#$#%̇]=[space] + [for]...Heat Transfer: Convection Principles of Modeling for CPS –Fall 2018...

Post on 13-Aug-2020

0 views 0 download

transcript

[ "#$#%]=[space] + [for]

Lecture 4

Pr inc ip les of Model ing for Cyber-Phys ica l Systems

Instructor: Madhur Behl

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 1

modeling

buildings

In today’s lecture..

• Heat transfer basics• Thermal gains• Single zone ‘RC’ network model

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 2

Recall: HVAC zone control

How to model the dynamics of the zone, for better control ?

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 3

Heat transfer concepts

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 4

Heat transfer concepts

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 5

Heat transfer 101

If a mass m1 of a substance is heated from temperature T1 to T2, the

amount of heat H which it acquires is given by:

! = #$%&(() − ($)

where 01 is the speci7ic heat of the substance

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 6

Conservation of energy

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 7

HVAC Zone heating

Heat flowmass flow rate..

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 8

Zone Cooling

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 9

Components of Building Heat Loss and Gain

"#$

"%&"%

"'()

"*

"$)

+, -,+. -./0/12$

• Gains• Heat flows in…

• Losses • Heat flows out…

• Sensible gain/cooling:• Change the temperature of

the interior air.• Latent gain/cooling:• Change the humidity level

of the interior air.

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 10

Building envelop.

Components of Building Heat Loss and Gain

"#$

"%&"%

"'()

"*

"$)

+, -,+. -./0/12$

• Heat flows through:• Walls• Windows• Doors• Roof• Floor• Internal heat gain• Lights• Occupants• Equipment

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 11

Building envelop.

Mechanisms of heat transfer

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 12

Conduction – A touching story of heat transfer

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 13

Heat Transfer: Conduction

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 14

Heat Transfer: Conduction

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 15

Conduction though a wall

To

Ti

W

H

L

" = $% &' − &)*

"" = &' − &)

+,

+, =*$%

Property of the material

Property of the geometry

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 16

Recall: Generalized resistance

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 17

Heat flow "

Temperature T

Heat Transfer: Conduction

Through Variable Across Variable

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 18

Composite wall

Equivalent to

R1 R2 R3

R4 R5 R6

RT

!" =1

1!% + !' + !( + 1

!) + !* + !+

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 19

Heat Transfer: Convection

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 20

Heat Transfer: Convection

Property of the material

Property of the geometry

Second law (of thermodynamics)

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 21

Heat Transfer: Radiation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 22

Heat Transfer: Radiation

Direct Indirect

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 23

Heat Transfer: Radiation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 24

Recall: Generalized Capacitance

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 25

Heat flow "

Temperature T

Thermal Mass

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 26

!"#$%&'( &')) *+ &'"$%,'( -*(.&$/0&'"$%,'(

/" = 34$" (*))/6',4

To model a single zone:

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1. To predict…

• Zone temperature.• Zone humidity.• Electricity

consumption/demand.• Energy consumption/demand.

• Cooling load• Heating load

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 27

To model a single zone:

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows] We could model

• HVAC equipment.• Building envelop.

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 28

To model a single zone:

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1. Construction:1. Material properties

2. Geometry:1. Surface Areas, 2. Surface thickness3. Volume

3. Operation:1. Internal heat gains2. HVAC cooling/heating3. Outside air4. Solar heat gain

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 29

Single zone: Surfaces

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1. External Walls:1. Outside surface of

external wall – Ambient temperature.

2. Inside surface of external wall – Zone temp.

2. Ceiling:1. Out surf : Ambient temp,

or floor of the zone above.

2. Special case: Plenum3. In surface: zone temp

3. Floor:1. Out surf: Ground temp, or

zone below..2. In surface: zone temp

4. Internal Walls:1. With adjacent zones.

5. Windows/Doors

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 30

Single zone: Heat Gains

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1. Solar Irradiance Qsol :1. External wall2. Ceiling

2. Solar radiation transmitted through windows Qsol,t:1. Absorbed by zone air, and internal

surfaces.3. Radiative internal heat gain Qrad:

1. Distributed evenly on all internal surfaces.

4. Convective heat gain Qconv:1. With adjacent zones.

5. HVAC heat gain QHVAC or Qsens6. Boundary temperatures:

1. Outside air temp.2. Other zones

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 31

Internal heat gainsOccupants Lighting Appliances/Equipment

Radiative Convective

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 32

Radiative Convective

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 33

All in all, its just heat transfer through the wall

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 34

One layer slab: 3R2C

• One layer slab:

• Two interior nodes, for each surface• T1, T2

• Convection on both sides.• To, Tz

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 35

Assumptions

• Air inside is well mixed.• One dimensional heat transfer is assumed for the walls and surfaces..• No lateral temperature

differences.

