String theory and the mysterious quantum matter of condensed

Post on 11-Feb-2022

4 views 0 download

transcript

String theory and theString theory and themysterious quantum matter ofmysterious quantum matter of

condensed matter physics.condensed matter physics.Jan Zaanen

1

2

String theory: what is it really goodfor?

- Hadron (nuclear) physics: quark-gluon plasma in RIHC.

- Quantum matter: quantum criticality in heavy fermionsystems, high Tc superconductors, …

Started in 2001, got on steam in 2007.

Son Hartnoll Herzog Kovtun McGreevy Liu Schalm

3

Quantum critical matter

Quantumcritical

Heavy fermionsHigh Tcsuperconductors

Ironsuperconductors (?)

Quark gluon plasma

Quantumcritical

High-Tc Has Changed Landscape of Condensed Matter PhysicsHigh-resolution ARPES

Spin-polarized Neutron

Magneto-optics

STM

Transport-Nernst effect

High TcSuperconductivity

Angle-resolved MR/Heat CapacityInelastic X-Ray Scattering

?

Photoemissionspectrum

6

Hairy Black holes …

7

Holography and quantum matter

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’snormal state (Hong Liu, John McGreevy).

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll).

Scalar hair: holographic superconductivity, a new mechanism forsuperconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .

“Planckian dissipation”: quantum critical matter at high temperature,perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).

But first: crash course in holography

8

General relativity “=“ quantumfield theory

Gravity Quantum fields

Maldacena 1997

=

9

Anti de Sitter-conformal quantumfield theory correspondence

AdS geometry(“near” the boundary)

Conformal quantum fieldtheory (at ‘high’ energies)

Another word for:Quantum criticality!

Not like ouruniverse …

Holography with lasers

Three dimensional image Encoded on a twodimensionalphotographic plate

Gravity - quantum fieldholography

Einstein world “AdS” =Anti de Sitter universe

Quantum fields in flat space“CFT”= quantum critical

Hawking radiation

11

1

1

1

1

1

1

1

11

1

11

1

00

0

0 01

0 0

10

00

0

0 00

01

1

1

1

10

0 0

1

1

0 1

11

0

1001

101

1

1

1

1 0

0

Hawking Temperature:

g = acceleration at horizon

A = area of horizon

‘t Hooft’s holographic principle

BH entropy:

Number of degrees of freedom (fieldtheory) scales with the area and notwith the volume (gravity)

The bulk: Anti-de Sitter space

Extra radial dimensionof the bulk <=> scaling“dimension” in the fieldtheory

Bulk AdS geometry =scale invariance ofthe field theory

UVIR

Fractal Cauliflower (romanesco)

Quantum critical cauliflower

Quantum critical cauliflower

Quantum critical cauliflower

Quantum critical cauliflower

Fermion sign problem

Imaginary time path-integral formulation

Boltzmannons or Bosons:

integrand non-negative

probability of equivalent classical system: (crosslinked) ringpolymers

Fermions:

negative Boltzmann weights

non probablistic: NP-hardproblem (Troyer, Wiese)!!!

21

Renormalization group forquantum critical matter

Wilson-Fisher RG:based on Boltzmannianstatistical physics

boundary: d-dim space-time

Hawking radiationgluons

Black holesstrings

quarks

The Magic of AdS/CFT!

22

Black hole hair codes thequantum matter

“Hairy black holes”code for (un)stablestates of quantummatter emerging fromthe quantum criticalstuff.

23

Quantum critical dynamics:classical waves in AdS

WCFT J( ) = SAdS φ( )φx0 →0= J

gYM2 N =

R4

αgYM

2 = gs

E-fieldtransverse E-field <=> 3d electric fieldradial E-field <=> 3d charge density

B-fieldradial B-field <=> 3d magnetic fieldtransverse B-field <=> 3d current density

spatial metric perturb.transverse gradient <=> 3d distortionradial gradient <=> 3d stress tensor

temporal metric perturb.transverse gradient <=> temperature gradientradial gradient <=> heat flow

SUSY Einstein-Maxwell in AdS <==> SUSY Yang-Mills CFT

The AdS/CFT dictionary

25

Holography and quantum matter

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normalstate (Hong Liu, John McGreevy).

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid(critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll).

Scalar hair: holographic superconductivity, a new mechanism forsuperconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .

“Planckian dissipation”: quantum critical matter at high temperature,perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev).

