The Neutron Alphabet Exploring the properties of fundamental interactions with cold neutrons Hartmut...

Post on 27-Mar-2015

218 views 2 download

Tags:

transcript

The Neutron Alphabet Exploring the properties offundamental interactions with cold neutrons

Hartmut Abele

Hartmut Abele, University of Heidelberg 2

The Neutron Alphabet and Symmetries

A: P-oddB: P-oddC: P-oddD: T-oddaNR: T-odd

Electron

Proton

Neutrino

Neutron Spin

A

B

C

Hartmut Abele, University of Heidelberg 3

Experimental Groups, Neutron -DecayNew experiments are greatly profiting from new sources & techniques

Talks at NIST workshop from different groups in 2004:

Hartmut Abele, University of Heidelberg 4

Facilities

Nico, Snow, Annu Rev Nucl Part Sci 55 (2005) 55

2.0

Hartmut Abele, University of Heidelberg 5

Facilities

Nico, Snow, Annu Rev Nucl Part Sci 55 (2005) 55

Hartmut Abele, University of Heidelberg 6

Nuclear and Particle Physics

Neutrograph, Radio- and Tomography station

Hartmut Abele, University of Heidelberg 7

The PERKEO II Setup @ ILL1. Polarizer

2. Spin Flipper

3. Spectrometer 4. Beam Stop

M. Schumann 2006M. Schumann 2006

Hartmut Abele, University of Heidelberg 8

The new Polarizer: 99.7 % EfficiencyKreuz, Soldner, Pekoutov, Nesvizhevsky, NIM 2006

ILL, HDA new geometry for Beam polarization Towards a perfectly polarized neutron beam

2

nucl magW a a Status 2002

Status 2004

98 %98 %

100 %100 %

96 %96 %

100 %100 %

90 %90 %

95 %95 %

94 %94 %

96 %96 %

Spin up: reflectedSpin down: absorbed

Coherent nuclear (strong) and electronic (magnetic) scattering

1W W

PW W

2

nucl magW a a

Hartmut Abele, University of Heidelberg 9

Rf Spin flipper: 100% efficiencyT. Soldner & A. Petoukhov

Lab frame

Rotating frame

Rotating frame

Hartmut Abele, University of Heidelberg 10

Cold NeutronsFor Correlation Coefficient A Measurements…

High Flux: = 2 x 1010 cm-2s-1

Decay rate of 1 MHz / meter / sec

Count rate: 106 s-1

Polarized to 98%: 2.5 x 105 s-1 Polarized to 99.7%: 1.4 x 105 s-1

Pulsed/unpulsed

Spectrometer

Hartmut Abele, University of Heidelberg 11

Experiments

Hartmut Abele, University of Heidelberg 12

Characteristics of Experiments

Using Magnetic Fields

PERKEO III

Hartmut Abele, University of Heidelberg 13B. Maerkisch, D. Dubbers, H.A. et al.B. Maerkisch, D. Dubbers, H.A. et al.

Small systematic errors - background

- edge effect

- mirror effect

PERKEO III20 October 2006 – 11 April 2007

to beamstop

Hartmut Abele, University of Heidelberg 14

PERKEO III

Hartmut Abele, University of Heidelberg 15

Hartmut Abele, University of Heidelberg 16

Hartmut Abele, University of Heidelberg 17

Hartmut Abele, University of Heidelberg 18

Hartmut Abele, University of Heidelberg 19

Aim: Weak Magnetism form factor f2

Neutron Decay Transition Matrix:

Electron Asymmetry:

f2 Weak Magnetism Form Factor(SM prediction)

2 % additional Edependence of A

PERKEO III can deliver the necessary statistics!

