Special Relativity · 2020-01-09 · Special Relativity Presentation to UCT Summer School Jan 2020...

Post on 12-Jul-2020

0 views 0 download

transcript

SpecialRelativity

PresentationtoUCTSummerSchoolJan2020(Part2of3)

ByRobLouw

roblouw47@gmail.com 1

Test your understanding of simultaneity

Jan is a railway worker working for South African Railways. He has ingeniously synchronised the clocks on all South Africa’s railway stations. Motsi is on a high-speed train travelling from Cape Town to Johannesburg. As the train passes De Aar at full speed, all the clocks strike noon

According to Motsi when the Cape Town clock strikes noon, what time is it in Johannesburg? (a) noon? (b) before noon? (c) after noon?

2

Test your understanding of Einstein’s second postulate

Asaveryhigh-speedrocketshipfliespastyouitfiresaflashlightthatshineslightinalldirectionsAnobserveraboardthespaceshipobservesawavefrontthatspreadsawayfromthespaceshipatspeedc inalldirectionsWhatistheshapeofthewavefrontthatanearthobservermeasuresa)spherical,b)ellipsoidalwiththelongestsideoftheellipsoidalongthedirectionofthespaceship'smovementc)ellipsoidalwiththeshortestsideoftheellipsoidalongthedirectionofthespaceship’smovementd)neitherofthese?Isthewavefrontcenteredonthespaceship?

Time Dilation and Lorentz gamma (𝛾)

4

5

Inordertogainabetterunderstandingofwhatishappening,weclearlyneedtoderiveaquantitativerelationshipthatallowsustocomparetimeintervalsindifferentframesofreference

ThiswillbedoneusinganotherthoughtexperimentThiswillbedoneusinganotherthoughtexperimentAgainwewillusetrainmovingclosetothespeedoflightMavis,sittinginamovingtrainisinreferenceframeS’StanleyisstationaryonthegroundinreferenceframeSReferenceframeS’movesatconstantvelocityu,relativetoreferenceframeS,alongthecommonx– x’axisMavis,ridinginframeS’measuresthetimeintervalbetween

6

Inordertogainabetterunderstandingofwhatishappening,weclearlyneedtoderiveaquantitativerelationshipthatallowsustocomparetimeintervalsindifferentframesofreference

Thiswillbedoneusinganotherthoughtexperiment

Time Dilation Thought Experiment

Theobjectiveoftheexperimentistodemonstrate:

Thatobserversmeasureanyclocktorunslowifitmovesrelativetothemandastherelativespeedapproachesthespeedoflight,themovingclock’schangeintimetendstozero

7

8

ImaginewehaveatrainmovingclosetothespeedoflightalongastraightstretchofrailwaytrackMavis,sittinginamovingtrainisinreferenceframeS’StanleyisstationaryonthegroundinreferenceframeSReferenceframeS’movesatconstantvelocityu,relativetoreferenceframeS,alongthecommonx– x’axisMavis,ridinginframeS’measuresthetimeintervalbetweentwoeventsthatoccuratthesamepointinspace(a)

9

Imaginewehaveatrainmovingclosetothespeedoflightalongastraightstretchofrailwaytrack

Sarah,sittinginacoach,isridinginframeS’whereshemeasuresthetimeintervalbetweentwoeventsthatoccuratthesamepointinspace(a)onher‘lightclock’betweentwoeventsthatoccuratthesamepointinspace(a)

10

Peter

SarahSarah

Referenceframe S’

11

SarahMirror

Lightsource

d

S’

O’(Event1occurshere)

12

SarahMirror

Lightsource

d

S’

O’(Event2alsooccurshere)

13

SarahMirror

Lightsource

d

S’

Sarahmeasuresaroundtriptimeof∆t0 forthelightbeam

O’(Events1and2occurhere)

14

Thelightbeamtravelsatotaldistanceof2dinatimeof∆t0 andsincethespeedoflight=c,d=c∆t0/2

SarahMirror

Lightsource

d

O’(Events1and2occurhere)

S’

Sarahmeasuresaroundtriptimeof∆t0 forthelightbeam

15

Sarah

Sourcemovesfromheretohere

Event1occurshere

Peterwhoisstationaryobservesthesamelightpulsefollowingadiagonalpath

16

Sarah

Sourcemovesfromheretohere

Event1occurshere

Event2occurshere

17

Petermeasurestheround-triptimetobe∆t

Sarah

Sourcemovesfromheretohere

Event1occurshere

Event2occurshere

18

Petermeasurestheround-triptimetobe∆t

Sarah

Sourcemovesfromheretohere

(Distancetravelled)

Event1occurshere

Event2occurshere

19

Petermeasurestheround-triptimetobe∆t

Sarah

Sourcemovesfromheretohere

(Distancetravelled)

Theround-tripdistanceforthelightbeaminreferenceframeS is2ℓ

Event1occurshere

Event2occurshere

Pythagorean theorem

20

ThePythagoreantheoremstatesthatforaright-angletriangle,thesquareofthehypotenuse(c)isequaltothesumofthesquaresoftheremainingtwoshorterperpendicularsides(a &b)

a

b

c

Thusc2 =a2 +b2

∴ c= 𝑎$ + 𝑏$

d

21

Peter

Sarah

u∆t/2

d

22

Peter

Sarah

Using the Pythagorean theorem we can calculate ℓ

ℓ = 𝑑$ + (𝑢∆t/2)$

The speed of light is the same for both observers, so theround-trip time measured in S is

∆t = 2ℓ/c = 2/c 𝑑$ + (𝑢∆t/2)$

23

Using the Pythagorean theorem we can calculate ℓ

ℓ = 𝑑$ + (𝑢∆t/2)$

The speed of light is the same for both observers, so theround-trip time measured in S is ∆twhere

∆t = 2ℓ/c

24

Using the Pythagorean theorem we can calculate ℓ

ℓ = 𝑑$ + (𝑢∆t/2)$

The speed of light is the same for both observers so theround-trip time measured in S is ∆twhere

∆t = 2ℓ/c = 2/c 𝑑$ + (𝑢∆t/2)$

25

We would like to have a relationship between ∆t and ∆t0 thatis independent of d (but is dependent on u and c)

