November 29, 2012.

1. Ancient Thermodynamics (… - 1870)

2. The Rise of Statistical Physics (1890 – 1920)

3. Modern (postwar) Problems (1940 – 1980)

4. Corrections (1950 – 2005)

5. Generalizations (1960 – 2010)

6. High Energy Physics (1950 – 2010)

2

LECTURE THREE ABOUT

(ADVANCED) STATISTICAL

PHYSICS

T.S.Biró, MTA Wigner Research Centre for Physics, Budapest

Lectures given at: University of Johannesburg, South-Africa,

November 28, 2012.

GENERALIZATIONS

o Composition Rules

o Associative Limit

o Zeroth-Law Compatibility

o Universal Thermostat Independence

4

Entropy formulas

• 𝑆 = 𝑙𝑛 𝑁!

𝑁𝑖!𝑖 Boltzmann (permutation)

• 𝑆 = − 𝑃𝑖 𝑙𝑛 𝑃𝑖 Gibbs (Planck)

• 𝑆 = 11−𝑞ln 𝑃𝑖

𝑞 Rényi

• 𝑆 = 1𝑞−1 ( 𝑃𝑖 − 𝑃𝑖

𝑞) Tsallis (Chravda, Aczél, Daróczy,…)

There are (much) more !

Canonical distribution with Rényi entropy

1q

1

i

)S(Li

iq

i

1q

i

iii

q

i

q

)EE()q1(1

e

1p

Ep

pq

q1

1

maxEppplnq1

1

This cut power-law distribution is an excellent fit to particle spectra in high-energy experiments!

Canonical distribution with Tsallis entropy

1

1

1

1

)1(

1

1

1

1

max)(1

1

qiq

i

i

q

i

iiii

q

i

q

EqZp

Eq

pqq

Eppppq

This cut power-law distribution is an excellent fit to particle spectra in high-energy experiments!

Why to use the Tsallis / Rényi entropy formulas?

• It generalizes the Boltzmann-Gibbs-Shannon formula

• It treats statistical entanglement between subsystem and reservoir (due to conservation)

• It claims to be universal (applicable for whatever material quality of the reservoir)

• It leads to a cut power-law energy distribution in the canonical treatment

Why not to use the Tsallis / Rényi entropy formulas?

• They lack 300 years of classical thermodynamic foundation

• Tsallis is not additive, Rényi is not linear

• There is an extra parameter q (mysterious?)

• How do different q systems equilibrate ?

• Why this and not any other ?

• It looks pretty much formal…

Again the Zeroth Law: (E1,…)=(E2,…)