2 21 3

22[ ( ) ( ) ]|2

( )

p

V p f k k if k k nf k

m

Ffi 5 5

GT | (1 ) | ( (1 ) )

2udV p n e

Talk Marc Schumann at ILL

Hartmut Abele, University of Heidelberg 20

a Spect, Univ. MZ/TUM

Proton spectroscopy

Hartmut Abele, University of Heidelberg 21

aSPECT is a retardation spectrometer for protons of free neutron decay

aSPECT

First impression

Hartmut Abele, University of Heidelberg 22

PNPI Experiment

Hartmut Abele, University of Heidelberg 23

aCORN

Surface barrier

detector

Hartmut Abele, University of Heidelberg 24

Hartmut Abele, University of Heidelberg 25

D-Coefficient

emiT

Trine

Hartmut Abele, University of Heidelberg 26

Nab

Electron and neutrino momenta from electron energycose from proton momentum and electron energy using4T 1TTOF between electron and proton

Hartmut Abele, University of Heidelberg 27

California Institute of TechnologyR. Carr, B. Filippone, J. Hsiao, R. McKeown, B. Plaster, B. Tipton, J. Yuan

Institute Lau-LangevinP. Geltenbort

Idaho State UniversityR. Rios, E. Tatar

Los Alamos National LaboratoryJ. Anaya, T. J. Bowles (co-spokesperson), T. Brun, M. Fowler, R. Hill, G. Hogan, T.

Ito, K. Kirch, S. Lamoreaux, M. Makela, C. L. Morris, A. Pichlmaier, A. Saunders, S. Seestrom, P. Walstrom

North Carolina State University/TUNLH. O. Back, L. Broussard, A. T. Holley, R. K. Jain, R. W. Pattie, K. Sabourov, A. R.

Young (co-spokesperson), Y.-P. XuPetersburg Nuclear Physics Institute

A. Aldushenkov, A. Kharitonov, I. Krasnoshekova, M. Lasakov, A. P. Serebrov, A. Vasiliev

Tohoku UniversityS. Kitagaki

University of KyotoM. Hino, T. Kawai, M. Utsuro

University of WashingtonA. Garcia, S. Hoedl, D. Melconian, A. Sallaska, S. Sjue

University of WinnipegJ. Martin

Virginia Polytechnic Institute and State UniversityR. Mammei, M. Pitt, R. B. Vogelaar

UCNA Collaboration

Hartmut Abele, University of Heidelberg 28

Results: A

ElectronNeutron Spin

A

Hartmut Abele, University of Heidelberg 29

Results PERKEO II(2006)

Spectra Dissertation D. Mund, 2006

Hartmut Abele, University of Heidelberg 30

Result for A

Dissertation D. Mund, 2006

exp

1 v

2 c

N NA

N N

PfA

exp

1 v

2 c

N NA

N N

PfA

2

( 1)2

1 3A

Hartmut Abele, University of Heidelberg 31

Beamrelated Background

Collimation system < 0.15 s-1

Det. 0

Det. 1

Fitregion

Electron-Spectrum

Beamline BG

Hartmut Abele, University of Heidelberg 32

2002 2002 2006 2006 correction uncertainty correction uncertainty polarization 1.1 % 0.3 % 0.3 % 0.1 % flipper efficiency 0.3 % 0.1 % 0.0 % 0.1 % Statistical error 0.45 % 0.26 % background 0.5 % 0.25 % 0.1 % 0.1 % detector function 0.26 % 0.26 % edge effect -0.24 % 0.1 % -0.22 % 0.05 % time resolution 0.25 % mirror effect 0.09 % 0.02 % 0.11 % 0.01 % backscattering 0.2 % 0.17% 0.003 % 0.001 % rad. corrections 0.09 % 0.05 % 0.09 % 0.05 % Sum 2.04 % 0.66 % 0.38 % 0.41 %

sum 2006 preliminary

2002 2002 2006 2006 correction uncertainty correction uncertainty polarization 1.1 % 0.3 % 0.3 % 0.1 % flipper efficiency 0.3 % 0.1 % 0.0 % 0.1 % Statistical error 0.45 % 0.26 % background 0.5 % 0.25 % 0.1 % 0.1 % detector function 0.26 % 0.26 % edge effect -0.24 % 0.1 % -0.22 % 0.05 % time resolution 0.25 % mirror effect 0.09 % 0.02 % 0.11 % 0.01 % backscattering 0.2 % 0.17% 0.003 % 0.001 % rad. corrections 0.09 % 0.05 % 0.09 % 0.05 % Sum 2.04 % 0.66 % 0.38 % 0.41 %

sum 2006 preliminary

2002: result: A = -0.1189(8) = -1.2739(19)2006: result: A = -0.1198(5) = -1.2762(13)

Hartmut Abele, University of Heidelberg 33

-1.19(2), PDG (1960)

-1.25(2), PDG (1975)

-1.261(4), PDG (1990)

-1.2594(38), Gatchina (1997)

-1.2660(40), M, ILL (1997)

-1.2740(30), HD, ILL (1997)

-1.2686(47), Gatchina, ILL (2001)

-1.2739(19), HD, ILL (2002)

-1.2762(13), HD, ILL (2006)

a bit history:from neutron -decay

Red: PDG 2006

Hartmut Abele, University of Heidelberg 34

Hartmut Abele, University of Heidelberg 35

Why ratio = gA/ gV from Neutrons?

