Sytems of linear equation

Post on 22-May-2015

689 views 3 download

Tags:

description

Eto na

transcript

Chapter 6: Systems of Linear Equations

Two Variable System

DefinitionsSystem – a conjunction of two or more equations

0111 cybxa0222 cybxa

GENERAL FORM:

Solution – an ordered pair of values that will satisfy all equations in the system

SOLUTION OF TWO VARIABLE SYSTEM

Graphical

Method

Assigning 2 points for each line

Converting each line into

y=mx + b

Computing the intercepts

of each line

SOLUTION OF TWO VARIABLE SYSTEM

Algebraic

Method

Cramer’s Rule

Elimination Substit

ution

Eliminating one variable and solving the other

Solving for the determinants

Isolating one variable

GRAPHICAL METHOD

Only intersecting equations have a unique or finite solution. They are called consistent equations. However, there are also systems that has infinite solutions or no solutions at all. Inconsistent equations – if two lines are parallel, then the system has no solution

-4 -3 -2 -1 1 2 3 4 5 x

-4

-3

-2

-1

1

2

3

4

5

y

O

Dependent equations – if two lines coincide, then the system has infinite solutions

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

Illustration

132

46

yx

yx

3

2,0 yx

For equation (1)

3

2,0

0,4 yx 0,4

For equation (2)

(1)

(2)

3

1,0 yx

3

1,0

0,2

1 yx

0,

2

1

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

3

1,0

0,

2

1

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

3

1,0

0,

2

1

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

0,4

3

2,0

3

1,0

0,

2

1

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

0,4

3

2,0

3

1,0

0,

2

1

-5 -4 -3 -2 -1 1 2 3 4 x

-5

-4

-3

-2

-1

1

2

3

4

y

O

0,4

3

2,0

3

1,0

0,

2

1

1,2

Algebraic Solution

Elimination Method (Gaussian Elimination)

1. Find equations equivalent to the two given equations such that the coefficients of one variable are additive inverse or the same

2. By addition or subtraction of the two equations, we eliminate one variable

3. Derive a linear equation in one variable and solve that variable4. Substitute the value of the solved variable in the other equation

and solve for the second variable

Illustration:

432

14

yx

yx Multiply (1) by 3(1)

(2)

432

3312

yx

yx Add (1) and (2)(1)

(2)

7014 x

2

1

14

7x

12

14

y Substitute the value of x to (1)

1y

1,2

1Thus, is the solution to the system

Substitution Method

432

14

yx

yxConsider the same system:

xy 41We solve for y in (1)

(1)

(2)

(3)

Then we substitute (3) to (2) 4)41(32 xx

2

1

14

7

714

41232

x

x

xx

2

141y Substitute the value of x to (3)

1y

1,2

1Thus, is the solution to the system

Cramer’s Rule

111 cybxa 222 cybxa

The determinant of the coefficients of the system is

22

11

ba

baD 1221 baba

Replace the coefficients of x in D by the constant terms to get

22

11)(bc

bcxD 1221 bcbc

Similarly, replace the coefficients of y in D by the constants

22

11)(ca

cayD 1221 caca

If D ≠ 0 then the solution (x, y) of the system is computed as

D

xDx

)(

D

yDy

)(

432

14

yx

yxUsing the same system:

32

14

D 14212

34

11)(

xD 743

2

1

14

7)(

D

xDx

42

14)( yD 14216

114

14)(

D

yDy

ExerciseUse Elimination, Substitution or Cramer’s Rule to solve for the solution of the system

723

1185

yx

yx

Using Cramer’s Rule:

23

85

D 342410

27

811)(

xD 345622

134

34)(

D

xDx

73

115)(

yD 683335

234

68)(

D

yDy

723

1185

yx

yx

Three Variable System

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa

To determine the solution to a system of 3 variables, we can use either Elimination or Cramer’s Rule

Elimination: 3 Variable System

Equation 1

Equation 2

Equation 3

VAR 1

VAR 1

Equation 4

Equation 5

VAR 2

Value of VAR

3

Apply Back Substitution

2 VAR SYSTEM

Example3 Variable System

8233

122

632

zyx

zyx

zyx

8233

122

632

zyx

zyx

zyx

2424

632

zyx

zyx

(1)

(2)

(3)

4703 zx

8233

3636

zyx

zyx

5803 zx

583

473

zx

zx

583

473

zx

zx

1z 1

5)1(83

583

x

x

zx

1

6)1(32)1(

632

y

y

zyx 1,1,1

8233

122

632

zyx

zyx

zyx

233

212

321

D

3

2

1

3

1

2

18122 3869

238

211

326

)(

xD

8

1

6

3

1

2

93212 343624

13

3)(

D

xDx

(1)

(2)

(3)

283

212

361

)(

yD

3

2

1

8

1

6

48362 324169

13

3)(

D

yDy

1

63)1(2)1(

632

z

z

zyx 1,1,1

(1)