By substitution we get

∆t = 2/c (𝑐∆t0/2)$+(𝑢∆t/2)$

Squaring this equation and solving for ∆t we get

∆t = ∆t0 / 1 − 𝑢$/𝑐2

26

We would like to have a relationship between ∆t and ∆t0 thatis independent of d (but is dependent on u and c)

Remembering that d = 𝑐∆t0/2, then by substitution we get

∆t = 2/c (𝑐∆t0/2)$+(𝑢∆t/2)$

Squaring this equation and solving for ∆t we get

∆t = ∆t0 / 1 − 𝑢$/𝑐2)

27

We would like to have a relationship between ∆t and ∆t0 thatis independent of d (but is dependent on u and c)

Remembering that d = 𝑐∆t0/2, then by substitution we get

∆t = 2/c (𝑐∆t0/2)$+(𝑢∆t/2)$

Squaring this equation and then solving for ∆t we finally get

∆t = ∆t0 / 1 − 𝑢$/𝑐2

28

Sincethequantity 1 − 𝑢$/𝑐2 islessthan1,∆tisalwaysgreaterthan∆t0

ThusStanleymeasuresalongerround-triptimeforthelightpulsethandoesMavis

Thequantity𝟏/ 𝟏 − 𝒖𝟐/𝒄2appearssoofteninrelativitythatithasitsownsymbol andisreferredtoasLorentzgamma

𝛾 =𝟏/ 𝟏 − 𝒖𝟐/𝒄2Lorentzgammadefinition29

Sincethequantity 1 − 𝑢$/𝑐2 islessthan1,∆tisalwaysgreaterthan∆t0

ThusPetermeasuresalongerround-triptimeforthelightpulsethandoesSarah

Thequantity𝟏/ 𝟏 − 𝒖𝟐/𝒄2appearssoofteninrelativitythatithasitsownsymbol andisreferredtoasLorentzgamma

𝛾 =𝟏/ 𝟏 − 𝒖𝟐/𝒄2Lorentzgammadefinition30

Sincethequantity 1 − 𝑢$/𝑐2 islessthan1,∆tisalwaysgreaterthan∆t0

ThusPetermeasuresalongerround-triptimeforthelightpulsethandoesSarah

Thequantity1/ 1 − 𝑢$/𝑐2appearssoofteninrelativitythatithasitsownsymbol 𝛾 andisreferredtoasLorentzgamma

𝛾 =𝟏/ 𝟏 − 𝒖𝟐/𝒄2Lorentzgammadefinition31

Sincethequantity 1 − 𝑢$/𝑐2 islessthan1,∆tisalwaysgreaterthan∆t0

ThusPetermeasuresalongerround-triptimeforthelightpulsethandoesSarah

Thequantity1/ 1 − 𝑢$/𝑐2appearssoofteninrelativitythatithasitsownsymbol 𝛾 andisreferredtoasLorentzgamma

𝛾 =1/ 1 − 𝑢$/𝑐2Lorentzgammafactor32

Notethat𝛾 isalways≥1and1/𝛾 isalways≤1!

If𝛾 appearsinthenumeratorofanyrelativisticequation,itwilltendtowardsinfinityasvelocityapproachesc

Converselyif𝛾 appearsinthedenominatorofanyrelativisticequation,itwilltendtowardszeroasvelocityapproachesc

33

Notethat𝛾 isalways≥1and1/𝛾 isalways≤1!

If𝛾 appearsinthenumeratorofanyrelativisticequation,itwilltendtowardsinfinityasvelocity,u approachesc

Converselyif𝛾 appearsinthedenominatorofanyrelativisticequation,itwilltendtowardszeroasvelocityapproachesc

34

Notethat𝛾 isalways≥1and1/𝛾 isalways≤1!

If𝛾 appearsinthenumeratorofanyrelativisticequation,itwilltendtowardsinfinityasvelocity,approachesc

Converselyif𝛾 appearsinthedenominatorofanyrelativisticequation,itwilltendtowardszeroasvelocity,u approachesc

35

∆t0 iscalledthepropertimeandisequaltothetimeintervalbetweentwoeventsthatoccuratthesameposition

Onlyoneinertialframe(S’)measuresthepropertimeanditdoessowithasingleclockthatispresentatbothevents

Aninertialreferenceframemovingwithvelocityurelativetothepropertimeframemustusetwoclockstomeasurethetimeinterval:Oneatthepositionofthefirsteventandoneatthepositionofthesecondevent

Byrearrangingourearlierequations,thetimeintervalintheframewheretwoclocksarerequiredisasfollows

36

∆t0 iscalledthepropertimeandisequaltothetimeintervalbetweentwoeventsthatoccuratthesameposition

Onlyoneinertialframe(S’)measuresthepropertimeanditdoessowithasingleclockthatispresentatbothevents

Aninertialreferenceframemovingwithvelocityurelativetothepropertimeframemustusetwoclockstomeasurethetimeinterval:Oneatthepositionofthefirsteventandoneatthepositionofthesecondevent

Byrearrangingourearlierequations,thetimeintervalintheframewheretwoclocksarerequiredisasfollows

37

∆t0 iscalledthepropertimeandisequaltothetimeintervalbetweentwoeventsthatoccuratthesameposition

Onlyoneinertialframe(S’)measuresthepropertimeanditdoessowithasingleclockthatispresentatbothevents

Aninertialreferenceframemovingwithvelocityu relativetothepropertimeframemustusetwoclockstomeasurethetimeinterval:Oneatthepositionofthefirsteventandoneatthepositionofthesecondevent

Byrearrangingourearlierequations,thetimeintervalintheframewheretwoclocksarerequiredisasfollows

38

∆t0 iscalledthepropertimeandisequaltothetimeintervalbetweentwoeventsthatoccuratthesameposition

Onlyoneinertialframe(S’)measuresthepropertimeanditdoessowithasingleclockthatispresentatbothevents

Aninertialreferenceframemovingwithvelocityurelativetothepropertimeframemustusetwoclockstomeasurethetimeinterval:Oneatthepositionofthefirsteventandoneatthepositionofthesecondevent

Byrearrangingourearlierequations,thetimeintervalintheframewheretwoclocksarerequiredisasfollows

