Stereoelectronic Control in the Formation and Cleavage of Tetrahedral … · 2004-03-31 ·...

Post on 27-Jun-2020

1 views 0 download

transcript

Stereoelectronic Control in the Formation and Cleavage of Tetrahedral

IntermediatesAntiperiplanar Lone-Pair Hypothesis and its evolution

Changyou YuanDepartment of Chemistry

Michigan State University

Outline

• Stereoelectronic control • Ozonolysis of acetals – the first generation of ALPH

• Stereoelectronic control in Hydrolysis of orthoesters and conformationally restricted acetals – the second generation of ALPH

• Ozonolysis and hydrolysis of tricyclic acetals – the third generation of ALPH

• Application of ALPH • Conclusion

Stereoelectronic control

• Definition: Control the nature of the products of a chemical reaction (or of its rate) by stereoelctronic factors.

• Specific meaning in this seminar:Control the formation and cleavage of tetrahedral intermediates of acetals, orthoesters, amidines, etc., by the proper alignment of the lone pair(s) on heteroatoms.

IUPAC Compendium of Chemical Terminology 2nd Edition (1997)

Ozonolysis of AcetalsExperimental results

R

H

OCH3

OCH3

O3

15hr, -78oC R

O

OCH3

+ CH3OH

O

O

R

H

O3

1 min, -78oCR

O

OOH

O OEt

H

O3 COOEtOH O O

No lactone observed

OAcO

AcOAcO

OAc

OCH3 1. O3

COOCH3

CH2OAc

OAc

AcO

OAc

OAc

OAcO

AcOAcO

OAcOCH3

2. Ac2O, Pyr.

P.Deslongchamps and C.Moreau. Canad. J. Chem. 1971, 49, 2465.P.Deslongchamps. C.Moreau. D.Frehel and P.Atlanti. Canad. J. Chem. 1972, 50, 3402.

Ozonolysis of Acetalsconformational analysis

Any reactive conformer must have on each oxygen atom a lone pair orbital oriented antiperiplanar to the C-H bond of the acetal function.

O

OR

H

O

O

H

OR

OR

H

1 active 2 non-active

3 active

H3CO O

H

RCH3

4 non-active

H3CO

O

HR

CH3

5 active

P.Deslongchamps P.Atlanti, D.Frehel and A.Malaval, Canad. J. Chem. 1971, 49, 2465.P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3402.

Antiperiplanar Lone-Pair Hypothesis- the first generation

• Any reactive conformer must have on each oxygen atom a lone pair orbital oriented antiperiplanar to the C-H bond of the acetal function.

YY

X

Y = O, N, S, etc.

X = H, O, etc.O

O

HA B

Why ALPH is accepted – anomeric effect

• Anomeric effect

OHO

HO

Br

OH

OH

OHO

HOOH

Br

OH

α anomer(more stable) β anomer

OHO

HOOH

OH

Br

OHO

HO

BrOH

OH

Why ALPH is accepted - E2 elimination

CH3

Cl

H

ClH

CH3

CH3

HH

Cl

H

H

KOH

alcohol

CH3

1 2

http://www.cem.msu.edu/~reusch/VirtualText/special3.htm

Intermediates in ozonolysis of Acetals

Possible ozonolysis intermediates

O

O

OR

O

O

OR

H O

OH3 4

O

O

OR

X

OR

O

OH

O

O5

P.Deslongchamps P.Atlanti, D.Frehel and A.Malaval, Canad. J. Chem. 1971, 49, 2465.P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3402.

Hydrolysis of orthoestersO OEt

OEt

O OEt

OEt

O OEt

OEt

O OEt

OEt

COOEtOH

COOEtOH

COOEtOH

COOEtOH

H+ No lactone products detected

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. E.H. Cords in Progressin Physical Organic Chemistry, Vol. 4, pp 1-44. A. Streitwieser and R.W. Tafts (eds), Interscience: New York 1967.