But first: crash course in holography

26

27

The Schwarzschild Black Hole isthe heater

GR in Anti de Sitter space Quantum-critical fields on the boundary:

Black holetemperatureentropy

- at the Hawking temperature- entropy = black hole entropy

28

Dissipation = absorption ofclassical waves by Black hole!

Viscosity: absorption cross section ofgravitons by black hole

Entropy density s: Bekenstein-HawkingBH entropy = area of horizon€

η =σ abs 0( )16πG

= area of horizon (GR theorems)

Universal viscosity-entropy ratio for CFT’swith gravitational dual limited in large N by:

ηs

=1

4πh

kB

Policastro-Son-Starinets (2002):

4πkBηhs

AdS/CFT viscosityKovtun-Son-Starinets (2005)

30

The quark-gluon plasma

Relativistic Heavy Ion Collider Quark-gluon ‘fireball’

The tiny viscosity of the Quark-Gluon plasma

QG plasma:within 20% ofthe AdS/CFTviscosity!

4πkBηhs

32

Quantum critical hydrodynamics:Planckian dissipation & viscosity

Planckian dissipation:

h

kBT

Viscosity, entropy density:

Planckian viscosity:

η = ε + p( )τ, s =ε + p

T⇒

ηs

= Tτ

τ = τ h ≈h

kBT

ηs≈

h

kB

In a finite temperature quantum criticalstate the time it takes to convert work inheat (relaxation time) has to be €

Sachdev,1992

33

Twenty five years ago …Mueller Bednorz

Ceramic CuO’s,likeYBa2Cu3O7

Superconductivityjumps to ‘high’temperatures

34

Graveyard of Theories

Schrieffer

Anderson

Mueller

Bednorz

Laughlin

Abrikosov Leggett

Wilczek

Mott

Ginzburg

De Gennes

YangLee

35

Phase diagram high Tcsuperconductors

JZ, Science 315,1372 (2007)

Mysteryquantum criticalmetal

‘Stripy stuff’, spontaneouscurrents, phase fluctuations ..

ΨBCS =Πk uk + vkck↑+ c−k↓

+( ) vac.

The return ofnormalcy

36

Quantum Phase transitions

Quantum scale invariance emerges naturally at a zero temperaturecontinuous phase transition driven by quantum fluctuations:

JZ, Science 319, 1205 (2008)

37

A universal phase diagram

Quantumcritical

Heavy fermionsHigh Tcsuperconductors

Ironsuperconductors (?)

Quantumcritical

38

Divine resistivity

39

Critical Cuprates are PlanckianDissipators

A= 0.7: the normal state of optimallly doped cuprates is aPlanckian dissipator!

σ1(ω,T) =1

4πω pr

2 τ r

1+ω 2τ r2 , τ r = A h

kBT

van der Marel, JZ, … Nature 2003:

Optical conductivity QC cuprates

Frequency less than temperature:

⇒ [ h

kBTσ1

] = const.(1+ A2[ hωkBT

]2)

40

Divine resistivity = PlanckianDissipation!

ρ ∝1τ h

∝ kBT

41

Holography and quantum matter

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’snormal state (Hong Liu, John McGreevy).

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid(critical) ultraviolet, like heavy fermions (Schalm, Cubrovic, Hartnoll).

Scalar hair: holographic superconductivity, a new mechanism forsuperconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .

“Planckian dissipation”: quantum critical matter at high temperature, perfectfluids and the linear resistivity (Son, Policastro, …, Sachdev).

But first: crash course in holography

42

Holographic quantum criticalfermion state

Liu McGreevy

43

The quantum in the kitchen:Landau’s miracle

Kinetic energy

k=1/wavelength

Electrons are waves

Pauli exclusion principle: everystate occupied by one electron

Fermi momenta

Fermienergy

Fermi surface of copper

Unreasonable: electrons stronglyinteract !!

Landau’s Fermi-liquid: thehighly collective low energyquantum excitations are likeelectrons that do not interact.

44

Watching electrons:photoemission

Kinetic energy

k=1/wavelengthFermi momenta

Fermienergy

Fermi surface of copper

Electron spectral function: probability tocreate or annihilate an electron at agiven momentum and energy.

k=1/wavelength

Fermienergy

energy

45

ARPES: Observing Fermi liquids

‘MDC’ at EF in conventional2D metal (NbSe2)

Fermi-liquids: sharp Quasiparticle ‘poles’

46

Cuprates: “Marginal” or “Critical”Fermi liquids

Fermi ‘arcs’ (underdoped)closing to Fermi-surfaces(optimally-, overdoped).