2

2

12

1

12

1

1

12

2

12

2

2

12

1

1

12

12

2

2

12

1

1

12

12

SS

S

E

ES

S

S

E

E

0dEE

EdE

E

EdE

0dEE

SdE

E

SdS

Factorization = ? 10

The temperature for non-additive composition rules

const.)E,E(C

)E,E(C

)S,S(H

)S,S(H

SCBAHGFSCBAHGF

)E(SE

E

S

S)E(S

E

E

S

S

2121

2112

2121

2112

212212112121121221

22

1

12

2

12

11

2

12

1

12

11

The temperature for non-additive composition rules

222

22

11

11

1

22

22

22

22

22

11

11

11

11

11

2121

2112

2121

2112

T

1

)E(L

)S(L

)E(L

)S(L

T

1

)E(S)E(A

)E(B

)S(G

)S(F)E(S

)E(A

)E(B

)S(G

)S(F

1const.)E,E(C

)E,E(C

)S,S(H

)S,S(H

12

Generalized absolute temperature

dE)E(B

)E(A)E(L

dS)S(G

)S(F)S(L

)E(L

)S(L

T

1

13

Admissible composition rules

)S(L)S(L)S(L

)LL(S

SL

SL

SSF

GS

SF

G

HSSFG

1S

SFG

1H

22111212

2112

12

2

12

1

12

22

2

12

11

1

2112

221

12

112

12

14

Admissible composition rules

)E(L)E(L)E(L

)LL(E

EL

EL

EEA

BE

EA

B

CEEAB

1E

SAB

1C

22111212

2112

12

2

12

1

12

22

2

12

11

1

2112

221

12

112

12

15

Example: Tsallis entropy

Sa1lna

1)S(L

)Sa1()Sa1()Sa1(

SSaSSS

2112

212112

16

Heterogeneous equilibrium

1Sa1Sa1a

1S

Sa1lna

1Sa1ln

a

1Sa1ln

a

1

212112 aa

22

aa

11

12

12

22

2

11

1

1212

12

17

Tsallis - Nauenberg dispute

Nonextensive thermodynamics: a summary

i iiiii

21122112

maxw)E(Lww)S(L

)E(L

)S(L

T

1

)E(L)E(L)E(L)S(L)S(L)S(L

Non-additive: Tsallis - Entropy

a/1

i

eq

i

Rényii

a1

i

ii

a1

iTsallis

)E(a1Z

1w

Swlna

1)S(L

wwa

1S

Power law factorizes Energy is non-additive

212112

a/1

2

a/1

1

a/1

12

a/1eq

EEˆaEEE

Eˆa1Eˆa1Eˆa1

Eˆa1Z

1w

Abstract Composition Rules

)y,x(hyx

EPL 84: 56003, 2008

Repeated Composition, large-N

Scaling law for large-N

)0,x(hdy

dx :N

)0,x(hyxx

)0,x(h)y,x(hxx

yy,0x),y,x(hx

2

1n2n1nn

1nn1n1nn

N

1nn0n1nn

Formal Logarithm

)yy(x

),y(xx),y(xx

)x(L)x(LL)x,x(

)x(Ly

21

2211

21

1

21

x

0 )0,z(h

dz

2

Asymptotic rules are associative and attractors among all rules…

Asymptotic rules are associative

).),,((

))()()((

))()(()(

)))()((,()),(,(

1

11

1

zyx

zLyLxLL

zLyLLLxLL

zLyLLxzyx

Associative rules are asymptotic

),(),(

)0(

)(

)0(

)()(

)(

)0(

))0,((

)0()0,(

)()(

)()()),((

0

2

yxhyx

xdz

zxL

xxhxh

yyhh

yxyxh

x

Scaled Formal Logarithm

xxL

axLa

xL

axLa

xL

LL

a

a

)(

)(1

)(

)(1

)(

0)0(,1)0(

0

11

Deformed logarithm

)(ln)/1(ln

))(ln()(ln 1

xx

xLx

aa

aa

Deformed exponential

)()(/1

))(exp()(

xexe

xLxe

aa

aa

Formal composition

rules

Differentiable rules

Asymptotic rules

Associative rules

Formal Logarithm

1. General rules repeated infinitely asymptotic rules

2. Asymptotic rules are associative

3. Associative rules are self-asymptotic

4. For all associative rules there is a formal logarithm mapping it onto

the simple addition

5. It can be obtained by scaling the general rule applied for small

amounts

Examples for composition rules

Example: Gibbs-Boltzmann

WlnkSW/1ffor

flnfS

)E(eZ

1f

x)x(L

1)0,x(h,yx)y,x(h

eq

2

Example: Rényi, Tsallis

ényi Rln1

1)(

Tsallis )(1

)1(1

),1ln(1

)(

1)0,(,),(

11

/

2

q

nona

aqa

non

a

eqa

fq

SL

ffa

S

aEZ

faxa

xL

axxhaxyyxyxh

Example: Einstein

),(),(

)tanh()(

)tanh(Ar)(

1)0,(

1),(

1

22

2

2

yxhyx

c

zczL

c

xcxL

cxxh

cxy

yxyxh

c

c

Example: Non associative

yxyx

zazL

a

xxL

axh

yx

xyayxyxh

c

c

),(

)1()(

1)(

1)0,(

),(

1

2

Important example: product class

axyyxyx

a

ezL

axa

xL

axxGxh

xyGyxyxh

az

c

c

),(

1)(

)1ln(1

)(

1)0(1)0,(

)(),(

1

2

Important example: product class

axyyxyx

a

ezL

axa

xL

axxGxh

xyGyxyxh

az

c

c

),(

1)(

)1ln(1

)(

1)0(1)0,(

)(),(

1

2

Relativistic energy composition

)cos1(EE2Q

)EE()pp(Q

)Q(UEE)E,E(h

21

2

2

21

2

21

2

2

2121

( high-energy limit: mass ≈ 0 )