Hydrolysis of orthoesters conformational analysis

A

O

O

OEt

Et

O

O

O

Et

O

O

O

Et

Et

Et

O

O

OEt

Et

OO

OO

Et

Et

OEt

OEt

O

O

OEt

OO

OO

Et

Et

EtO

EtO

Et

B C

D E F

G H I

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Hydrolysis of orthoesters conformational analysis

A

O

O

O Et

Et

O

O

O

Et

Et

OO

OO

Et

Et

O Et O Et

C

E F

O

O

O H+, 24hr, no reaction

Rigid model of C

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Hydrolysis of orthoestersReaction pathway for conformer A

A

O

O

OEt

Et

O

OEt

O

O

OEt

H

OEt

OH

O

1 2

3

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Hydrolysis of orthoestersReaction pathway for conformer F

OO

Et

OEt

F

OH

O

O

Et

Et

OO

Et

OEt

R

H

O

OH

Et

O

O

Et

O

O

Et

HR

4

5

6

3

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Hydrolysis of orthoestersReaction pathway for conformer E

OO

Et

OEt

E

O

OEt

OO

Et

OH

OO

Et

OH

OEt

OH

O

O

O

OH

Et

O O

8 9

10

3

11

12

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Difference between A,F and E

OO

Et

OEt

F

A

O

O

OEt

Et

OO

Et

OEt

E

cis

trans

trans

1

4

8

O O

Et

Et

O O

R

Et

O OEt

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Difference between A,F

A

O

O

O Et

Et

O

OEt

O

O

O Et

H

OEt

OH

O

1 2 3

OO

Et

O Et

F

OH

O

O

Et

Et

OO

Et

O Et

R

HO

OH

Et

O

O

Et

O

O

Et

HR

4

5

6

3

- EtOH

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. P.Deslongchamps. R.Chenevert, R.J.Taillefer, C.Moreau and J.K. Saunders. Canad. J. Chem. 1975, 53, 1601

Stereoelectronic controlled addition of methoxide to lactonium ion

O O

O

H

H OEt

OCH3

O

H

H OCH3

OEtO

OEt

Et3OBF4

NaOMe/MeOH

i-PrOH

X COOEt

OH

14

15

16

17 18

XCOOMe

OH

19

Hydrolysis of cyclic orthoesters proceeds by loss of the axial alkoxy group. So, conformer A is the active one.

P.Deslongchamps. R.Chenevert and R.J.Taillefer, Canad. J. Chem. 1975, 53, 1601.

Stereoelectronic control in acetal FormationExperimental results

O

HOH

H

OMeO

H

H

O

HO

H

H

O

H

PTSA-MeOH, R.T. 100 : 0

PTSA-MeOH, reflux 45 : 55

+

20 21 22

N.Beaulieu, R.A. Dickinson, P. Deslongchamps. Can. J. Chem. 1980, 58, 2531.P.Deslongchamps, D.Guay, Can. J. Chem. 1985, 63, 2757.

Stereoelectronic control in acetal FormationALPH explanation

O

HOH

H

OMe

O

H

HO

H

H

O

H

H

O

H

O

H

H

O

H

O

H

H

HO

H

O

HH

H

OH

HH

chair

twist-boat

20 21

2223

24

25

100%

0%

N.Beaulieu, R.A. Dickinson, P. Deslongchamps. Can. J. Chem. 1980, 58, 2531.P.Deslongchamps, D.Guay, Can. J. Chem. 1985, 63, 2757.

Successfulness of ALPH and Challenges it faced

• Successfulness of ALPH

ALPH can predict and explain the experiment results successfully in

ozonolysis, hydrolysis and formation of Acetals and hydrolysis of

orthoesters.

• Challenges to ALPH:Can ALPH be applied to glycoside hydrolysis?

Is there some (or even trivial) amount of lactone formed under

kinetically controlled conditions in the hydrolysis of orthoester?

Apply ALPH to the hydrolysis of glycosides

O

O

OCH3

H

H

OCH3

R

R

O

OCH3

HR

H+

OR H

O H

OCH3

R

H+

O

ROH

α - glycoside

H+

chair

twist-boatβ - glycoside

H+

Based on ALPH, α glycoside should hydrolysis much faster than β glycosides.

P. Deslongchamps. In Stereoelectronic Effects in Organic Chemistry, J.E. Baldwin Ed.; Organic ChemistrySeries, Vol I; Pergamon Press: Oxford, England, 1983.

Examples where ALPH failed in its simple form

OMe

OHOH

OHOPO3H2

O

OH

HO

OH

OPO3H2

HO

Equatorial/Axial

1.9

4.1

Glycoside hydrolysis:

O

OEt

OEt

O

O

OH

O

OEtOrthoesterHydrolysis:

J.V. O’Connor and R. Barker. Carbohydr. Res. 1979, 73, 227.B.Capon, D.M. Grieve. Tetrahedron Lett 1982, 23, 4823.S. Chandrasekhar, A.J. Kirby. and R.J. Martin. J. Chem. Soc., Perkin Trans. 2, 1983, 1619.