EDC lineshape: ‘branch cut’ (conformal),width propotional to energy

47

Breaking fermionic criticalitywith a chemical potential

‘Dirac waves’

Electrical monopole

k

E

µ

µ

Fermi-surface??

48

AdS/ARPES for the Reissner-Nordstrom non-Fermi liquids

Critical FL Marginal FL Non Landau FL

Fermi surfaces but no quasiparticles!

49

Horizon geometry of the extremalblack hole: ‘emergent’ AdS2 =>IR of boundary theory controlledby emergent temporal criticality

Gravitational ‘mechanism’ for marginal(critical) Fermi-liquids:

G−1 =ω − vF k − kF( ) − Σ k,ω( )

Σ"∝ω 2ν kF

Fermi-surface “discovered” by matchingUV-IR: like Mandelstam “fermioninsertion” for Luttinger liquid!

Temporal scale invariance IR “lands” inprobing fermion self energy!

Gravitationally coding the fermionpropagators (Faulkner et al. Science 329, 1043, 2010)

50

Holography and quantum matter

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normalstate (Hong Liu, John McGreevy).

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid(critical) ultraviolet, like heavy fermions (Schalm, Cubrovic, Hartnoll).

Scalar hair: holographic superconductivity, a new mechanism forsuperconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .

“Planckian dissipation”: quantum critical matter at high temperature, perfectfluids and the linear resistivity (Son, Policastro, …, Sachdev).

But first: crash course in holography

51

Phase diagram high Tcsuperconductors

JZ, Science 315,1372 (2007)

Mystery quantumcritical metal‘Stripy stuff’, spontaneous

currents, phase fluctuations ..

ΨBCS =Πk uk + vkck↑+ c−k↓

+( ) vac.

The returnof normalcy

52

“AdS-to-ARPES”: Fermi-liquid (?)emerging from a quantum critical state.

SchalmCubrovic

53

The zero temperature extensiveentropy ‘disaster’

AdS-CFT

The ‘extremal’ charged blackhole with AdS2 horizongeometry has zero Hawkingtemperature but a finitehorizon area.

The ‘seriously entangled’quantum critical matter atzero temperature should havean extensive ground stateentropy (?*##!!)

54

Black hole hair can be fermionic!Schalm, Cubrovic, JZ (arXiv:1012.5681)

‘Hydrogen atom’: quantum mechanicalprobability density ‘atmosphere’ of onefermion/surface area of black brane.

AdS-CFT

Stable Fermi liquid on theboundary!

The Fermi-liquid VEV:Hair profile vs. statistics

Fermionic hair: the probability distribution along the radialdirection of the AdS “hydrogen atom” wave function.

Position of the maximumdetermines the Fermi energy

56

Fermionic hair: stability andequation of state.

Strongly renormalized EF Single Fermion spectral function:non Fermi-liquid Fermi surfaceshave disappeared!

57

Holography and quantum matter

Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normalstate (Hong Liu, John McGreevy).

Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid(critical) ultraviolet, like heavy fermions (Schalm, Cubrovic, Hartnoll).

Scalar hair: holographic superconductivity, a new mechanism forsuperconductivity at a high temperature (Hartnoll, Herzog,Horowitz) .

“Planckian dissipation”: quantum critical matter at high temperature, perfectfluids and the linear resistivity (Son, Policastro, …, Sachdev).

But first: crash course in holography

58

BCS theory: fermions turning intobosons

Fermi-liquid + attractive interaction

Bardeen Cooper Schrieffer

Quasiparticles pair and Bose condense:D-wave SC: Dirac spectrum

ΨBCS =Πk uk + vkck↑+ c−k↓

+( ) vac.

Ground state

59

Superglue !

60

The zero temperature extensiveentropy ‘disaster’

AdS-CFT

The ‘extremal’ charged blackhole with AdS2 horizongeometry has zero Hawkingtemperature but a finitehorizon area.

The ‘seriously entangled’quantum critical matter atzero temperature should havean extensive ground stateentropy (?*##!!)

61

The holographic superconductorHartnoll, Herzog, Horowitz, arXiv:0803.3295

(Scalar) matter ‘atmosphere’

AdS-CFT

Condensate (superconductor,… ) on the boundary!

‘Super radiance’: in thepresence of matter theextremal BH is unstable =>zero T entropy alwaysavoided by low T order!!!

The Bose-Einstein hair cut.

Black hole scalar hair coding for the holographic superconductor

Scalar matter accumulatesat the horizon

63

Holographic superconductivity:stabilizing the fermions.

