Steam Cracking Of Renewable Naphtha

Post on 22-Nov-2014

2,714 views 7 download

description

Tests show that olefin plants (steam crackers) can diversify to biorenewable feeds without modifying their facilities or operations. And by doing this, they will help "sequester" CO2 into plastics.

transcript

1http://www.lct.ugent.be

1 Laboratory for Chemical Technology, Universiteit Gent2 Syntroleum Corp., Tulsa, OK, rabhari@syntroleum.com

Steam Cracking of Renewable Naphtha

Kevin M. Van Geem 1, Ramin Abhari 2, Steven P. Pyl

1, Marie-Françoise Reyniers 1 and Guy B. Marin 1

Ethylene Producers ConferenceMarch 22-25, 2010, San Antonio, TX, USA

1st dimension retention time (min)0 5025

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

2

1st dimension retention time (min)0 105

sign

al in

tens

ity (m

V)

modulatednotmodulated

paraffins

(a) (b)

methane

propene

1.3-butadiene

ethene

indene

naphthalene

benzene

methyl-naphthalenes

styrene

toluene

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Commercialization Status

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

2

• Biomass to hydrocarbons– Gasification+FT (“BTL”) and enzyme routes not commercial– Hydrotreated Vegetable Oil (e.g. Bio-Synfining™)

commercialized• Economics based on diesel and jet fuel• Naphtha co-product tested as feedstock for conventional

steam crackers

Feedstock

ProcessDiesel, Jet, Naphtha

IntroductionEPC, San Atonio, TX, 22/03/2010

3

Brown grease

Seed oils

Yellow grease

Waste animal fats

Seaweed oils

Tall oil fatty acid

Algal oils

Bio-Synfining™ Feedstocks

U.S. sources ~ 360,000 BPD (16 million tonne/y) hydrocarbon equivalent …and increasing

EPC, San Atonio, TX, 22/03/2010

4

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

5

ChemistryO

O

O

O

O

OHC

+ 6 H2O + C3H8

+ 15 H2

3 (1a)

(n-octadecane)

(typical triglyceride with linoleic, oleic, and stearic acids)

H2C

H2C

HO

O

+ 4 H2

+ 2 H2O (1b)

NiMo cat

(isoparaffinic hydrocarbons)

NiMo cat

Bi-functionalcatalyst

(2)(typical)

+ + H2

Paraffinic hydrocarbons from bio oils via hydrodeoxygenation (Eqs 1a-b) and hydrocracking (Eq 2)

EPC, San Atonio, TX, 22/03/2010

6

Process

FEED

JET

Hydro-deoxygenator

Hydrocracker

Water

C5-C9

C10-C15

C15-C18+

C3-C18+

RecycleCompressor

LPG

Naphtha

C3-C4

Fractionation

HydrogenMakeup

Simple, low capital cost process

EPC, San Atonio, TX, 22/03/2010

7

Feed pretreatment

FG

FG

ISO Container #1 ISO Container #2

50 psig N2 Supply

Backwash Pulse Tank

Water/Acid Soln Tote

Filter Cartridge

Backwash Collection

Drum

Sample Port

Sample Port

PG PG

PG

DP

Check valve

Makeup of Bio Oil for Renewable Naphtha Test Component Amount (wt %)

Poultry Fat 46 Yellow Grease 18 Brown Grease 18 Floatation Grease 9 Grease from Prepared Foods 9

EPC, San Atonio, TX, 22/03/2010

8

Acid wash removes 95% of solubilized metals and phosphorus

Contaminants in Bio Oil Blend Before and After Pretreatment

Before After

Ash (ppm wt) 1675 67.2 Nitrogen (ppm wt) 920 1006 Sulfur (ppm wt) 69 111 Acid Value (mg KOH/g) 94.7 129 ICP-AES Analysis Calcium (ppm wt) 285 14.5 Iron (ppm wt) 67.3 6.57 Potassium (ppm wt) 117 3 Magnesium (ppm wt) 7.6 0.532 Sodium (ppm wt) 123 6.79 Phosphorus (ppm wt) 144 8.28

Feed pretreatmentEPC, San Atonio, TX, 22/03/2010

9

Stable catalyst: activity/selectivity

HydrodeoxygenationEPC, San Atonio, TX, 22/03/2010

10

Hydrocracker distillate consistent – jet fuel flash point dictates naphtha end point

Hydrocracker product yields: JETEPC, San Atonio, TX, 22/03/2010

11

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Commercialization Status

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

12

Feedstock analysis

GCGC set-upEPC, San Atonio, TX, 22/03/2010

13

OVEN

FID

tof-MS

He

Rtx-1 PONA

BPX-50

BPX-50

injector

modulator

4-port 2-way valve

Liq. CO2 in

valves

jets

2nd dim. column1st dim. column

2nd dim. column1st dim. column

coolingcarrier gas

cooling

cooling

Tof-MS

FID

1st dimension retention time (min)10 5030

2nd

dim

ensi

on re

tent

ion

time

(s)