Formation of conformationally restricted acetals

O OH

O OH

O

O

O O

1 : 1AcOH/Benzene 19hr

TFA/Benzene 2hr 1 : 0

TFA/Benzene 2hr 1 : 0

3 : 2AcOH/Benzene 19hr

( 0 kcal/mol) ( 2.4 kcal/mol)

1

2

3 4

TFA

N. Pothier, S. Goldstein, P. Deslongchamps. Helv. Chim. Acat. 1992, 75, 604.P.Deslongchamps. Pure Appl. Chem. 1993, 65, 1161.

Formation of conformationally restricted acetals- determination of the transition state

O OH

O

OH

H CH3

O

OH

H CH3

O

HO HO

O

CH3

HO O

O

H3C

OH

H3CH

O

OH

CH3

H

O

O

O

HO

O

H3C

OH

H3CH

H

H

O O

O

O

O

HO

OH

CH3

H

CH3

H

O

1

5a

5b

6 7

8 9

10

12 13 3

4

3

411

α

β

α

β

N. Pothier, S. Goldstein, P. Deslongchamps. Helv. Chim. Acat. 1992, 75, 604.P.Deslongchamps. Pure Appl. Chem. 1993, 65, 1161.

Formation of conformationally restricted acetals- determination of the transition state

O OH

O

OH

O

OH

O

HO HO

O

O O

O

OH

H3CH

O

OH O

O

O

HO

O

OH

O O

O

O

O

HO

OH

CH3

H

O

H3C

H

CH3

H

H3C

H

H3C

H3C

H

H3C

H

CH3

H

CH3

H

H3C

H

CH3

H

H+

2

14a

14b

15 16

17 18

19 20

21

3

4

3

4

22

β

α

β

α

N. Pothier, S. Goldstein, P. Deslongchamps. Helv. Chim. Acat. 1992, 75, 604.P.Deslongchamps. Pure Appl. Chem. 1993, 65, 1161.

Re–exam the stereoelectronic control in acetal formation

O

HOH

H

OMeO

H

H

O

HO

H

H

O

H

PTSA-MeOH, R.T. 100 : 0

PTSA-MeOH, reflux 45 : 55

+

23 24 25

N.Beaulieu, R.A. Dickinson, P. Deslongchamps. Can. J. Chem. 1980, 58, 2531.P.Deslongchamps, D.Guay, Can. J. Chem. 1985, 63, 2757.

Re–exam stereoelectronic control in acetal formation

O

HOH

H

OMe

O

H

HO

H

H

O

H

H

O

H

O

H

H

O

H

O

HH

H

HO

O

H

H

HO

H

O

HH

H

OHO

HH

H

OH

HH

chair

twist-boat

α

β

2324

2526

27 28

29 30

100%

0%

N.Beaulieu, R.A. Dickinson, P. Deslongchamps. Can. J. Chem. 1980, 58, 2531.P.Deslongchamps, D.Guay, Can. J. Chem. 1985, 63, 2757.

Representative 27 like and 29 like conformers

481463.3510

501483.259

501523.158

551442.957

541422.756

29 like

511012.955

491112.854

511012.853

511032.752

501062.651

27 like

Heat of formation (kcal/mol)

O•••C=O Angle(deg.)

O…C=O Distance (Å)

Data obtained from MINDO-3 calculations.

N.Beaulieu, S.Goldstein, P. Deslongchamps. Helv. Chim. Acta. 1992, 75, 604. M.L. Sinnot. Chem. Rev. 1990, 90, 1171. P.Deslongchamps, Pure App. Chem. 1993, 65, 1161.

Using the new ALPH to explain glycoside hydrolysis

O O

OCH3

H

H

OCH3R R

O

OCH3

HR

H+

OR H

HOCH3

OR H

OR

H

HOCH3

O H

OCH3

R

H+

O

H

OCH3R

H+

1 2

3

4

5

6

7

8

0.7 kcal/mol

0.45kcal/mol*

*

* 6-31G ab initio estimation.N.Beaulieu, R.A. Dickinson, P. Deslongchamps. Can. J. Chem. 1980, 58, 2531.P.Deslongchamps, D.Guay, Can. J. Chem. 1985, 63, 2757. P.Deslongchamps. In The Anomeric Effect and Associated Stereoelectronic Effects. G.R.J. Thatcher, Ed. 1993. C.W. Andrews, B.Fraser-Reid, J.P.Bowen. J. Am. Chem. Soc.1991, 113, 8293.