Fermion spectrum for scalar-hair back hole (Faulkner et al., 911.340;Chen et al., 0911.282):

‘BCS’ Gap in fermionspectrum !!

Temperature dependence as expected for‘quantum-critical’ superconductivity (She,JZ, 0905.1225)Excessive temperature dependence‘pacified’ !

64

Spielberg ThorneHartnoll Herzog Horowitz

Fisk

ThomsonRonningMacKenzieGrigeria

Los AlamosSt Andrews

Nature Nov 5 2009

Fermionic quantum phase transitionsin the heavy fermion metals

Paschen et al., Nature (2004)

JZ, Science 319, 1205(2008)

m* =1

EF

EF → 0⇒ m* →∞

QP effective mass‘badactors’

ColemanRutgers

66

Experimentalists: back to theentropic drawing board ..

Grigeria MacKenzie Thomson Ronning

Nailing down T=0 entropy hiddenby last minute order: highprecision entropy balance needed.

ΔSorder =ΔCT0

Tc

∫ dT

Lanthanides, actinides:Los Alamos

Ruthenates:St. Andrews

Line of critical s

point

pq

?

Photoemissionspectrum

68

Further readingAdS/CMT tutorials:

J. Mc Greevy, arXiv:0909.0518; S. Hartnoll, arXiv:0909.3553

AdS/CMT fermions:

Hong Liu et al., arXiv:0903.2477,0907.2694,1003.0010; M.Cubrovic et al. Science 325,429 (2009), arXiv:1012.5681; T.Faulkner et al., Science 329, 1043 (2010).

Condensed matter:

High Tc: J. Zaanen et al., Nature 430, 512, arXiv:1012.5461; C.M. Varmaet al., Phys. Rep. 361, 267417

Heavy Fermions: J. Zaanen, Science 319, 1205; von Loehneisen et al, Rev.Mod. Phys. 79, 1015

69

Quantum criticality or ‘conformalfields’

70

Fermi-liquidphenomenology

Bare single fermion propagator ‘enumerates the fixed point’:

Spectral function:

( )( ) ( ) ( ) K+−−−

=Σ ʹ′ʹ′+Σʹ′−−−

=FRF kkvE

Zimk

kGωµω

ω21, 2

0

ImG(ω,k) = A ω,k( ) =ʹ′ ʹ′ Σ ω,k( )

ω + µ + k − kF( )2 2m + ʹ′ Σ ω,k( )2

+ ʹ′ ʹ′ Σ ω,k( )2

The Fermi liquid ‘lawyer list’:

- At T= 0 the spectral weight is zero at the Fermi-energy except for thequasiparticle peak at the Fermi surface:

A EF ,k( ) = Z δ k − kF( )

- Analytical structure of the self-energy:( ) ( ) ( ) ( ) K+−

Σʹ′∂+−

Σʹ′∂+Σʹ′=Σʹ′

==F

kkF

EFF kk

kEkEk

FF

ωω

ωω

,,

ʹ′ ʹ′ Σ ω,k( )∝ ω − EF( )2+K

- Temperature dependence:

ʹ′ ʹ′ Σ EF ,kF ,T( )∝T 2 +K

Critical Fermi surfaces in heavyfermion systems

Blue = Fermi liquid

Yellow= quantumcritical regime

Antiferromagneticorder

FL Fermi surface FL Fermi surfaceCoexisting criticalFermi surfaces ?

72

Marginal Fermi liquidphenomenology.

Fermi-gas interacting by second order perturbation theory with ‘singular heat bath’:

ImP(q,ω)∝−N(0)ωT

, for |ω |< T

∝−N(0)sign ω( ), for |ω |> T

Directly observed in e.g. Raman ??

G(k,ω) =1

ω − vF k − kF( ) − Σ(k,ω)

Σ(k,ω)∝ gωc

⎝ ⎜

⎠ ⎟

2

ω ln max |ω |,T( ) /ωc( ) − i π2

max |ω |,T( )⎡

⎣ ⎢ ⎤

⎦ ⎥

1τ∝max |ω |,T( )

Single electron response (photoemission):

Single particle life time is coincident (?!) with thetransport life time => linear resistivity.

73

Critical fermions at zero density:branchcut propagators

Two point Euclidean correlators:

Analytically continue to Minkowski time => susceptibilities

Ψ τ,r r ( ) = φ τ,r r ( ) φ(0,0)

χ t,r r ( ) = Ψ iτ,r r ( )

At criticality, conformal invariance:

Ψ τ( )∝ 1τη

∝1ωn

Δ → χ(ω)∝ 1iω( )Δ

Lorentz invariance:

χ ω,k( )∝ 1

−ω 2 + c 2k 2( )Δ

Scaling dimension setby mass in AdS Diracequation.