39

∆t=∆t0 / 1 − 𝑢$/𝑐2 =𝛾 ∆t0 andthus∆t≥ ∆t0

ThestretchingoutoftimeofthetimeintervaliscalledtimedilationTheequationAbovetellstwothings:Firstly,ifitwerepossibletotravelfasterthanthespeedoflightthen1– u2/c2 wouldbenegativeand 1 − 𝑢$/𝑐2wouldbeanimaginarynumber.Wedon’thaveimaginarytime!Secondly,atimedilationplotof∆t/∆t0asafunctionofrelativevelocity,uwilltendtoinfinityasu approachesc (orinotherwordsasu/capproachesone)Thisisillustratedgraphicallyinthefollowingslide 40

∆t=∆t0 / 1 − 𝑢$/𝑐2 =𝛾 ∆t0 andthus∆t≥ ∆t0

ThestretchingoutoftimeofthetimeintervaliscalledtimedilationTheequationAbovetellsustwothings:Firstly,ifitwerepossibletotravelfasterthanthespeedoflightthen1– u2/c2 wouldbenegativeand 1 − 𝑢$/𝑐2wouldbeanimaginarynumber.Wedon’thaveimaginarytime!Secondly,atimedilationplotof∆t/∆t0asafunctionofrelativevelocity,uwilltendtoinfinityasu approachesc (orinotherwordsasu/capproachesone)Thisisillustratedgraphicallyinthefollowingslide 41

∆t=∆t0 / 1 − 𝑢$/𝑐2 =𝛾 ∆t0 andthus∆t≥ ∆t0

ThestretchingoutoftimeofthetimeintervaliscalledtimedilationTheequationAbovetellstwothings:Firstly,ifitwerepossibletotravelfasterthanthespeedoflightthen1– u2/c2 wouldbenegativeand 1 − 𝑢$/𝑐2wouldbeanimaginarynumber.Wedon’thaveimaginarytime!Secondly,atimedilationplotof∆t/∆t0asafunctionofrelativevelocity, willtendtoinfinityasu approachesc (orinotherwordsasu/capproachesone)Thisisillustratedgraphicallyinthefollowingslide 42

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆t/∆t 0=𝜸=1/√(1−u2/c

2 )

Speedu relativetothespeedoflight(u/c)

Time dilation

Asu approachesc,𝜸 approachesinfinity

∆t/∆t0=𝛾

43

Timedilationissometimesdescribedbysayingthatmovingclocksrunslow.Thismustbeinterpretedcarefully

Thewholepointofrelativityisthatallinertialframesareequallyvalidsothereisnoabsolutesenseinwhichaclockismovingoratrest

44

Timedilationissometimesdescribedbysayingthatmovingclocksrunslow.Thismustbeinterpretedcarefully

Thewholepointofrelativityisthatallinertialframesareequallyvalidsothereisnoabsolutesenseinwhichaclockismovingoratrest

45

46

Toillustratethispoint,thisimageshowstwofirecrackerexplosionsi.e.twoeventsthatoccuratdifferentpositionsinthegroundframeAssistantsonthegroundneedtwoclockstomeasurethetimeinterval∆tInthetrainreferenceframehoweverasingleclockispresentatbothevents,hencethetimeintervalmeasuredinthetrainreferenceisthepropertime∆t0

47

Toillustratethispoint,thisimageshowstwofirecrackerexplosionsi.e.twoeventsthatoccuratdifferentpositionsinthegroundframeAssistantsonthegroundneedtwoclockstomeasurethetimeinterval∆tInthetrainreferenceframehoweverasingleclockispresentatbothevents,hencethetimeintervalmeasuredinthetrainreferenceisthepropertime∆t0

48

Toillustratethispoint,thisimageshowstwofirecrackerexplosionsi.e.twoeventsthatoccuratdifferentpositionsinthegroundframeAssistantsonthegroundneedtwoclockstomeasurethetimeinterval∆tInthetrainreferenceframehoweverasingleclockispresentatbothevents,hencethetimeintervalmeasuredinthetrainreferenceisthepropertime∆t0

49

Inthissensethemovingclock(theonethatispresentatbothevents)‘runsslower’thanthetheclocksthatarestationarywithrespecttobothevents

Moregenerally,thetimeintervalbetweentwoeventsissmallestinthereferenceframeinwhichthetwoeventsoccuratthesameposition

50

Inthissensethemovingclock(theonethatispresentatbothevents)‘runsslower’thanthetheclocksthatarestationarywithrespecttobothevents

Moregenerally,thetimeintervalbetweentwoeventsissmallestinthereferenceframeinwhichthetwoeventsoccuratthesameposition

In deriving the time dilation equation we made use of a lightclock which made our analysis clear and easy

The conclusion is about time itself

Any clock, regardless of how it operates (e.g. a grandfatherclock, a wind-up wristwatch, alarm clock or supper accuratequartz clock (as used in GPS satellites)) behave the same!

51

In deriving the time dilation equation we made use of a lightclock which made our analysis clear and easy

The conclusion is about time itself

Any clock, regardless of how it operates (e.g. a grandfatherclock, a wind-up wristwatch, alarm clock or supper accuratequartz clock (as used in GPS satellites)) behave the same!

52

In deriving the time dilation equation we made use of a lightclock which made our analysis clear and easy

The conclusion is about time itself

Any clock, regardless of how it operates (e.g. a grandfatherclock, a wind-up wristwatch, digital watch, alarm clock or asuper accurate quartz clock) behaves in the same way!

53

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆t/∆t 0=𝜸=1/√(1−u2/c

2 )

Speedu relativetothespeedoflight(u/c)

Time dilation

Asu approachesc,𝜸 approachesinfinity

∆t/∆t0=𝛾

56

For𝛥t/𝛥t0 =7,u/c=0.990

For𝛥t/𝛥t0=8,u/c=0.992

Faster than the speed of light?

