Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry

Post on 23-Feb-2016

109 views 0 download

Tags:

description

Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry. Peter Beshay Department of Electrical Engineering University of Virginia, Charlottesville. 01/21/2014. Outline. Motivation Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion. Motivation. - PowerPoint PPT Presentation

transcript

RobustLowPowerVLSI

RobustLowPowerVLSI

Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry

01/21/2014

Peter BeshayDepartment of Electrical EngineeringUniversity of Virginia, Charlottesville

RobustLowPowerVLSI

Outline Motivation Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

2

RobustLowPowerVLSI

Motivation

3

Source: IdeaConnection.com

Source: groups.csail.edu/

Source: Implantable-device.com

RobustLowPowerVLSI

Motivation

4

SRAM are used in implantable devices Contribute significantly to the total

System-on-chip (SOC) power consumption

SRAM Power Consumption (1)

(1) N. Verma, Phd thesis

RobustLowPowerVLSI

Motivation

5

Minimum Energy occurs in sub-threshold [1]

Eactive = CVDD2

Etotal/operation minimized in sub-VT

Main LimitationsProcess Variations effect, Slow Speed

VDD (V)

Nor

mal

ized

Ene

rgy

(1) N. Verma, Phd thesisEnergy Consumption vs. VDD (1)

RobustLowPowerVLSI

Motivation

6

Work Focus

Minimizing the energy of the read operation of sub-threshold SRAMs.

Sense Amplifier are utilized during the read operation of the SRAMs.

The intrinsic offset voltage of the SAs causes increased read energy and degraded performance of the SRAM read operation [2].

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

7

RobustLowPowerVLSI

Sense Amplifier

=1 if =0 Otherwise

๐‘‰ 2

๐‘จ๐’๐’‚๐’๐’๐’ˆ๐’š๐‘‰ 1

๐‘‰ ๐‘œ๐‘ข๐‘ก

Enable

RobustLowPowerVLSI

9

SA Offset Voltage

=1 if =0 Otherwise

๐‘‰ 2

๐•๐จ๐Ÿ๐Ÿ๐ฌ๐ž๐ญ

๐‘จ๐’๐’‚๐’๐’๐’ˆ๐’š

=1 if =0 Otherwise

๐‘‰ 1

๐‘‰ 2

๐‘‰ 1

๐‘‰ ๐‘œ๐‘ข๐‘ก

๐‘‰ ๐‘œ๐‘ข๐‘ก

Enable

Enable

RobustLowPowerVLSI

10

=1 if =0 Otherwise

๐‘‰ 2

๐•๐จ๐Ÿ๐Ÿ๐ฌ๐ž๐ญ

๐‘จ๐’๐’‚๐’๐’๐’ˆ๐’š

=1 if =0 Otherwise

๐‘‰ 1

๐‘‰ 2

๐‘‰ 1

๐•๐จ๐Ÿ๐Ÿ๐ฌ๐ž๐ญ

๐‘‰ ๐‘œ๐‘ข๐‘ก

๐‘‰ ๐‘œ๐‘ข๐‘ก

Enable

Enable

๐Ž๐œ๐œ๐ฎ๐ซ๐ž๐ง๐œ๐ž๐ฌ

SA Offset Voltage

RobustLowPowerVLSI

11

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

6T Bitcell 6T Bitcell 6T Bitcell

6T SRAM Read Operation

RobustLowPowerVLSI

12

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

6T Bitcell 6T Bitcell 6T Bitcell

6T SRAM Read Operation

RobustLowPowerVLSI

13

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

6T SRAM Read Operation

RobustLowPowerVLSI

14

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

6T SRAM Read Operation

RobustLowPowerVLSI

15

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

6T SRAM Read Operation

RobustLowPowerVLSI

16

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

WL=

WL

6T SRAM Read Operation

RobustLowPowerVLSI

17

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

6T SRAM Read Operation

RobustLowPowerVLSI

18

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

6T SRAM Read Operation

RobustLowPowerVLSI

19

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

โˆ†V >

โˆ†V

6T SRAM Read Operation

RobustLowPowerVLSI

20

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

SAE

โˆ†V >

โˆ†V

6T SRAM Read Operation

RobustLowPowerVLSI

21

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

SAE

โˆ†V >

โˆ†V

6T SRAM Read Operation

RobustLowPowerVLSI

22

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

โˆ†V

6T SRAM Read Operation

RobustLowPowerVLSI

23

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

โˆ†V

6T SRAM Read Operation

RobustLowPowerVLSI

24

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......โ€ฆ

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

โˆ†V

๐‘ฌ๐’‘๐’“๐’†๐’„๐’‰๐’‚๐’“๐’ˆ๐’†=๐‚๐๐‹๐•๐ƒ๐ƒโˆ†๐•6T SRAM Read Operation

RobustLowPowerVLSI

PMOS-input Latch SA

๐„๐BL ๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐Cross coupled inverter to latch the output