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 36

Assumptions

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 37

One layer slab: 3R2CWhy are resistors, capacitors, and temperature elements floating and not grounded in this diagram ?

Its convenient

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 38

One layer slab: 3R2C

Heat flux, W/m2

e.g. solar irradiance

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 39

3R2C – A closer look

Convection Convection Convection

Conduction

Conduction

Thermal Mass

Thermal Mass

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 40

Announcements• Install EnergyPlus before the next lecture on Thursday, September 20.• https://energyplus.net/• Whole building energy simulator

• Optional:• Create an account at https://usonialabs.com/

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 41

Assignment 2 is out

• Thermal RC modeling for a single zone.

• Due in 1 week: Tuesday, Sep 25 at 2:00pm

• No programming parts

• If you are submitting an electronic copy on collab:

• Upload a single PDF file only.

• Use the following filename format: <FirstName_LastName_UVA-ID>.pdf

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 42

Zone temperature dynamics

"#$%

"&'()

*+

*+ ,-.,/ = ℎ2 34 − 36 + "#$% + "&'()

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 43

Zone temperature dynamics

!" #$%#& = ℎ) *+ − *- + 0123 + 04567

States:

Inputs:

*8, *+ , *"

*: , ;<=>?@A), 0123, 04567

Parameters (unknown)

ℎ, B, ), !, !"

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 44

State-Space dynamics

!" #$%#& = ℎ) *+ − *- + 0123 + 04567

*8*+*"

=

−ℎ)! − 1

:!1:! 0

1:!

−ℎ)! − 1

:!ℎ):!

0 ℎ)!"

−ℎ)!"

*8*+*"

+

ℎ)!

1! 0 0

0 0 0 00 0 1

!"1!"

*<=>?@ABC)012304567

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 45

State-Space dynamics

"#"$"%

=

−ℎ)* − 1

,*1,* 0

1,*

−ℎ)* − 1

,*ℎ),*

0 ℎ)*%

−ℎ)*%

"#"$"%

+

ℎ)*

1* 0 0

0 0 0 00 0 1

*%1*%

"/0123456)789:7;<=>

? = )? + @A

Which variables are changing with time?

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 46

"#(%)"'(%)"((%)

=

−ℎ,- − 1

/-1/- 0

1/-

−ℎ,- − 1

/-ℎ,/-

0 ℎ,-(

−ℎ,-(

"#(%)"'(%)"((%)

+

ℎ,-

1- 0 0

0 0 0 00 0 1

-(1-(

"2(%)3456789(%),:;<=(%):>?@A(%)

State-Space dynamics

B(%) = ,B(%) + CD(%)

Is this system LTI ?

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 47

Output equation

!(#) = &'(#) + )*(#)

+,(#) = 0 0 1+/ #+0 #+, #

+ [ 0 ]

+3(#)456789:(#);=>?@(#)=ABCD(#)

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 48

To model a single zone:

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Great!, I know how to model an external wall.(external because, the outside boundary was

ambient temperature)

But what about

Floor, Ceiling,

Windows,Other ‘internal’ walls

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 49

To model a single zone:

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 50

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

External Wall : Convenient notations

!"#$%&"'(%& )&*(*'+$"& =1ℎ/ =

10"#$%&"'(%& "#$12"'(#$

!'3&)4+5 )&*(*'+$"& =1

0'3&)4+5 "#$12"'(#$

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 51

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

External Wall : Convenient notations

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 52

Ceilings – from a modeling perspective

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

“ We are walls too”

- Ceilings (since forever)

“..so are we..”

- Floors

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 53

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Ceilings (..floors..internal walls..) -

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 54

Windows (little to no thermal mass – only thermal resistance)

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 55

Plenums – from a modeling perspective

Tp

Tz

1/Up

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 56

RC modeling methodology

1. All exterior walls are combined into a single exterior wall.a. External boundary condition: Outside air temperature, Incident solar irradiation.

2. Windows/doors (without thermal mass) – Resistive element.

3. Ground and ceiling with appropriate boundary conditions.a. Another zone, ground temperature, outside temperature, plenum.