Processes with the same Feynman-Diagram

Slide from D. Dubbers

Hartmut Abele, University of Heidelberg 36

What about the lifetime?PDG: 885.7 ± 0.7 s

Serebrov et al.: 878.5 ± 0.7 s

Calculate SM Lifetime

= 880.5 ± 1.5 s- vs 885.7 ± 0.7 s PDG 2006

- vs 878.5 ± 0.7 s Serebrov et al.

5 41 2 2 2

3 7(1 3 )2ud

Re

F

fV

mG

ch

Hartmut Abele, University of Heidelberg 37

2. Correlation B in neutron -decay Neutrino Asymmetry

n n p e p e ee

WdWd~ (1 + ~ (1 + BB cos cos ) ) dd

Neutrino

Neutron Spin

BElectron

Proton

Neutrino

Neutron Spin

A

B

C

Hartmut Abele, University of Heidelberg 38

• Electron and Proton in same hemisphere

• Electron and Proton in opposite hemispheres

The Neutrino-Asymmetry B

Electron Proton

Neutron Spin

Neutrino

Electron

Proton

Neutrino

Neutron Spin

NN

NNBexp

NN

NNBexp

Systematically clean method: Integration over two hemispheres

‚‘‚‘

Hartmut Abele, University of Heidelberg 39

Proton detector

C foil on 25 keV ScintillatorProton

Proton detection:• Measure electron energy• Wait for proton• Convert proton into electron signal

Proton detection:• Measure electron energy• Wait for proton• Convert proton into electron signal

n-Spin

Hartmut Abele, University of Heidelberg 40

Proton “electron” spectrum

Dissertation: J. Reich Dissertation J. Reich

Hartmut Abele, University of Heidelberg 41

Our Result:

New mean Value:

Bmean = 0.9807(30)

Result: Asymmetry BThesis: M. Schumann 9 May 2007

Background Bn Displacement

B = 0.9802(50)

• only experiment that measures B in the same hemisphere

result is virtually independent from detector calibration

• result limited by statistics and error in beam position relative to magn. field ( magnetic mirror effect)

Hartmut Abele, University of Heidelberg 42

Corrections and Errors: Asymmetry B

Detector 1 Detector 2

Corr. [%]

Error [%]

Corr. [%]

Error [%]

Polarization +0.3 0.1 +0.3 0.1

Flipper-Efficiency 0.1 0.1

Statistics 1.22 0.36

Coincidence Measurement

0.29 0.07 0.18 0.04

Background 0.10 0.08

Detector 0.02 0.02

Systematics .Mirror Effect Displacement

+0.440.10

0.050.32

+0.44+0.10

0.050.32

Other 0.13 0.07 0.13 0.07

Other Coefficients 0.07 0.07

Sum +0.22 1.28 +0.53 0.52

Hartmut Abele, University of Heidelberg 43

2. Correlation C in neutron -decay

n n p e p e ee

Proton

Neutron Spin

C

WdWd~ (1 + ~ (1 + CC cos cos ) )

dd

Electron

Proton

Neutron Spin

A

C

Hartmut Abele, University of Heidelberg 44

• proton emission w.r.t. neutron spin: N↑, N↓ (coincidence measurement with electrons)

• use electron spectra and integrate over electron energy E

• define ProtonAsymmetry

• Problem: Energy threshold for electron detection

• PERKEO II (2004): C = 0.238(11) PhD M. Kreuz, J. Res. NIST. 110 (2005)