Spaceisexpandingfasterthanthespeedoflight.Thisisbecausespacetimeitselfisexpandingandisdenyingustheopportunitytoseefurtherthan14billionlightyearsInwater,muonscantravelfasterthenthespeedoflight.ThisisknownasCherenkovlightwhichhasadistinctbluehue.Itcanbeobservedinnuclearreactors.AlthoughthisistruenothingcantravelfasterthanthespeedoflightinavacuumNeutrinosfromsupernovaexplosionsarriveatearthbeforephotonsdo.Thisisbecausethephotonstakeasignificantamountoftimetoescapefromtheexplodingstarwhileneutrinos(withnearzeromass)escapeunhinderedWeareconstantlymovingthroughspacetimeatthespeedoflightinavacuum.Weeitherexperiencespaceortimeoramixtureofboth

59

Hubbleultradeepfieldimage

Galaxiesasoldas13billionyearsarevisible

60

Spaceisexpandingfasterthanthespeedoflight.Thisisbecausespacetimeitselfisexpandingandisdenyingustheopportunitytoseefurtherthan14billionlightyearsInwater,muonscantravelfasterthanthespeedoflight.ThisisknownasCherenkovlightwhichhasadistinctbluehue.Itcanbeobservedinnuclearreactors.Althoughthisistrue,nothingcantravelfasterthanthespeedoflightinavacuumNeutrinosfromsupernovaexplosionsarriveatearthbeforephotonsdo.Thisisbecausethephotonstakeasignificantamountoftimetoescapefromtheexplodingstarwhileneutrinos(withnearzeromass)escapeunhinderedWeareconstantlymovingthroughspacetimeatthespeedoflightinavacuum.Weeitherexperiencespaceortimeoramixtureofboth

61

62

AnexampleofCherenkovradiationinsideanuclearreactorwheremuons(heavyelectrons)travelfasterthanphotonsoflightinwater

Spaceisexpandingfasterthanthespeedoflight.Thisisbecausespacetimeitselfisexpandingandisdenyingustheopportunitytoseefurtherthan14billionlightyearsInwater,muonscantravelfasterthanthespeedoflight.ThisisknownasCherenkovlightwhichhasadistinctbluehue.Itcanbeobservedinnuclearreactors.Althoughthisistrue,nothingcantravelfasterthanthespeedoflightinavacuumNeutrinosfromsupernovaexplosionsarriveatearthbeforephotonsdo.Thisisbecausethephotonstakeasignificantamountoftimetoescapefromtheexplodingstarwhileneutrinos(withnearzeromass)escapeunhinderedWeareconstantlymovingthroughspacetimeatthespeedoflightinavacuum.Weeitherexperiencespaceortimeoramixtureofboth

63

Spaceisexpandingfasterthanthespeedoflight.Thisisbecausespacetimeitselfisexpandingandisdenyingustheopportunitytoseefurtherthan14billionlightyearsInwater,muonscantravelfasterthanthespeedoflight.ThisisknownasCherenkovlightwhichhasadistinctbluehue.Itcanbeobservedinnuclearreactors.Althoughthisistrue,nothingcantravelfasterthanthespeedoflightinavacuumNeutrinosfromsupernovaexplosionsarriveatearthbeforephotonsdo.Thisisbecausethephotonstakeasignificantamountoftimetoescapefromtheexplodingstarwhileneutrinos(withnearzeromass)escapeunhinderedWeareconstantlymovingthroughspacetimeatthespeedoflightinavacuum.Weeitherexperiencespaceortimeoramixtureofboth

64

Time Dilation in nature

65

66

Imageofanexplodingsupernovainadistantgalaxy.Itsbrightnessdecaysatacertainratebutbecauseitismovingawayfromusatasubstantialfractionofthespeedoflight,itdecaysmoreslowlyasseenfromearth.Thesupernovaisa‘movingclockthatrunsslow.’

HighenergycosmicrayprotonsenteringourupperatmosphereinteractwiththenucleiofN2andO2 generatingpionswhichthendecayintomuons(heavyelectrons)whichmoveoffataspeedof0.994c

Thehalflifeofamuonis2.2microseconds.

After660metershalfthemuonswouldhavedecayedbutataspeedof0.994cthehalflifeis20microseconds.

About25%ofthemuonscreatedreachtheground.

Iftherewasnotimedilationonly1/220muonswouldreachtheearth

67

HighenergycosmicrayprotonsenteringourupperatmosphereinteractwiththenucleiofN2andO2 generatingpionswhichthendecayintomuons(heavyelectrons)whichmoveoffataspeedof0.994c.

Thehalflifeofamuonis2.2microseconds

After660metershalfthemuonswouldhavedecayedbutataspeedof0.994cthehalflifeis20microseconds.

About25%ofthemuonscreatedreachtheground.

Iftherewasnotimedilationonly1/220muonswouldreachtheearth

68

HighenergycosmicrayprotonsenteringourupperatmosphereinteractwiththenucleiofN2andO2 generatingpionswhichthendecayintomuons(heavyelectrons)whichmoveoffataspeedof0.994c.

Thehalflifeofamuonis2.2microseconds.

After660metershalfthemuonswouldhavedecayedbutataspeedof0.994c thehalflifeis20microseconds

About25%ofthemuonscreatedreachtheground.

Iftherewasnotimedilationonly1/220muonswouldreachtheearth

69

HighenergycosmicrayprotonsenteringourupperatmosphereinteractwiththenucleiofN2andO2 generatingpionswhichthendecayintomuons(heavyelectrons)whichmoveoffataspeedof0.994c.

Thehalflifeofamuonis2.2microseconds.

After660metershalfthemuonswouldhavedecayedbutataspeedof0.994cthehalflifeis20microseconds.

About25%ofthemuonscreatedreachtheground

Iftherewasnotimedilationonly1/220muonswouldreachtheearth

70

HighenergycosmicrayprotonsenteringourupperatmosphereinteractwiththenucleiofN2andO2 generatingpionswhichthendecayintomuons(heavyelectrons)whichmoveoffataspeedof0.994c

Thehalflifeofamuonis2.2microseconds

After660metershalfthemuonswouldhavedecayedbutataspeedof0.994cthehalflifeis20microseconds

About25%ofthemuonscreatedreachtheground

Iftherewasnotimedilationonly1/220muonswouldreachtheearth

71

Youcanbuildyourownmuondetector!

Allyouneedisamobilephonewithacamera+astripofblackinsulationtape

ForaniPhonedownloadtheappfromcosmicrayapp.com.Forotherphonesthereareequivalentapps

Tapeupthecameralensandyouarereadytogo

Justfollowtheapp’sinstructions

Why don’t we experience time dilation in our everyday lives?