0

4

C9

C16

Di-aromatics

naphthenesDi-naphthenes

Mono-aromatics

Naphtheno-aromatics

paraffins

GCGC analysis renewable naphthaEPC, San Atonio, TX, 22/03/2010

14Separation based on boiling point

Sepa

ratio

n ba

sed

on p

olar

ity

Offline renewable naphtha analysis: Tof-MS

EPC, San Atonio, TX, 22/03/2010

15

Group type separationEPC, San Atonio, TX, 22/03/2010

16

C9

e: di-naphthenesf: (iso)paraffinsg: mono-naphthenes

n and isoparaffins

aromatics

naphthenes

Group type separation by selecting specific ions in the Tof-MS chromatogram

Visualusation of ppb amounts of components

1st dimension retention time (min)10 5030

2nd

dim

ensi

on re

tent

ion

time

(s)

0

4

C9

C16

Di-aromatics

naphthenesDi-naphthenes

Mono-aromatics

Naphtheno-aromatics

paraffins

Group type separation: no oxygenatesEPC, San Atonio, TX, 22/03/2010

17Separation based on boiling point

Sepa

ratio

n ba

sed

on p

olar

ity

Detailed PIONAEPC, San Atonio, TX, 22/03/2010

18

C9

Identification of over 300 different individual components Quantification in to 300 components

P I O N A SUM3 0.17 0.00 0.00 0.00 0.00 0.174 1.45 0.93 0.00 0.00 0.00 2.385 4.41 4.77 0.00 0.00 0.00 9.186 7.49 9.57 0.00 1.02 0.00 18.077 7.66 12.38 0.00 1.34 0.10 21.498 5.39 10.72 0.02 1.64 0.29 18.069 3.13 10.34 0.25 1.64 0.32 15.67

10 1.19 6.27 0.06 0.60 0.09 8.2111 0.24 2.09 0.00 0.04 0.00 2.3812 0.06 0.56 0.00 0.00 0.00 0.6213 0.04 0.17 0.00 0.00 0.00 0.2014 0.03 0.07 0.00 0.00 0.00 0.1115 0.69 0.14 0.00 0.00 0.00 0.8316 0.68 0.31 0.00 0.00 0.00 0.9917 0.34 0.55 0.00 0.00 0.00 0.8918 0.17 0.60 0.00 0.00 0.00 0.77

SUM 33.14 59.46 0.33 6.28 0.80 100.00

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Commercialization Status

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

19

Pilot plant test

Pilot plant set-upEPC, San Atonio, TX, 22/03/2010

20

Pilot plant set-upEPC, San Atonio, TX, 22/03/2010

21

cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7

air

oil

N2

flare

DHA

FURNACE & REACTOR TLE ANALYSIS

H2O

hydr

ocar

bons

FEED

IR-GA

preheating & mixing reactor zone

P P P PP

condensate

cool

er

GC×GC

RGAPGA

water

oven

Nitrogen is used as internal standard

Methane functions as a second internal standard

Pilot plant set-upEPC, San Atonio, TX, 22/03/2010

22

RGA (TCD)

RGA (FID)

PGA (TCD)

DHA (FID)

GC×GC (FID)

H2 CO2 C2H4 C2H6 C2H2 CH4 CON2

C2 C3 C4CH4

CO2 C2H4 C2H6 C2H2 CO CH4

C2 C3 C4CH4 C5 C6 ...

N2

...CH4

chec

k

C16

C25

Pilot plant set-upEPC, San Atonio, TX, 22/03/2010

23

Heated transfer lineto GCGC

Online GCGC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010

24

1st dimension retention time (min)0 5025

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

2

1st dimension retention time (min)0 105

sign

al in

tens

ity (m

V)

modulatednotmodulated

paraffins

(a) (b)

methane

propene

1.3-butadiene

ethene

indene

naphthalene

benzene

methyl-naphthalenes

styrene

toluene

Division of GCGC chromatogram in a 1-dimensional and 2-dimensional part

Online GCGC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010

251st dimension retention time (min)40 6050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

1st dimension retention time (min)60 8070

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

(c) (d)

1st dimension retention time (min)20 8050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

1st dimension retention time (min)20 5035

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

indene

naphthalene

acenapthylene

phenanthrene/anthracene

(a) (b)

pyrene

benzene

toluene

C2-BzC3-Bz C4-Bz C5-Bz

styrenevinyltolune

vinylstyrene

phenanthrene

anthracene

C1-triaroC2-triaro

naphthalene

2-methyl-naphthalene

1-methyl-naphthalene

C2-Nph C3-Nph

ethylbenzenen-propylbenzene

toluenealkyl-benzenes

benzene

biphenyl

methyl-biphenyl

ethenyl-naphthalene

(iso)-propenyl-

Nph

1st dimension retention time (min)40 6050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