Sense the input voltage

Enable the SA

Precharge the output to VDD 25

RobustLowPowerVLSI

๐„๐BL=0.45V ๐๐‹=๐ŸŽ .๐Ÿ’๐•

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

EN

OUT,

26

PMOS-input Latch SA

RobustLowPowerVLSI

๐„๐BL=0.45V ๐๐‹=๐ŸŽ .๐Ÿ’๐•

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

EN

OUT,

V=

27

PMOS-input Latch SA

RobustLowPowerVLSI

Offset Voltage

๐„๐BL=0.5 =0.5

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

๐ˆ๐ƒ=๐ˆ๐ŸŽ๐–๐‹ ๐ž

๐•๐†๐’โˆ’๐•๐ญ๐ก

๐ง๐•๐ญ๐ก๐ž๐ซ๐ฆ๐š๐ฅ (๐Ÿโˆ’๐ž๐•๐ƒ๐’

๐• ๐ญ๐ก๐ž๐ซ๐ฆ๐š๐ฅ )

โˆ† mismatch causes the currents to Be different, for zero differential input(BL=)

28

RobustLowPowerVLSI

29

Digital Auto-zeroing (DAZ)โ€ข We propose a digital auto-zeroing (DAZ) scheme

inspired by analog amplifier offset correction.

โ€ข The main advantages of the approach areโ€ข Near-zero offset after cancellation.โ€ข Suitable for sub-threshold operation due to the

repeated offset compensation phase.

โ€ข Several attempts have been made before to tackle the problem including:โ€ข Redundancy [3]

โ€ข Transistor upsizing [4]

โ€ข Digitally controlled compensation [5]

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

30

RobustLowPowerVLSI

Auto-zeroing in analog amplifiersโ€ข Amplification is done

in two phases

โ€ข ฮฆ1: Sample the offset on a capacitor

โ€ข ฮฆ2: Subtract the offset from the input signal

(2) K Kang et al, โ€œDynamic Offset Cancellation Techniqueโ€ cse.psu.edu/~chip/course/analog/insoo/S04AmpOffset.ppt

Dynamic Offset Cancellation (2)

RobustLowPowerVLSI

DAZ Scheme

โ€ข Phase1 (ENR1)A zero differential input is applied to the sense amp.

โ€ข Phase2 (ENO)The SA resolves based on its intrinsic offset.

๐‘‰ ๐‘œ๐‘ข๐‘ก

=0

๐‘‰ ๐‘œ๐‘ข๐‘ก

=1

๐‘‡๐‘ข๐‘›๐‘’ h๐‘ก ๐‘’๐‘†๐ด

RobustLowPowerVLSI

DAZ Scheme

โ€ข Phase3 (ENR2)The differential input is applied to the sense amp.

โ€ข Phase4 (ENI)The SA resolves based on the differential input.

๐‘‰ ๐‘œ๐‘ข๐‘ก

=0

๐‘‰ ๐‘œ๐‘ข๐‘ก

=1

BL

BL

BL

BL

RobustLowPowerVLSI

DAZ Circuit

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

โ€ข DAZ circuit applied to a latch-based sense amp with PMOS inputs

โ€ข DAZ circuit uses a split-phase clock and charge pump (CP) feedback circuit for repetitive compensation.

Charge Pump

๐‚๐ฉ

RobustLowPowerVLSI

DAZ Circuit

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

Charge Pump

๐‚๐ฉ

โ€ข Transistors MC1 and MC2 control the drive strength of the right side of the SA.

โ€ข The CP controls the drive current in both MC1 and MC2 to equalize the strength of the SA right and left sides.