73

Thesunwiththeearthintowistravellingaroundthecentreofthemilkywayataspeedofapproximately220000m/s

Atthisspeed𝜸 fortheearthisonly1.00000027aroundthecentreofourgalaxy

Atsuchalowvalueof𝜸, thesurfaceoftheearthistoallintentsandpurposesaninertialreferenceframe

Ahighvelocityriflebullethasa𝜸 ofonly1.000000000001

Itisnotsurprisingthatwedon’texperiencerelativityIoureverydaylives! 74

Thesunwiththeearthintowistravellingaroundthemilkywayataspeedof217261m/s

Atthisspeed𝜸 fortheearthisonly1.0000003asitmovesaroundthecentreofourgalaxy

Atsuchalowvalueof𝜸, thesurfaceoftheearthistoallintentsandpurposesaninertialreferenceframe

Ahighvelocityriflebullethasa𝜸 ofonly1.000000000001

Itisnotsurprisingthatwedon’texperiencerelativityIoureverydaylives! 75

Thesunwiththeearthintowistravellingaroundthemilkywayataspeedof217261m/s

Atthisspeed𝜸 fortheearthisonly1.0000003asitmovesaroundthecentreofourgalaxy

Atsuchalowvalueof𝜸, thesurfaceoftheearthistoallintentsandpurposesaninertialreferenceframe

Ahighvelocityriflebullethasa𝜸 ofonly1.000000000001

Itisnotsurprisingthatwedon’texperiencerelativityIoureverydaylives! 76

Thesunwiththeearthintowistravellingaroundthemilkywayataspeedof217261m/s

Atthisspeed𝜸 fortheearthisonly1.0000003asitmovesaroundthecentreofourgalaxy

Atsuchalowvalueof𝜸, thesurfaceoftheearthistoallintentsandpurposesaninertialreferenceframe

Ahighvelocityriflebullethasa𝜸 ofonly1.000000000001

Itisnotsurprisingthatwedon’texperiencerelativityIoureverydaylives! 77

Thesunwiththeearthintowistravellingaroundthemilkywayataspeedof217261m/s

Atthisspeed𝜸 fortheearthisonly1.0000003asitmovesaroundthecentreofourgalaxy

Atsuchalowvalueof𝜸, thesurfaceoftheearthistoallintentsandpurposesaninertialreferenceframe

Ahighvelocityriflebullethasa𝜸 ofonly1.000000000001

Whenbloodhoundfinallyreachesitstargetspeedof1000mph,its𝜸 willonlybe1.0000000000006 78

Time Dilation in Practice

79

80

Cathoderaytubeinwhichelectronsreach30%ofthespeedoflight

81

Length contraction

Relativity of length

83

Wealsoneedtoderiveaquantitativerelationshipbetweenlengthsindifferentcoordinatesystems(i.e.differentreferenceframes)usinganotherthoughtexperiment

Onceagain,wehaveatraintravellingneartothespeedoflightalongastretchofstraightrailwaytrack

SarahistravellinginthecarriageinreferenceframeS’

Nexttoherontheseatisaruler,alightsourceandamirrorasillustrated

Relativity of length

84

Wealsoneedtoderiveaquantitativerelationshipbetweenlengthsindifferentcoordinatesystems(i.e.differentreferenceframes)usinganotherthoughtexperiment

Onceagain,wehaveatraintravellingneartothespeedoflightalongastretchofstraightrailwaytrackSarahistravellinginthecarriageinreferenceframeS’

Nexttoherontheseatisaruler,alightsourceandamirrorasillustrated

Relativity of length

85

Wealsoneedtoderiveaquantitativerelationshipbetweenlengthsindifferentcoordinatesystems(i.e.differentreferenceframes)usinganotherthoughtexperiment

Onceagain,wehaveatraintravellingneartothespeedoflightalongastretchofstraightrailwaytrack

SarahistravellinginthecarriageinreferenceframeS’

Nexttoherontheseatisaruler,alightsourceandamirrorasillustrated

Relativity of length

86

Wealsoneedtoderiveaquantitativerelationshipbetweenlengthsindifferentcoordinatesystems(i.e.differentreferenceframes)usinganotherthoughtexperiment

Onceagain,wehaveatraintravellingneartothespeedoflightalongastretchofstraightrailwaytrack

SarahistravellinginthecarriageinreferenceframeS’

Nexttoherontheseatisaruler,alightsourceandamirrorasillustrated

87

Sarah

88

Sarah

Peter

By using logic like the derivation of time dilation we get

In special relativity a length ℓ0 measured in the frame inwhich the body is at rest is called a proper length

Lengths measured perpendicular to the direction of travel arenot contracted (the velocity in the y and z direction is zero)

89

ℓ =ℓ0/𝛾 Lengthcontractionformula

By using logic like the derivation of time dilation we get

In special relativity a length ℓ0 measured in the frame inwhich the body is at rest is called a proper length

Lengths measured perpendicular to the direction of travel arenot contracted (the velocity in the y and z direction is zero)

90

ℓ =ℓ0/𝛾 Lengthcontractionformula

By using logic like the derivation of time dilation we get

In special relativity a length ℓ0 measured in the frame inwhich the body is at rest is called a proper length

Lengths measured perpendicular to the direction of travel arenot contracted (the velocity in the y and z direction is zero)

91

ℓ =ℓ0/𝛾 Lengthcontractionformula

Rearranging the previous equation we get

What this tells us is that observers measure any ruler tocontract in length if it moves relative to them

To the traveler her ruler will continue to show the properlength ℓ0 as she is at rest in her reference frame

What the equation also tells us is that as a travelerapproaches the speed of light her ruler will contract to zeroas observed by a stationary observer as shown in the nextslide 92

ℓ/ℓ0 = 1/𝛾

Rearranging the previous equation we get

What this tells us is that observers measure any ruler tocontract in length if it moves relative to them

To the traveler her ruler will continue to show the properlength ℓ0 as she is at rest in her reference frame

What the equation also tells us is that as a travelerapproaches the speed of light her ruler will contract to zeroas observed by a stationary observer as shown in the nextslide 93

ℓ/ℓ0 = 1/𝛾

Rearranging the previous equation we get

What this tells us is that observers measure any ruler tocontract in length if it moves relative to them

To the traveler her ruler will continue to show the properlength ℓ0 as she is at rest in her reference frame

What the equation also tells us is that as a travelerapproaches the speed of light her ruler will contract to zeroas observed by a stationary observer as shown in the nextslide 94