1st dimension retention time (min)60 8070

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

(c) (d)

1st dimension retention time (min)20 8050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

1st dimension retention time (min)20 5035

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

indene

naphthalene

acenapthylene

phenanthrene/anthracene

(a) (b)

pyrene

benzene

toluene

C2-BzC3-Bz C4-Bz C5-Bz

styrenevinyltolune

vinylstyrene

phenanthrene

anthracene

C1-triaroC2-triaro

naphthalene

2-methyl-naphthalene

1-methyl-naphthalene

C2-Nph C3-Nph

ethylbenzenen-propylbenzene

toluenealkyl-benzenes

benzene

biphenyl

methyl-biphenyl

ethenyl-naphthalene

(iso)-propenyl-

Nph

Online GCGC FID chromatogram EPC, San Atonio, TX, 22/03/2010

26

1st dimension retention time (min)20 8050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

1st dimension retention time (min)20 8050

2nd

dim

ensi

on re

tent

ion

time

(s)

0

5

(a) (b)

indene

naphthalene

acenapthylene

phenanthrene

pyrenetoluenealkyl-benzenes

benzene

indene

naphthalene

acenapthylene

phenanthrene

pyrenetoluenealkyl-benzenes

benzeneethyl-Bz ethyl-Bz

nC14nC10

Reduced peak overlap when using GCGC allows more accurate quantification

COT = 820°C COT = 865°C

Detailed effluent with GCGC FIDEPC, San Atonio, TX, 22/03/2010

27

Over 100 components are identified and quantified each run Product Yield (wt%) COT = 820°C COT = 835°C COT = 850°C COT = 865°C

hydrogen 0.71 0.80 0.88 0.96 CO 0.32 0.32 0.23 0.18 CO2 0.15 0.03 0.07 0.03 methane 13.55 15.28 16.28 17.67 ethylene 27.26 29.87 30.85 32.02 ethane 4.22 4.19 4.16 4.09 propylene 19.51 18.85 17.59 16.39 propane 0.72 0.66 0.60 0.54 isobutene 3.96 3.60 3.09 2.60 Trans 2-butene 3.16 2.40 1.73 1.13 Cis 2-butene 0.85 0.65 0.53 0.41 1-butene 0.61 0.50 0.57 0.47 1,3-butadiene 5.80 5.33 5.42 5.13 n-butane 0.49 0.34 0.27 0.18 benzene 3.18 4.42 5.58 6.02 toluene 1.62 2.05 2.08 2.46 Et-benzene 0.18 0.21 0.20 0.18 m-xylene 0.24 0.26 0.24 0.26 p-xylene 0.10 0.10 0.05 0.13 styrene 0.30 0.46 0.59 0.73 o-xylene 0.11 0.12 0.12 0.13 indene 0.11 0.21 0.25 0.31 naphthalene 0.15 0.23 0.32 0.43

Simulated trends with COILSIM1DEPC, San Atonio, TX, 22/03/2010

28

0

5

10

15

20

25

30

35

10 11 12 13 14 15 16 17 18

Yie

ld (

wt%

)

Methane Yield (wt%)

ethylene propylene 1,3-butadiene 1-butene benzene pygas fuel oil

Pilot plant coking runEPC, San Atonio, TX, 22/03/2010

29

FeedRenewable Naphtha

+ 100 ppm DMDSRenewable Naphtha

Time on stream 1h 5h 1h 5hConditions

HC-flow (kg/hr) 4.008 3.990 4.008 3.996H2O-flow (kg/hr) 1.764 1.812 1.728 1.800Dilution (kg/kg) 0.440 0.454 0.431 0.450COT (°C) 850 850 850 850COP (bar abs) 1.64 1.69 1.67 1.66

hydrogen 0.88 0.87 0.93 0.89CO 0.05 0.06 0.30 0.12CO2 0.00 0.00 0.04 0.01methane 15.99 16.10 16.39 16.48ethylene 31.21 31.20 30.90 31.13ethane 4.11 4.29 4.23 4.21propylene 18.27 18.34 17.52 17.631-butene 1.78 1.76 1.66 1.591,3-butadiene 5.70 5.61 5.13 5.35benzene 5.38 5.46 5.58 5.60toluene 2.18 2.28 2.38 2.24styrene 0.64 0.61 0.56 0.45naphthalene 0.38 0.39 0.29 0.40