4. Internal walls for adjacent zones, and/or partitions.

5. Inputs:a. Heat gains to the zone temperature,

b. Solar irradiance, c. All boundary temperatures

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 57

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Gray box modeling: “RC-Networks”

Every surface is a ‘RC’ branch in the network

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 58

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Every surface is a ‘RC’ branch in the network

Branch heat balance equations [3R2C]

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 59

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Every surface is a ‘RC’ branch in the network

Zone heat balance equation

External Wall Ceiling

Internal Wall

Floor

Windows Heat Gains/Losses

Zone AirThermalmass

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 60

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Gray box modeling: “RC-Networks”

All the heat balance equationsBraches + zone temperature

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 61

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Gray box modeling: “RC-Networks”

States : All nodes of the network except boundary nodes

Inputs: All boundary conditions and heat gains.

Parameters: The resistances/conductances and capacitances

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 62

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

Gray box modeling: “RC-Networks”

Inputs:1. Disturbances : Non-manipulated variables2. Control: Manipulated variables

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 63

Pro(gramming) Tip ! : Convention to order control inputs at the end of the input vector

A closer look at the heating/cooling input

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 64

Assuming return air temperature is the same as zone air temperature.

Mass flow rate Supply air temperature

Zone heat balance equation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 65

+ #$%& '&,)*+ (-$%& − -/)

Inputs: All boundary conditions and heat gains.

#$%&, -$%&

1 = 31 + 45

Zone heat balance equation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 66

+ #$%& '&,)*+ (-$%& − -/)

Model has become non-linear (bi-linear) !

Modeling complexity depends on the purpose

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 67

Lets say you had to model this one zone on the second level of the building

Modeling choices

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 68

1. Does every internal wall require its own RC branch ?

2. What about windows which maybe the same material but face different directions ?

3. Do doors have thermal mass ?4. How do you compute the total internal

heat gain at any time ?

Recall: Single zone: Heat Gains

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

1. Solar Irradiance Qsol :

2. Solar radiation transmitted

through windows Qsol,t:

3. Radiative internal heat gain Qrad:

4. Convective heat gain Qconv:

5. HVAC heat gain QHVAC or Qsens

6. Boundary temperatures:

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 69

Heat gain from occupants

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 70

Heat gain from occupants

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 71

Single zone: Heat flows

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 72

Ambient airtemperature

Solarirradiance Zone Air

!"

Envelopegains

Interior Structure

Furnishings

ConvectiveConvective

Radiative

Radiative

Convective

Radiative

Cooling load

Internalgains

Solar gains

Modeling choices

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 73

1. Does every internal wall require its own RC branch ?

2. What about windows which maybe the same material bur face different directions ?

3. Do doors have thermal mass ?4. How do you compute the total internal

heat gain at any time ?5. How are wall temperatures and

incident solar irradiance measured ?

Measuring solar irradiance.

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 74

Designed to measure the solar radiation flux density (W/m2)

Pyranometer

Multi-zone RC network

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 75

Multi-zone RC network

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 76

Alternate representation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 77

Alternate representation

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 78

Energy CPS modeling assignments

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 79

4 perimeter zones1 interior zone

Module 1 modeling assignments

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 80

• Assignment 2:• Create the RC model structure.

• Assignment 3:• Nominal values of model parameters.• Model structure in Matlab• Training data set.

• Assignment 4:• Parameter tuning in Matlab.• Model validation.

Assignment 2

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 81

SPACE3-1: Inputs

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 82

1/Ugw

1/Ugi

1/Ugo

Cgo

Cgi

Tgo

Tg

Tgi

Tz

Q.rad,e

1/Uei1/Uew1/Ueo

Ceo Cei

Ta

Teo Tei

Q.sol,e

Q.solt/2

1/Uci

1/Ucw

1/UcoCci

Cci

Ta

Q.sol,c

Q.rad,c

Ta

Q.conv + Q.

sens

1/Uii 1/Uiw 1/Uio

Cii Cio

Tci

Tco

1/Uwin Tii Tio

Q.solt/2

Q.rad,g

[ExternalWalls]

Ti

[Ceiling]

[Floor]

[InternalWalls]

[Windows]

How to find the values of the parameters ?

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 83

Next lecture:

• Intro to whole building simulation.•White-box vs Grey-box• EnergyPlus tutorial and demo• working with IDF files

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 84