ℓ/ℓ0 = 1/𝛾

Rearranging the previous equation we get

What this tells us is that observers measure any ruler tocontract in length if it moves relative to them

To the traveler her ruler will continue to show the properlength ℓ0 as she is at rest in her reference frame

What the equation also tells us is that as a travelerapproaches the speed of light her ruler will contract to zeroas observed by a stationary observer as shown in the nextslide 95

ℓ/ℓ0 = 1/𝛾

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝓵 /𝓵 0=1/𝛄=√(1−u2/c

2 )

Speedurelativetothespeedoflightc(u/c)

Length contraction

Asu approachesc,1/𝛄 approacheszero

ℓ/ℓ0 =1/𝛾

96

Tarringroadsreducesthedistance!AnadvertseeninJohannesburginternationalairport

Ausefulrelationshiptoremember:

∆t0/∆t=l/l0 = 1/𝛾

Tarringroadsreducesthedistance!AnadvertseeninJohannesburginternationalairport

Ausefulrelationshiptoremember:

∆t0/∆t=ℓ/ℓ0 = 1/𝛾

Length contraction of a cube as it would appear at various relative velocitiesMeasuredlengthVisualAppearance

0.0c

00.5 c 0.99c

MeasuredlengthVisualAppearanceMeasuredlengthVisualAppearance

Length contraction of a cube as it would appear at various relative velocitiesMeasuredlengthVisualAppearance

0.0c

00.5 c 0.99c

MeasuredlengthVisualAppearanceMeasuredlengthVisualAppearance

Length contraction of a cube as it would appear at various relative velocitiesMeasuredlengthVisualAppearance

0.0c

00.5 c 0.99c

MeasuredlengthVisualAppearanceMeasuredlengthVisualAppearance

Length Contraction in Practice

102

103

Electronsreachaspeedofjust1cm/slessthancinthe3kmbeamlineoftheSLACnationalacceleratorAsmeasuredbytheelectronthebeamlinewhichstretchesfromthetoptowardsthebottomofthephotoisonly15cmlong!

104

Electronsreachaspeedofjust1cm/slessthancinthe3kmbeamlineoftheSLACnationalacceleratorAsmeasuredbytheelectronthebeamlinewhichstretchesfromthetoptowardsthebottomofthephotoisonly15cmlong!

Experimental proof of time dilation and length contraction

RicardFeynmanoncesaidthatnomatterhowbeautifulyourtheory,nomatterhowcleveryouareorwhatyournameis,ifitdisagreeswithexperiment,it’swrong!Let'sseeifthisappliestotimedilationandlengthcontractionAmuon(heavyelectron)hasahalflifeof2.2microsecondswhenatrestScientistshaveacceleratedabeamofmuonscirculatingarounda14mdiameterringto99.94%ofthespeedoflightattheAGSSynchrotroninNewYorkWithouttimedilationtheywouldonlylastfor15lapsoftheringTheylastfor400laps!aps

106

RicardFeynmanoncesaidthatnomatterhowbeautifulyourtheory,nomatterhowcleveryouareorwhatyournameis,ifitdisagreeswithexperiment,it’swrong!Let'sseeifthisappliestotimedilationandlengthcontractionofamuon(heavyelectron)whichhasahalflifeof2.2microsecondswhenatrestScientistshaveacceleratedabeamofmuonscirculatingarounda14mdiameterringto99.94%ofthespeedoflightattheAGSSynchrotroninNewYorkWithouttimedilationtheywouldonlylastfor15lapsoftheringTheylastfor400laps! 107

RicardFeynmanoncesaidthatnomatterhowbeautifulyourtheory,nomatterhowcleveryouareorwhatyournameis,ifitdisagreeswithexperiment,it’swrong!Let'sseeifthisappliestotimedilationandlengthcontractionAmuon(heavyelectron)hasahalflifeof2.2microsecondswhenatrestScientistshaveacceleratedabeamofmuonscirculatingarounda14mdiameterringto99.94%ofthespeedoflightattheAGSSynchrotroninNewYorkWithouttimedilationtheywouldonlylastfor15lapsoftheringTheylastfor400laps! 108

RicardFeynmanoncesaidthatnomatterhowbeautifulyourtheory,nomatterhowcleveryouareorwhatyournameis,ifitdisagreeswithexperiment,it’swrong!Let'sseeifthisappliestotimedilationandlengthcontractionAmuon(heavyelectron)hasahalflifeof2.2microsecondswhenatrestScientistshaveacceleratedabeamofmuonscirculatingarounda14mdiameterringto99.94%ofthespeedoflightattheAGSSynchrotroninNewYorkWithouttimedilationthemuonswouldonlylastfor15lapsoftheringTheylastfor400laps! 109

RicardFeynmanoncesaidthatnomatterhowbeautifulyourtheory,nomatterhowcleveryouareorwhatyournameis,ifitdisagreeswithexperiment,it’swrong!Let'sseeifthisappliestotimedilationandlengthcontractionAmuon(heavyelectron)hasahalflifeof2.2microsecondswhenatrestScientistshaveacceleratedabeamofmuonscirculatingarounda14mdiameterringto99.94%ofthespeedoflightattheAGSSynchrotroninNewYorkWithouttimedilationthemuonswouldonlylastfor15lapsoftheringInpracticetheylastedfor400laps! 110

Thismeansthattheirlifetimehadbeenincreasedbyafactorof29tojustover60microseconds

Thisresultagreesexactlywiththeory(𝛾 =29)

Ifyoujoinedthemuonyouwouldofcoursecirculatethering400timesaswell

Theproblemhereisthatyourwatchwouldonlymeasure2.2microsecondsbecauseyouwouldbestandingstillinthemuonsreferenceframe

111

Thismeansthattheirlifetimehadbeenincreasedbyafactorof29tojustover60microseconds

Thisresultagreesexactlywiththeory(𝛾 =29)Ifyoujoinedthemuonyouwouldofcoursecirculatethering400timesaswell

Theproblemhereisthatyourwatchwouldonlymeasure2.2microsecondsbecauseyouwouldbestandingstillinthemuonsreferenceframe

112

Thismeansthattheirlifetimehadbeenincreasedbyafactorof29tojustover60microseconds

Thisresultagreesexactlywiththeory(𝛾 =29)

Ifyoujoinedthemuonyouwouldofcoursecirculatethering400timesaswell

Theproblemhereisthatyourwatchwouldonlymeasure2.2microsecondsbecauseyouwouldbestandingstillinthemuonsreferenceframe

113

Thismeansthattheirlifetimehadbeenincreasedbyafactorof29tojustover60microseconds

Thisresultagreesexactlywiththeory(𝛾 =29)

Ifyoujoinedthemuonyouwouldofcoursecirculatethering400timesaswell

Theproblemhereisthatyourwatchwouldonlymeasure2.2microsecondsbecauseyouwouldbestandingstillinthemuon’sreferenceframe

114

Youcouldnotcirculatethering400timesin2.2microseconds!