Hydrolysis of cyclic orthoesters – the original false experimental results

O OEt

OEt

O OEt

OEt

O OEt

OEt

O OEt

OEt

COOEtOH

COOEtOH

COOEtOH

COOEtOH

H+ No lactone product detected

P.Deslongchamps. C.Lebreux and R.J.Taillefer, Canad. J. Chem. 1972, 50, 3405. E.H. Cords in Progressin Physical Organic Chemistry, Vol. 4, pp 1-44. A. Streitwieser and R.W. Tafts (eds), Interscience: New York 1967.

Hydrolysis of cyclic orthoesters – re-examined

6 : 946

7 : 935

6 : 944

16 : 843

6 : 942

21 : 791

L%/E%Orthoester

O

OMe

OMe

OOEt

OEtO

OMe

OMe

OOMe

OMe

OOMe

OMeO

OMe

OMe

P.Deslongchamps, D.Guay, R.Chenevert. Can. J. Chem. 1985, 63, 2485. B.Capon, D.M. Grieve. Tetrahedron Lett 1982, 23, 4823.

Secondary stereoelectronic effect

Primary and secondary stereoelectronic effect in intermediates:

Y

OO

RO

O

R

R

Y

OO

R

R1

21

2R O

O

R

R

B One 2nd

stereoelectronic effect

A Two 2nd

stereoelectronic effect

The intermediates should undergo cleavage with the help of primary stereoelectronic effect and the most favored one should have themaximum number of secondary stereoelectronic effect.

P.Deslongchamps, D.Guay, R.Chenevert. Can. J. Chem. 1985, 63, 2485. P.Deslongchamps.In The Anomeric Effect and Associated Stereoelectronic Effects. G.R.J. Thatcher, Ed. 1993.

Hydrolysis of orthoesters –re-exam the rigid bicyclic systems

O

O

O Me

Me

O

O

O Me

H

OH

O

O Me

H

OH

O

O Me

H

O

O

OH

Me

O OH

HOMe O

O

H

R

R

R

R

RR

6 7 8

910 11 1294% 6%

disfavoredfavoredSteric effect:

122nd stereoelectronic effect

favoreddisfavoredEntropy Formation of 12Formation of 10

P.Deslongchamps, D.Guay, R.Chenevert. Can. J. Chem. 1985, 63, 2485. P.Deslongchmps, R. Chenevert, R.J. Taillefer. Can. J. Chem. 1975, 53, 1601. R.A. McClelland, M. Alibkai. Can. J. Chem. 1981, 59, 1169.

Hydrolysis of orthoesters – re-exam the flexible systems

OH

O

O Me

H

O

O

H

O

O

O Me

Me

O

O

O Me

H

O

O

O

H

Me

OH

O

O Me

H

O

O

H

O

O

O

H

Me

O

O

OH

Me

H

O

O

O

H

Me

O

O

OH

MeH

3 13 14

15

16

17

18

19

20

17

20

17 (84%) 20 (16%)

P.Deslongchamps, D.Guay, R.Chenevert. Can. J. Chem. 1985, 63, 2485. P.Deslongchmps, R. Chenevert, R.J. Taillefer. Can. J. Chem. 1975, 53, 1601. R.A. McClelland, M. Alibkai. Can. J. Chem. 1981, 59, 1169.

The second generation of ALPH

1st generation: Any reactive conformer must have on each oxygen atom a lone pairorbital oriented antiperiplanar to the C-H bond of the acetal function.

2nd generation:In the formation and cleavage of the tetrahedral intermediates of acetals, orthoesters, etc, it must have the help of the primary stereoelectronic effect (two antiperiplanar lone pair) and the most favored process should have maximum number of secondary stereoelectronic effect.In the determination of the possible products using ALPH, the transition states (early or late) must be considered.

Further Challenge to ALPH

Syn E2 elimination:

H

H

Br

D RO-K+

H

H

How about syn-periplanar lone pair?

O

H

O Me

Synperiplanar Lone pair- ozonolysis of tricyclic acetal

O

H

O Me

COOMe

H

H

OCOMe O

O

COOMe

H

O

1. O3 , 20min 2. Ac2O, pyridine

19% 53% 10%

1

2 3 4

S.G. Li and P. Deslongchamps. Tetra. Lett. 1993, 34, 7759.