74

AdS/CFT single fermion Spectralfunctions

ν = 0.1

ν ≈1

Non-Fermi-liquid

“Fermi-liquid”

0

• Scaling metric:

• Scaling fields:• Scaling relations:

Holographic Pauli-blocking:Lifshitz geometry.

δγδγγκ +++− ∝∝∝∝Φ 222020 ,,, zIzJzJz

mm 21,0,1,1,21 −====−= δγκβα

2

2

2

22

2

22

zdz

zdydx

zdtds −

+−=

βα

76

‘Pseudogap’ fermions in high Tcsuperconductors

10 K

Tc = 82 K

102 K

Gap stays open above Tc

But sharp quasiparticlesdisappear in incoherent‘spectral smears’ in the metal

Shen group, Nature 450, 81 (2007)

77

Thermodynamics: where are thefermions?

Hartnoll et al.: arXiv:0908.2657,0912.0008Large N limit: thermodynamics entirely determined byAdS geometry.

Fermi surface dependent thermodynamics, e.g. Haas vanAlphen oscillations?

Leading 1/N corrections: “Fermionic one-loopdark energy”

Quantum corrections: one loop using Dirac quasinormal modes:‘generalized Lifshitz-Kosevich formula’ for HvA oscillations.

χosc. = −∂ 2Ωosc.

∂B2 =πATckF

4

eB3 cosπckF2

eBe−

cTkF2

ebµTµ

⎝ ⎜

⎠ ⎟

2ν −1

Fn µ( )

n= 0

78

Soaked in Entropy ….

S = A + C T d +L

F = A T +L

Entropic catastrophe!

79

Collective transport: fermioncurrents

Tedious one loop calculation, ‘accidental’ cancellations:

Hong Liu (MIT)

ρFS ∝Σ"1− fermion∝T 2ν

‘Strange coincidence’ of one electron and transport lifetime of marginal fermiliquid finds gravitational explanation!

80

‘Shankar/Polchinski’ functionalrenormalization group

interaction

Fermi sphere

UV: weakly interacting Fermi gas

Integrate momentum shells:functions of running couplingconstants

All interactions (except marginalHartree) irrelevant => Scalinglimit might be perfectly idealFermi-gas

81

The end of weak coupling

interaction

Fermi sphere

Strong interactings:

Fermi gas as UV starting pointdoes not make sense!

=> ‘emergent’ Fermi liquid fixedpoint remarkably resilient (e.g. 3He)

=> Non Fermi-liquid/non ‘Hartree-Fock’ (BCS etc) states of fermionmatter?

82

Numerics and fermionicquantum criticality Jarrell

DCA results for Hubbard model at intermediate couplings (U = 0.75W):Non-fermi liquid ‘Mott fluid’

Fermi-liquid at ‘high’ dopings

Quantum critical state, very unstable tod-wave superconductivity

83

Graphene at the zerodensity Mott Transition

Herbut, Juricic, Vafek (arXiv:0904.1019):strongly interacting critical point atfinite fermion coupling

84

Gravitationally coding the fermionpropagators (Faulkner et al. Science Aug 27. 2010)

GR ω,k( ) = F0 k( ) + F1 k( )ω + F2(k)gk ω( )

| k |≡ kF

GR (ω,k) =h1

k − kF −ω /vF − Σ ω,k( ); Σ ω,k( ) = hgkF

ω( ) = h2eiγ kFω 2ν kF

T=0 extremal black hole, near horizon geometry ‘emergent scale invariant’:

AdS2 ⊗ R2 ⇒ gk ω( ) = c k( )ω 2ν k

Matching with the UV infalling Dirac waves:

Special momentum shell:

Miracle, this is like critical/marginal Fermi-liquids!!

Space-like: IR-UV matching ‘organizes’ Fermi-surface.

Time-like: IR scale invariance picked up via AdS2 self energy

boundary: d-dim space-time

Hawking radiationgluons

Black holesstrings

quarks

AdS/CFT correspondence: String theory Magic!

d-dim. gauge theory (d+1)-dim string theory/ conformal field theory / gravity theory

Maldacena

Witten, Gubser,Klebanov,Polyakov

86

Entropicsingularities

AdS/CFT: black holes andplanckian dissipation

AdS-to-ARPES Holographicsuperconductivity

quantum criticalsuperconductivity

87

Empty

88

Empty

89

Empty