Thecircumferenceoftheringmusthaveshrunkfromtheviewpointofthemuon

Thelengthoftheoftheringasdeterminedbythemuonmustshrinkbythesameamountthatthemuon’slifeincreases(29times)

Bothspaceandtimehavebecomemalleable!

Theeffectsarereal! 115

Youcouldnotcirculatethering400timesin2.2microseconds!

Thecircumferenceoftheringmusthaveshrunkfromtheviewpointofthemuon

Thelengthoftheoftheringasdeterminedbythemuonmustshrinkbythesameamountthatthemuon’slifeincreases(29times)

Bothspaceandtimehavebecomemalleable!

Theeffectsarereal! 116

Youcouldnotcirculatethering400timesin2.2microseconds!

Thecircumferenceoftheringmusthaveshrunkfromtheviewpointofthemuon

Infact,thelengthoftheoftheringasdeterminedbythemuonshrinksbythesameamountthatthemuon’slifeincreases(29times)

Bothspaceandtimehavebecomemalleable!

Theeffectsarereal! 117

Youcouldnotcirculatethering400timesin2.2microseconds!

Thecircumferenceoftheringmusthaveshrunkfromtheviewpointofthemuon

Thelengthoftheoftheringasdeterminedbythemuonshrinksbythesameamountthatthemuon’slifeincreases(29times)

Bothspaceandtimehavebecomemalleable

Theeffectsarereal! 118

Youcouldnotcirculatethering400timesin2.2microseconds!

Thecircumferenceoftheringmusthaveshrunkfromtheviewpointofthemuon

Thelengthoftheoftheringasdeterminedbythemuonshrinksbythesameamountthatthemuon’slifeincreases(29times)

Bothspaceandtimehavebecomemalleable!

Theeffectsarereal! 119

Relativistic paradoxes

Givenapairoftwinswhereonetravelsintospaceatnearthespeedoflightforsaytenyears,whenthetravellingtwinreturnscantheystillbethesameage?

121

Givenapairoftwinswhereonetravelsintospaceatnearthespeedoflightforsaytenyears,whenthetravellingtwinreturnscantheystillbethesameage?Atraintravellingnearthespeedoflightapproachesatunnelwhichmeasures80%ofitslengthwhentheyarestationeryrelativetoeachother.Canthetrainfitintothetunnel?

122

Givenapairoftwinswhereonetravelsintospaceatnearthespeedoflightforsaytenyears,whenthetravellingtwinreturnscantheystillbethesameage?Atraintravellingnearthespeedoflightapproachesatunnelwhichmeasures80%ofitslengthwhentheyarestationeryrelativetoeachother.Canthetrainfitintothetunnel?ToanswerthesequestionsweneedtousetwoimportantrelativisticequationscalledtheLorentztransformsnamedaftertheDutchphysicistHendrikLorentzwhodevelopedthemandfromwhichEinsteinbenefitted!

123

Givenapairoftwinswhereonetravelsintospaceatnearthespeedoflightforsaytenyears,whenthetravellingtwinreturnscantheystillbethesameage?Atraintravellingnearthespeedoflightapproachesatunnelwhichmeasures80%ofitslengthwhentheyarestationeryrelativetoeachother.Canthetrainfitintothetunnel?ToanswerthesequestionsweneedtousetwoimportantrelativisticequationscalledtheLorentztransformsnamedaftertheDutchphysicistHendrikLorentzwhodevelopedthemTheLorentztransformsarealsorequiredtoresolvesimultaneityissuesandarethemostusefulsetofequationsusedinrelativisticproblemsolving

124

Lorentz coordinate transformations

Whenaneventoccursatpoint(x,y,z)attime tasobservedinaframeofreferenceS,whatarethecoordinates(x’,y’,z’)andtimet’oftheeventasobservedinasecondframeS’movingrelativetoSwithavelocityofu inthe+xdirection?

126

Withoutperformingadetailedderivation,thetransformationofaneventwithspacetimecoordinatesx,y,zand tinframeSandx’,y’,z’andt’inframeS’isdonebyviathefollowingLorentzcoordinatetransformations

x’=𝛾 (x-ut)Lorentzcoordinatetransformations

t’=𝛾 (t-ux/c2)

Whereu isvelocityofS’relativetoS inthepositivex– x’axisc isthespeedoflight and𝛾 istheLorentzfactorrelatingframesS andS’y’=yand z’=zsincetheyareperpendiculartox

127

Withoutperformingadetailedderivation,thetransformationofaneventwithspacetimecoordinatesx,y,zand tinframeSandx’,y’,z’andt’inframeS’isdonebyviathefollowingLorentzcoordinatetransformations

x’=𝛾 (x-ut)Lorentzcoordinatetransformations

t’=𝛾 (t-ux/c2)

y’=yand z’=zsincetheyareperpendiculartox

128

Withoutperformingadetailedderivation,thetransformationofaneventwithspacetimecoordinatesx,y,zand tinframeSandx’,y’,z’and t’inframeS’isdonebyviathefollowingLorentzcoordinatetransformations

x’=𝛾 (x-ut)Lorentzcoordinatetransformations

t’=𝛾 (t-ux/c2)

y’=yand z’=zsincetheyareperpendiculartox

129

Spaceandtimehaveclearlybecomeintertwinedandwecannolongersaythatlengthandtimehaveabsolutemeaningsindependentoftheframeofreference

Timeandthethreedimensionsofspacecollectivelyforafour-dimensionalentitycalledspacetime andwecallxandttogetherthespacetimecoordinatesofanevent

130

Spaceandtimehavebecomeintertwinedandwecannolongersaythatlengthandtimehaveabsolutemeaningsindependentoftheframeofreference