RobustLowPowerVLSI

DAZ Circuit

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

๐„๐๐ˆM11

ENO

ENR2

๐„๐๐‘๐Ÿ

M9

M10

M12

M13

CpCharge Pump

RobustLowPowerVLSI

Phase 1

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

๐„๐๐ˆM11

ENO

ENR2

๐„๐๐‘๐Ÿ M12

M13

Cp

M9

M10

ER1: A zero differential input is applied to the sense amp.

Charge Pump

RobustLowPowerVLSI

Phase 2

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

๐„๐๐ˆM11

ENO

ENR2

๐„๐๐‘๐Ÿ M12

M13

Cp

M9

M10

ENO: The SA resolves based on its intrinsic offset.

Charge Pump

RobustLowPowerVLSI

Phase 3

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

๐„๐๐ˆM11

ENO

ENR2

๐„๐๐‘๐Ÿ M12

M13

Cp

M9

M10

ER2: The differential input is applied to the sense amp.

Charge Pump

โˆ†v

RobustLowPowerVLSI

Phase 4

๐„๐

ENR1

๐๐‹

๐„๐

OUT ๐Ž๐”๐“

M5 M6

M1 M2

M3 M4

๐„๐

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

๐„๐๐ˆM11

ENO

ENR2

๐„๐๐‘๐Ÿ M12

M13

Cp

M9

M10

ENI: The SA resolves based on the differential input.

Charge Pump

RobustLowPowerVLSI

41

Precisionโ€ข The precision of the scheme depends on the accuracy

of setting the voltage on the output capacitor (Cp).

Settling Time= 60us

RobustLowPowerVLSI

42

Offset Tuning โ€ข Accuracy (offset voltage) vs. settling time trade-off

through Cp tuning.

0 2 4 6 8 10 12 14 16 18 205

10

15

20

25

30

35

40

Min Achieved Offset (mV)

Settl

ing

Tim

e (u

s)

Cp=0.74pF

Cp=0.43pF

Cp=0.24pF

Cp=0.14pFCp=0.13pF

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

43

RobustLowPowerVLSI

44

16kB SRAM Test-caseโ€ข A 20mV DAZ SA is used in a 16kB SRAM with

1bank, 512 rows and 256 columns using commercial 45nm technology node [6].

โ€ข 10% reduction of the read energyโ€ข 24% reduction of the read delay

โ€ข 45nm technology test chip. โ€ข One regular SA array for benchmarkingโ€ข DAZ SA array with Cp=32fF.

โ€ข DAZ circuit limits the absolute value of the maximum offset to 50 mV and provided 80% improvement in ฯƒ [6].

Chip Measurements

RobustLowPowerVLSI

45

Limitationโ€ข Area overhead (major concern in SRAM designs)

โ€ข 2.5X for 50mV offset compensationโ€ข Can be significant for small offsets

โ€ข Energy overhead of the continuous calibration (split phases, charge pump)โ€ข 3.5X the energy of a regular SA

โ€ข Sensitivity to split phase frequency.

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

46

RobustLowPowerVLSI

47

Conclusionโ€ข We proposed a circuit that is capable of improving sense-amp offset to

near zero, which is valuable for sub-threshold operation due to the repeated calibration phase.

โ€ข Applying the scheme on a 16 kB SRAM in 45nm technology node showed a reduction in the total energy and delay of 10% and 24% respectively.

โ€ข Measurements from a test chip fabricated in 45 nm technology showed the circuitโ€™s ability to limit the absolute maximum value of the offset voltage to 50 mV using a 32fF output capacitance.

RobustLowPowerVLSI

48

References 1. B. H. Calhoun et al. "Sub-threshold circuit design with shrinking CMOS

devices." ISCAS 2009. 2. J. Ryan et al. โ€œMinimizing Offset for Latching Voltage-Mode Sense Amplifiers

for Sub-threshold Operationโ€ ISQED 2008. 3. N. Verma et al. โ€œA 256 kb 65 nm 8T Sub-threshold SRAM Employing

Sense-Amplifier Redundancyโ€ ISSCC 2008. 4. L. Pileggi et al. โ€œMismatch Analysis & Statistical Designโ€ CICC 2008. 5. M. Bhargava et al. โ€œLow-Overhead, Digital Offset Compensated, SRAM Sense

Amplifiersโ€ CICC 2009. 6. P. Beshay et al. "A Digital Auto-Zeroing Circuit to Reduce Offset in Sub-

Threshold Sense Amplifiers." JLPEA 2013

RobustLowPowerVLSI

49

Questions