Synperiplanar Lone pair- ozonolysis of tricyclic acetal

O

H

O Me

1

OO O

O

OMe

HOO O

O

O

O Me

O OH

OHO Me

O

COOMe

H

H

OCOMe O

O

COOMe

H

O

Esterification OxidationLactonization

2 3 4

56

7

S.G. Li and P. Deslongchamps. Tetra. Lett. 1993, 34, 7759.

Synperiplanar Lone pair- hydrolysis of tricyclic acetal

O

H

OMe

O

O

H

Me

1 8 ( 1 )( 25)

O

H

OMe

H

O

H

O

H

OH

H+

9 10 11

S.G. Li, A.J. Kirby, and P. Deslongchamps. Tetra. Lett. 1993, 34, 7757.P.V. Eikeren. J. Org. Chem. 1980, 45, 4641.

The third generation of (S)ALPH

3rd generation:

In the formation and cleavage of the tetrahedral intermediates of acetals, orthoesters, etc, it must have the help of the primary stereoelectronic effect (2 anti or 1 anti plus 1 syn periplanar lone pair) and the most favored process should have maximum number of secondary stereoelectronic effect.

In the determination of the possible products using (S)ALPH, the transition states (early or late) must be considered.

Hydrolysis of cyclic orthoesters application of (S)ALPH

O

O

O

O

O

O

OMe

Me

OMe

Ph

OMe

Me

H

H

H

H

H

H

H

H

OAc

OH

H

H

OH

OH

H

H

OBz

OH

OAc

H

H

OH

OH

H

H

OAc

Relative rates Products

2 : 1

1 : 1

Orthoesters

1

40

1680

1

2

3

4 5

6

7 8

S.G. Li, Y. L. Dory, and P. Deslongchamps. Tetrahedron, 1996, 52, 14841.

Hydrolysis of cyclic orthoesters application of (S)ALPH

16% 33% 51%

O

O

O

Me

Me

O OH O

- H+

H+

H2O - H+

H+

H2O - H+

- MeOH

OMe

O Me

OH

OO Me

O

O

Me

Me

OH

OHO

OMe

OH

OH OH OHO

Me

O

Me

H2O - H+

*

*

*

*

*

- RCOOMe

*

1

4 5 4*

9 10

11 12

S.G. Li, Y. L. Dory, and P. Deslongchamps. Tetrahedron, 1996, 52, 14841.

Hydrolysis of cyclic orthoestersapplication of (S)ALPH

O

O

O

Ph

Me

O

- H+

H+

H2O - H+

H+

OPh

O Me

OH

OO Ph

O

O

Ph

OH

OHO

Ph

*

*

*6* :100%

O

OR

RH H

H

HH

H2O

OO

H H

H

HH

H2O

2

13 like ion

14

15

13

14 like ion

S.G. Li, Y. L. Dory, and P. Deslongchamps. Tetrahedron, 1996, 52, 14841.

Hydrolysis of cyclic orthoestersapplication of (S)ALPH

OO

Me

O Me

1

OO

Me

OMe

3

Relative rate: 1 42

S.G. Li, Y. L. Dory, and P. Deslongchamps. Tetrahedron, 1996, 52, 14841.

Synthetic Application of ALPHaddition of nucleophiles to amidinium ion

N N

Ph

Nu-

solvent

NN

PhH

Nu-

NN

Ph

H

Nu-

NN

Ph

Nu

NN

PhNu

ciskinetic product

transthermodynamicproduct

AcOH or PhOH

C.L. Perrin, D.B. Yong. J. Am. Chem. Soc. 2001, 123, 4451.

Synthetic Application of ALPHaddition of nucleophiles to amidinium ion

3565DMEPhCH2MgCl

>98>98DMEPhC≡CMgBr1775PhHn-BuLi

>98>98DMSOPhC≡CMgBr1775DMEn-BuLi

>98>98DMSOHC≡CMgBr1565DMECH3Li

<280DMEPhMgBr5090THFLiAlD4

2560DMEAllylMgBr5088MeOHNaBD4

%trans

%cis

Solv-ent

Nucleopile%trans

%cis

Solv-ent

Nucleopile

C.L. Perrin, D.B. Yong. J. Am. Chem. Soc. 2001, 123, 4451.

Conclusion – a summary

• Proposed based on ozonolysis of acetals.• In 30years, it was evolved from the 1st to the 3rd

generation:Primary stereoelectronic effect plus maximum number of secondarystereoelectronic effect. Transition states (early or late) must be considered

• A useful synthetic strategy.

Acknowledgement

• Dr. Hollingsworth• Dr. Tepe• Dr. Hollingsworth group