Asymptotic rule for m=0

)0(U2/

eq

2

E)0(U21Z

1f

xy)0(U2yx)y,x(

)0(Ux21)0,x(h

Physics background:

rdQ

d

r

1

dQ

d)0(U

0Q

2

0Q

2

2

2

q > 1

q < 1

α

Derivation as improved canonical

• Derivation:

– Microcanonical entropy maximum for two

– Reservoir-independent temperature: the best one can

– Which composition rule leads to higher order agreement (cannot be the simple addition)

– Make the choice of the additive L(S) universal separation constant = 1 / heat capacity

– Result: L(S) is Tsallis entropy, S is Rényi entropy

Derivation: formulas

• 𝑆 = − 𝑃𝑖 ln 𝑃𝑖 →𝑖 𝐿 𝑆 = 𝑃𝑖 L(−ln𝑃𝑖)𝑖

• 𝐿 𝑆 𝐸1 + 𝐿 𝑆 𝐸 − 𝐸1 = 𝑚𝑎𝑥.

• 𝛽1 = 𝐿′ 𝑆(𝐸1) ∙ 𝑆

′ 𝐸1

= 𝐿′ 𝑆 𝐸 − 𝐸1 ∙ 𝑆′ 𝐸 − 𝐸1

Taylor: 𝑆 𝐸 − 𝐸1 = 𝑆 𝐸 − 𝐸1𝑆′ 𝐸 +⋯

Derivation: formulas

𝛽1 = 𝐿′ 𝑆(𝐸) ∙ 𝑆′ 𝐸

− 𝐸1 𝑆′(𝐸)2𝐿′′ 𝑆 𝐸 + 𝑆′′ 𝐸 𝐿′(𝑆 𝐸 )

The content of the square bracket be zero!

Derivation: formulas

𝛽 = 𝐿′ 𝑆(𝐸) ∙ 𝑆′ 𝐸

and the content of the bracket [ ] is zero:

𝐿′′(𝑆)

𝐿′(𝑆)= −𝑆′′ 𝐸

𝑆′ 𝐸 2 = 1

𝐶(𝐸)

Universal Thermostat Independence:

𝑳′′(𝑺)

𝑳′(𝑺)= 𝒂

Derivation: formulas

The solution is:

𝐿 𝑆 =𝑒𝑎𝑆 − 1

𝑎

This generates

𝑳 −𝒍𝒏 𝑷𝒊 = 𝟏

𝒂 𝑷𝒊−𝒂 − 𝟏

Derivation: Tsallis entropy

The canonical principle becomes:

𝟏𝒂 𝑷𝒊𝟏−𝒂 −𝑷𝒊 − 𝜷 𝑷𝒊 𝑬𝒊 − 𝜶 𝑷𝒊 = 𝒎𝒂𝒙.

The entropy with q = 1-a

𝑺𝑻𝒔𝒂𝒍𝒍𝒊𝒔 = 𝟏

𝒒 − 𝟏 (𝑷𝒊 − 𝑷𝒊

𝒒 )

Derivation: Rényi entropy

The Rényi entropy is the original one,

but the Tsallis entropy is to be maximized canonically

𝑺𝑹é𝒏𝒚𝒊 = 𝑳−𝟏( 𝑺𝑻𝒔𝒂𝒍𝒍𝒊𝒔 ) =

𝟏

𝟏 − 𝒒 𝒍𝒏 𝑷𝒊

𝒒

Improved Canonical Distribution

• 𝑃𝑖 = 𝑍1−𝑞 + 1 − 𝑞

𝛽

𝑞 𝐸𝑖

1

𝑞−1

• Expressed by the reservoir’s physical parameters via using our results:

• 𝑃𝑖 = 1

𝑍1 +

𝑍−1/𝐶

𝐶−1 𝑒𝑆/𝐶 1

𝑇 𝐸𝑖

−𝐶

Check infinite C limit!