Timeandthethreedimensionsofspacecollectivelyformafour-dimensionalentitycalledspacetime andwecallx,y,zandt togetherthespacetimecoordinatesofanevent

UsingtheLorentzcoordinatetransformationswecanderiveasetofLorentzvelocitytransformations

Theresult(withoutderivation)isshowninthenextslide131

Aswesawyesterday,spaceandtimehavebecomeintertwinedandwecannolongersaythatlengthandtimehaveabsolutemeaningsindependentoftheframeofreferenceTimeandthethreedimensionsofspacecollectivelyforafour-dimensionalentitycalledspacetime andwecallx,y,zandt togetherthespacetimecoordinatesofanevent

UsingtheLorentzcoordinatetransformationswecanderiveasetofLorentzvelocitytransformations

Theresult(withoutderivation)isshowninthenextslide132

Aswesawyesterday,spaceandtimehavebecomeintertwinedandwecannolongersaythatlengthandtimehaveabsolutemeaningsindependentoftheframeofreferenceTimeandthethreedimensionsofspacecollectivelyforafour-dimensionalentitycalledspacetime andwecallx,y,zandt togetherthespacetimecoordinatesofanevent

UsingtheLorentzcoordinatetransformationswecanderiveasetofLorentzvelocitytransformations

Theresult(withoutderivation)isshowninthenextslide133

In the extreme case where vx = cwe get

vx’ = (c-u)/(1-uc/c2) = c(1-u/c)/(1-u/c) = c

This means that anything moving at c measured in S isalso travelling at c when measured in S’ despite therelative motion of the two frames

134

vx’=(vx – u)/(1- uvx/c2)Lorentzonedimensionalvelocitytransformation

In the extreme case where vx = cwe get

vx’ = (c-u)/(1-uc/c2) = c(1-u/c)/(1-u/c) = c

This means that anything moving at c measured in S isalso travelling at c when measured in S’ despite therelative motion of the two frames

135

vx’=(vx – u)/(1- uvx/c2)Lorentzonedimensionalvelocitytransformation

In the extreme case where vx = cwe get

vx’ = (c-u)/(1-uc/c2) = c(1-u/c)/(1-u/c) = c

This means that anything moving at c measured in S isalso travelling at c when measured in S’ despite therelative motion of the two frames

136

vx’=(vx – u)/(1- uvx/c2)Lorentzvelocitytransformation

TheLorentzvelocitytransformationshowsthatabodywithaspeedlessthanc inoneframeofreferencealwayshasaspeedlessthanc ineveryotherframeofreference

Thisisonereasonforconcludingthatnomaterialbodymaytravelwithaspeedgreaterthanorequaltothespeedoflightinavacuum,relativetoanyinertialreferenceframe

137

TheLorentzvelocitytransformationshowsthatabodywithaspeedlessthanc inoneframeofreferencealwayshasaspeedlessthanc ineveryotherframeofreference

Thisisonereasonforconcludingthatnomaterialbodymaytravelwithaspeedgreaterthanorequaltothespeedoflightinavacuum,relativetoanyinertialreferenceframe

138

Let'sconsideranexampleofthevelocitylimitwhichanyobservercanreachrelativetosomeotherobserver

IfwehadasetoffivespaceshipsstackedlikeRussiandollswhereeachshipcouldlaunchtheremainingshipsatavelocityequaltotherelativevelocityofthelaunchingshipasobservedfromearthwhatrelativevelocitiescouldthevariousshipsachieverelativetotheearthobserver?

Thefollowingslideshowsthevelocityprofilesofthefivespaceshipsrelativetoanearthobserver

139

Let'sconsideranexampleofthevelocitylimitwhichanyobservercanreachrelativetosomeotherobserver

IfwehadasetoffivespaceshipsstackedlikeRussiandollswhereeachshipcouldlaunchtheremainingshipsatavelocityequaltotherelativevelocityofthelaunchingshipasobservedfromearthwhatrelativevelocitiescouldthevariousshipsachieverelativetotheearthobserver?

Thefollowingslideshowsthevelocityprofilesofthefivespaceshipsrelativetoanearthobserver

140

Let'sconsideranexampleofthevelocitylimitwhichanyobservercanreachrelativetosomeotherobserver

IfwehadasetoffivespaceshipsstackedlikeRussiandollswhereeachshipcouldlaunchtheremainingshipsatavelocityequaltotherelativevelocityofthelaunchingshipasobservedfromearthwhatrelativevelocitiescouldthevariousshipsachieverelativetotheearthobserver?

Thefollowingslideshowsthevelocityprofilesofthefivespaceshipsrelativetoanearthobserver

141

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

142

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

143

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

144

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

146

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rocketspeedsrelativetospeedof

lightcasasobservedonearth

Rocketspeedsrelativetospeedoflightcobservedbysuccessiveshipobserverswhenu=v

Relative rocket ship speeds

Mothership Rocket 1 Rocket 2 Rocket 3 Rocket 4 Rocket 5

Nomatterhowmanysuccessiverocketsarelaunchedtheirvelocitywillneverexceedc!

148

Test your understanding of time dilationPeter,whoisstandingontheground,startshisstopwatchthemomentthatSarahfliesoverheadinaspaceshipataspeedof0.6cAtthesameinstantSarahstartsherstopwatchAsmeasuredinPeter’sframeofreference,whatisthereadingonSarah’sstopwatchattheinstantpeter’sstopwatchreads10s?a)10s,b)lessthan10sorc)morethan10s?AsmeasuredinSarah’sframeofreference,whatisthereadingonPeter’sstopwatchattheinstantthatSarah’sstopwatchreads10s?a)10s,b)lessthan10sorc)morethan10s?Whosestopwatchisreadingpropertimeintheabovetwoexamples?

Test your understanding of length contraction

Aminiaturespaceshipfliespastyouhorizontallyat0.99cAtacertaininstantyouobservethatthatthenoseandtailofthespaceshipalignexactlywiththetwoendsofameterstickthatyouholdinyourhandRankthefollowingdistancesinorderfromlongesttoshortest:a)theproperlengthofthemeterstick;b)theproperlengthofthespaceship;c)thelengthofthespaceshipmeasuredinyourreferenceframe;d)thelengthofthemeterstickmeasuredinthespaceship’sframeofreference?