Measured coke yieldsEPC, San Atonio, TX, 22/03/2010

30

0

1

2

3

4

5

6

7

8

RenewableNaphtha

Renewable Naphtha + 100ppm DMDS

Ethane Petroleum

Naphtha

Condensate

g c

oke/

3600

s

Run length simulationEPC, San Atonio, TX, 22/03/2010

31

TLEinlet inlet

Reactor coil Type Number of reactors Number of passes Reactor length Internal reactor diameter (passes 1-4) External reactor diameter (passes 1-4) Internal reactor diameter (passes 5-6) External reactor diameter (passes 5-6) Wall thickness Naphtha flow rate per reactor coil Steam dilution CIT (a) COP (b)

GK I Split coil 8 6 53.89 m 0.080 m 0.096 m 0.114 m 0.130 m 0.008 m 2785 kg h-1

0.70 kg/kg 620 °C 1.45 105 Pa

Feedstock characteristics PINA analysis (wt%) n-praffins isoparaffins naphthenes aromatics ASTM D86 BP (wt%) IBP 50% FBP Specific density

37.0 wt% 33.0 wt% 18.0 wt% 12.0 wt%

36.0 94.5 161.0 0.706

Outlet specification Ethylene yield 28.6 wt%

Simulated run length with COILSIM1D

EPC, San Atonio, TX, 22/03/2010

32

740

790

840

890

940

990

1040

1090

1140

0 10 20 30 40 50 60

Exte

rnal

wal

l tem

pera

ture

(°C)

Axial Position (m)

0 h

1000 h

2000 h

3000 h

3800 h

Simulated Run length : Renewable Naphtha 158 days Fossil based Naphtha 83 days (Industrial 85 days)

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Commercialization Status

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

33

Commercialization statusEPC, San Atonio, TX, 22/03/2010

• 75 million gal/y plant in Geismar, LA• Renewable naphtha 10% of output

34

• Introduction

• Bio-Synfining process

• Steam cracking of renewable naphtha

• Commercialization Status

• Conclusions

OutlineEPC, San Atonio, TX, 22/03/2010

35

Process to convert bio oils to hydrocarbons commercialized

Renewable naphtha major co-product

Excellent feedstock for conventional steam crackers

High ethylene and propylene yields

Low coking tendency = long run lengths

Opportunity for petrochemical producers to transition to biorenewable

feeds without modifying process

Reduced carbon footprint for olefin plants

ConclusionsEPC, San Atonio, TX, 22/03/2010

36

37

Thank you for your attention!

GCGC: Optimization Offline analysisEPC, San Atonio, TX, 22/03/2010

38

Detector FID, 300°C Tof-MS, 35-400 amu

Injection 0.2 μl, split flow 150 ml/min, 250°C

First columnRtx-1 PONAa

50 m L × 0.25 mm I.D. × 0.5 μm df

Second columnBPX-50b

2 m L × 0.15 mm I.D. × 0.15 μm df

Oven temperature 50°C 250°C at 3°C/min

Modulation Period 4 s

Carrier gasHe, constant flow

2.1 ml/minHe, constant flow

1.6 ml/min

a dimethyl polysiloxane (Restek); b 50% phenyl polysilphenylene-siloxane (SGE)

Other GC’sEPC, San Atonio, TX, 22/03/2010

39

PGA DHAInjection Gas injection, 55°C Gas injection, 250°C

Carrier gas He He

Pre-column Hayesep N (2 m L × 1/8” I.D.) -

ColumnCarbosphere

(1.8 m L × 1/8” I.D.)Rtx-1 PONAa

(50 m L × 0.2 mm I.D. × 0.55 μm df)

Oven temperature 55°C -40°C 40°C (5°C/min) 90°C (3°C/min) 250°C (5°C/min)

Detector TCD, 160°C FID, 250°C

a dimethyl polysiloxane (Restek)

Other GC’sEPC, San Atonio, TX, 22/03/2010

40

RGAChannel 1 Channel 2 Channel 3

Injection Gas injection, 80°C Gas injection, 80°C Gas injection, 80°CCarrier gas He He N2

Pre-columnRtx-1a

(15 m L × 0.53 mm I.D. × 3 μm df)

Hayesep Q(0.25 m L × 1/8” I.D.)

Hayesep T(1 m L × 1/8” I.D.)

ColumnRt-Alumina BONDb

(25 m L × 0.53 mm I.D. × 15 μm df)

Hayesep N (1 m L× 1/8” I.D.),

Molsieve 5A (1 m L × 1/8” I.D.)

Carbosphere(2 m L × 1/8” I.D.)

Oven temperature 50 120°C at 5°C/min 80°C 80°C

Detector FID, 200°C TCD, 160°C TCD, 160°C

a dimethyl polysiloxane (Restek); b Al2O3/KCl (Restek)