Improved Logarithmic Slope

•1

𝜏= −

𝑑

𝑑𝐸𝑖 𝑙𝑛 𝑃𝑖 = 𝑇0 +

1

𝐶 𝐸𝑖

• Quark coalescence:

𝐶𝑚𝑒𝑠𝑜𝑛= 2 𝐶𝑞𝑢𝑎𝑟𝑘

𝐶𝑏𝑎𝑟𝑦𝑜𝑛= 3 𝐶𝑞𝑢𝑎𝑟𝑘

• 𝑇0 = 𝑇𝑒−𝑆/𝐶 𝑍1/𝐶 1 − 1 𝐶

Check infinite C limit!

Infinite heat capacity limit

• 𝑃𝑖 → 1

𝑍 𝑒−𝐸𝑖/𝑇𝑓𝑖𝑡 with

• 𝑻𝒇𝒊𝒕 = 𝟏

𝜷 = 𝑻 𝐥𝐢𝐦

𝑪→∞ 𝒆−𝑺/𝑪

Finite subsystem corrections to infinite heat capacity limit

• 𝑇1 = 𝑇 1

1+1 ∙ 𝐸1𝐶𝑇 + ⋯

traditional S-expansion

• 𝑇1 = 𝑇𝑒−𝑆/𝐶

𝑒𝑆(𝐸1)/𝐶

1+0 ∙ 𝐸1𝐶𝑇 +𝛼 ∙

𝐸12

𝐶2𝑇2 + ⋯ Our expression

Traditional: T1 < T, falling in E1; Ours: T1 < T, but rising in E1 !

Gaussian approximation

• Deviations from S=max equilibrium are traditionally considered as Gaussian:

• P ∆𝐸 = 𝑒𝑆 𝐸1 +𝑆 𝐸−𝐸1−∆𝐸 ≈

𝑒−𝑆′ 𝐸−𝐸1 ∆𝐸+

1

2 𝑆"(𝐸−𝐸1) ∆𝐸

2 ≈

∝ 𝑒−1

𝑇 ∆𝐸−

1

2𝐶𝑇2 ∆𝐸2

Gaussian approximation

• After Legendre transformation also fluctuates as Gaussian:

• P ∆𝛽 ∝ 𝑒

− 𝐶𝑇2

2∆𝛽2 + ⋯

• Thermodynamic ”uncertainty” minimal

Gaussian approximation and beyond

Beta fluctuation Particle spectra :

log lin

1 / T

𝒆−𝜷𝝎

C T

Boltzmann-Gibbs

Gauss

Euler

Euler

Gauss

Boltzmann-Gibbs

Summary figure

1 / E

1 / C

BG

Summary figure

1 / E

1 / C

BG

Physical point, found

Linear scaling: extensive

Summary figure

1 / E

1 / C

1-q

BG

Physical point, found by fitting q

to the best averages

Linear scaling: extensive

Tsallis formula

Summary figure

1 / E

1 / C

1-q

BG

Physical point, found by fitting q

to the best averages

Linear scaling: extensive

Anomalous scaling: non-extensive

Tsallis formula

Summary figure

1 / E

1 / C

1-q

BG

Physical point, found by fitting q

to the best averages

Linear scaling: extensive

Anomalous scaling: non-extensive

A realistic reservoir model

Tsallis formula

Summary figure

1 / E

1 / C

1-q

BG

Physical point, found by fitting q

to the best averages

Linear scaling: extensive

Anomalous scaling: non-extensive

Black hole

A realistic reservoir model

Tsallis formula