Proton Asymmetry C

Electron Proton

Neutron Spin

Neutrino

Dissertation M. Schumann, 2007

Hartmut Abele, University of Heidelberg 45

Proton Asymmetry C, ResultsThesis: M.Schumann 9 May 2007

1) One-parameter fit2) Extrapolation3) Integration

proton in spin direction

proton against spin direction

Our Result:

• first precision measurement

• error dominated by extrapolation and detector calibration

• C is better known than e correlation a

• agrees with SM value:

• new SM Tests possible:

Q++

Q+

Q

Q+

C = 0.2377(25)

CSM = 0.2392(4)

Hartmut Abele, University of Heidelberg 46

The future

Hartmut Abele, University of Heidelberg 47

2002 2002 2006 2006 correction uncertainty correction uncertainty polarization 1.1 % 0.3 % 0.3 % 0.1 % flipper efficiency 0.3 % 0.1 % 0.0 % 0.1 % Statistical error 0.45 % 0.26 % background 0.5 % 0.25 % 0.1 % 0.1 % detector function 0.26 % 0.26 % edge effect -0.24 % 0.1 % -0.22 % 0.05 % time resolution 0.25 % mirror effect 0.09 % 0.02 % 0.11 % 0.01 % backscattering 0.2 % 0.17% 0.003 % 0.001 % rad. corrections 0.09 % 0.05 % 0.09 % 0.05 % Sum 2.04 % 0.66 % 0.38 % 0.41 %

sum

2002 2002 2006 2006 correction uncertainty correction uncertainty polarization 1.1 % 0.3 % 0.3 % 0.1 % flipper efficiency 0.3 % 0.1 % 0.0 % 0.1 % Statistical error 0.45 % 0.26 % background 0.5 % 0.25 % 0.1 % 0.1 % detector function 0.26 % 0.26 % edge effect -0.24 % 0.1 % -0.22 % 0.05 % time resolution 0.25 % mirror effect 0.09 % 0.02 % 0.11 % 0.01 % backscattering 0.2 % 0.17% 0.003 % 0.001 % rad. corrections 0.09 % 0.05 % 0.09 % 0.05 % Sum 2.04 % 0.66 % 0.38 % 0.41 %

sum

Aim: Spectra and angular distributions distortion-free on the level of 10-4, 10x better than achieved today

Hartmut Abele, University of Heidelberg 48

n-guide: white, continuous n-beam

n-velocity selectorn-polarizern-spin flipper

n-guiden-choppergap + dump

n-guide + solenoid: field B0

polarized, monochromatic n-pulse

n + γ-beam stopsolenoid, field B1

solenoid, field B2

p+ + e− window-framep+ + e− beam

A clean, bright andversatile source ofneutron decay products:

Perc

Hartmut Abele, University of Heidelberg 49

..I.IL

n 16n

6n

0β s10411063

Expected count ratesCont. unpol:

After mag. Barrier:

Polarized to 98%:

Pulsed:

Pulsed polarized 99.7%

,n.nB

B

b

yxI 14

ββ1

02

00s s106170

2

4

2

1

Tn·Is=1.2104s−1.

.I.Iz'L

'L

L

'L

I

'I'I 13

ss22

0

n

ns s105080

9

1

Tn'Is'=300s−1.

Hartmut Abele, University of Heidelberg 50

SOURCE OF ERROR COMMENT SIZE OF CORRECT.

SIZE OF

ERROR:

non-uniform n-beamfor ΔΦ/Φ = 10 % over 1 cm width

2.5·10−4 5·10−5

other edge effects on e/p-window

for worst case at max. energy4·10−4

1·10−4

magn. mirror effect, contin's n-beam

1.4·10−2

2·10−4

magn. mirror effect, pulsed n-beam

for ΔB/B = 10 % over 8 m length5·10−5

<10−5

non-adiabatic e/p-transport 5·10−5 5·10−5

background from n-guide}is separately measurable

2∙10−3 1·10−4

background from n-beam stop

2·10−4

1·10−5

backscattering off e/p-window

2·10−5

1·10−5

backscattering off e/p-beam dump

5∙10−5

1∙10−5

backscatt. off plastic scintillator

}for worst case

2∙10−3

4·10−4

~ same with active e/p-beam dump

−1·10−4

neutron polarisation present status 3·10−3 1·10−3

Dubbers, Baessler, Märkisch, Schumann, Soldner, Zimmer, H.A.