Stochastic modeling

Post on 06-Feb-2016

53 views 0 download

Tags:

description

Stochastic modeling. Walk through stochastic simulation script. Visualize master equation. Exact particular trajectories. Ensemble distributions. Master equations: Dynamics of population fractions. m (copies mRNA). 0 copies. D t. Time. 0. - PowerPoint PPT Presentation

transcript

1

Stochastic modeling

Visualize master equation Walk through stochastic simulation script

Ensemble distributions Exact particular trajectories

2

Master equations: Dynamics of population fractions

m (copies mRNA)

0 copies

0 DtTime

3

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0

m (copies mRNA)

4

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

βˆ’ [ 𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š ,𝑑 ) ]βˆ† 𝑑 𝑁 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘š+1 ,𝑑 )𝑁 (π‘š , 𝑑+βˆ† 𝑑 )=𝑁 (π‘š ,𝑑 )𝑁 (π‘š , 𝑑+βˆ† 𝑑 )βˆ’π‘ (π‘š , 𝑑 )=ΒΏβˆ†π‘ (π‘š ,𝑑 )=ΒΏ

+π’ͺ (βˆ† 𝑑 2 )

m

m - 1

m + 1

5

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

βˆ†π‘ (π‘š , 𝑑 )βˆ† 𝑑 𝑁 𝑇𝑂𝑇

=βˆ’ [𝑅↑ (π‘š ,𝑑 )+𝑅↓ (π‘š ,𝑑 ) ] 𝑁 (π‘š , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↑ (π‘šβˆ’1 ,𝑑 ) 𝑁 (π‘šβˆ’1 , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↓ (π‘š+1 ,𝑑 ) 𝑁 (π‘š+1 , 𝑑 )𝑁𝑇𝑂𝑇

βˆ’ [ 𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š ,𝑑 ) ]βˆ† 𝑑 𝑁 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 ,𝑑 )βˆ† 𝑑 𝑁 (π‘š+1 ,𝑑 )βˆ†π‘ (π‘š ,𝑑 )=ΒΏ

+π’ͺ (βˆ† 𝑑 )

+π’ͺ (βˆ† 𝑑 2 )

m

m - 1

m + 1

6

Master equations: Dynamics of population fractions

0 copies

Dt 2Dt0 t t + Dt

+π’ͺ (βˆ† 𝑑 )

βˆ†π‘ƒ (π‘š ,𝑑 )βˆ† 𝑑 =βˆ’ [𝑅↑ (π‘š , 𝑑 )+𝑅↓ (π‘š , 𝑑 ) ]𝑃 (π‘š ,𝑑 )+𝑅↑ (π‘šβˆ’1 ,𝑑 )𝑃 (π‘šβˆ’1 ,𝑑 )+𝑅↓ (π‘š+1 , 𝑑 ) 𝑃 (π‘š+1 , 𝑑 )

βˆ†π‘ (π‘š , 𝑑 )βˆ† 𝑑 𝑁 𝑇𝑂𝑇

=βˆ’ [𝑅↑ (π‘š ,𝑑 )+𝑅↓ (π‘š ,𝑑 ) ] 𝑁 (π‘š , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↑ (π‘šβˆ’1 ,𝑑 ) 𝑁 (π‘šβˆ’1 , 𝑑 )𝑁 𝑇𝑂𝑇

+𝑅↓ (π‘š+1 ,𝑑 ) 𝑁 (π‘š+1 , 𝑑 )𝑁𝑇𝑂𝑇

+π’ͺ (βˆ† 𝑑 )𝑑𝑃 (π‘š , 𝑑 )

𝑑𝑑

m

m - 1

m + 1

Ensemble distributions Exact particular trajectories

7

Stochastic modeling

Visualize master equation Walk through stochastic simulation script

8

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

9

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

10

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]System variables:

System processes:

11

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

12

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

13

Specifying system

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

14

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

15

Calculate average firing rates for each independent channel

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

a1

a2

a3

a4

System variables:

System processes:

π‘₯=[π‘₯ (1 ) ΒΏ copies of mRNAπ‘₯ (2 ) ΒΏ copies of protein ]

Adding time-rates for individual channels

16

a1

a2

a3

a4

a0

Reaction channel firings in a population

17

a0

a0

a0

a0

a0

βˆ† 𝑑 βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

a0

a0

a0

a0

a0

βˆ† 𝑑

18

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

a0

a0

a0

a0

a0

βˆ† 𝑑

19

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Reaction channel firings in a population

20

a0

a0

a0

a0

a0

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑 1 π‘‹βˆ† 𝑑 2 𝑋

21

a0

a0

a0

a0

a0

Reaction channel firings in a population

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑 1 π‘‹βˆ† 𝑑 2 𝑋

22

a0

a0

a0

a0

a0

βˆ† π‘‘πΏπ‘‚π‘πΊβˆ† 𝑑𝐿𝑂𝑁𝐺𝐸𝑅

Reaction channel firings in a population

a0

a0

a0

a0

23

a0

a0

a0

a0

a0

βˆ† π‘‘π•π„π‘π˜ 𝑆𝐻𝑂𝑅𝑇

βˆ† 𝑑 𝐴𝐿𝑆𝑂 π•π„π‘π˜π‘†π»π‘‚π‘…π‘‡

Reaction channel firings in a populationZoomed in time scale

Dice represent shorter time intervals than before

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

Reaction channel firings in a population

24

a0

a0

a0

a0

a0

βˆ† 𝑑𝑆𝐻𝑂𝑅𝑇 βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† π‘‘βˆ† 𝑑𝐿𝑂𝑁𝐺

25

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

26

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

27

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

28

Draw duration from exponential distribution

βˆ† 𝑃 π΄π‘π‘Œ 𝐸𝑉𝐸𝑁𝑇 β‰…π‘Ž0βˆ† 𝑑

29

Draw duration from exponential distribution

30

Draw duration from exponential distribution

31

Draw duration from exponential distribution

32

Draw duration from exponential distribution

33

Draw duration until next event from exponential distribution

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

𝑑 0≔ ⟨𝜏 ⟩

34

Draw duration from exponential distribution

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

𝑑 0≔ ⟨𝜏 ⟩

𝜏=𝑑0 ln( 1𝑅1 )

𝑅1=ΒΏ 0 1

35

𝜏=1.4 𝑑0

Draw duration from exponential distribution

ΒΏ1.4 /π‘Ž0

36

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

37

Choose which event to perform

a1

a2

a3

a4

0

1

Type of event Rate Parameters Change to mRNA #

Change to protein #

Transcription kr kr +1 0

mRNA degradation

grx(1) gr -1 0

Protein synthesis kpx(1) kp 0 +1

Protein degradation

gpx(2) gp 0 -1

38

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

39

Walk-through of stochastic simulation script

1. Specify system chemistry2. Use current state vector to calculate time to next event3. Use current state vector to choose type of next event

t

mRNA

Protein