The Semiconductor Drift Detector...

Post on 14-Jun-2020

4 views 0 download

transcript

The Semiconductor Drift Detector(SDD)

The Concept of Semiconductor Drift DetectorHistory of the development

Transport of charged carriers in thin fully depleted semiconductor detectors in direction parallel to the large surface of the detector.

Ionizing particle

Anode

0.3 mm

Drift < 40mm

Drift of charged carriers in silicon

Reverse-biased one sided step p-n junction in 1dimension

Negative electric field -E

dE/dx=r/e

+

N typeP type

-

Depleted region

Space chargeNegative potential -U

E=-dU/dx

e-h+

Depletion from two sides

P+ rectifying contacts

N+ ohmiccontacts

n- bulkSection shown below

SDD principle

Ionizing particleRectifying electrodes

Anodes

* M f PR t

Low capacitance anode

EP

XEP

X

EP

XEP

X

The first signals from a SDD

The classical PIN diode detector

n

n+

p+ -Vcc

The anode capacitance is proportional to the detector active area

The SDD for X-ray spectroscopy

n

n+

p+ -Vcc

p+

AnodeThe electrons are collected by the small anode,characterised by a low output capacitance whichis independent on the active area of the detector.

The SDD structure

• The electrons, generated in the fully depleted silicon by the X-ray photons, are collected by the small anode (having a very low capacitance, Cdet=150fF).

• The integrated front-end transistor (n-JFET) allows the capacitive matching between detector and amplifier(Cdet≈Cgate)

Anode

Ring #1

last RingClear

Entrance window

n-JFET

p+

G SD

path ofelectronsn Si

_

Advantages: very high energy resolution at fast shaping times, due to the small anode capacitance, independent of the active area of the detector

The integrated JFET

Detector produced at the MPI Halbleiterlabor, Munich, Germany

SDD performances

0 1 2 3 4 5 6 7 8Energy [keV]

0

500

1000

1500

2000

2500

Cou

nts

152 eV FWHM

Mn-Kα

Mn-Kβ

0 1 2 3 4 5 6 7 8Energy [keV]

1

10

100

1000

10000

Cou

nts

Mn-Kα

Mn-Kβ

Si-escape

• 55Fe spectrum measured with the SDD module at T= -8°C and a shaping time of 0.5 µs.

The integrated JFET

FET

Guard electrode

Anode

The “conventional” central anode containing the FET

FET

Anode

Electrons

The “lateral” anode with side FET

FET

The new Silicon Drift Detector Droplet (SD3)

Anode

FET

Anode

electrons

The resolution of the new SD3

STANDARD SDDAnode capacitance = 150 fFFWHM= 150 eV (typ)

at T= -10°C

DROPLET SDDAnode capacitance = 50 fFFWHM= 130 eV (typ)

at T= -20°CPeak/Background > 5000

5000 5500 6000 6500 7000ENERGY [eV]

0

2000

4000

6000

8000

CO

UN

TS

Fe55

FWHM=131 eV

Performances with soft X-ray

Some applications of thesingle-element SDDsin X-ray spectroscopy

Analysis of the alloy composition of the ‘Lupa Capitolina’

Musei Capitolini, Roma

XRF spectrum of the bronze alloy of the ‘Lupa’

0 10000 20000 30000ENERGIA [eV]

1

10

100

1000

10000

100000

CO

NTE

GG

I

KαSn

Fe

Cu

LαLβ

Lγ1

PbLαSn

KαCl

KαCa

Element distribution on the ‘Lupa’ body

Sn

05

101520253035

0 90 180 270 360Angle

%

Pb

02468

10121416

0 90 180 270 360Angle

%

Fe

00.5

11.5

22.5

33.5

0 90 180 270 360

Angle

%

Analysis of the alloy composition of the “Spinario”

Musei Capitolini, Roma

Analysis of a bronze roman sculpture

01020304050

0 50 100

% Rame

% S

tagn

o

Capo

Corpo

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

% R ame

CapoCorpo

0

5

10

15

20

25

30

35

0 20 40 60 80 100

% R ame

CapoCorpo

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

% R ame

% F

erro Capo

Corpo

00.10.20.30.40.50.6

0 20 40 60

%Stagno

% N

Iche

l

Capo

Corpo

Correlation diagrams of the bronze compositionof several points of the head and of the body of the sculpture, showing that the two parts have been produced with different fusion (maybe in a differenthistorical period). The last diagram shows that Ni has been probably introduced as impurity of Sn.

Analysis of an Egyptian Linen (Antinopolis, III century A.C.)

Museo Vaticano, Roma

2 4 6 8 10 12 14 16 18Energy [keV]

0

2000

4000

6000

8000

10000

12000

14000C

ount

s

+ Pb (Lα)

Fe (Kβ))

Ca (Kα)

W (Lα)

Au (Lα)

Ca (Kβ)

Fe (Kα)

As (Lβ)

Pb (Lβ)

As (Kα)

Yellow ochre Fe(OH)3

8 9 10 11 12 13 14Energy [keV]

0

1000

2000

3000

4000

5000

Cou

nts

+ Pb (Lα)

As (Kβ))

W (Lα)

Au (Lα)

As (Kα)

Au (Lβ)

Pb (Lβ)Gold Au

It can not be only W becauseW Lα / W Lβ should be ≈1

Orpiment As2S3

Au (Lα) + W (Lβ)

Au (Lβ)

Analysis of the earring

Authenticity verification

1 2 3 4 5 6 7 8Energy [keV]

0.0

0.2

0.4

0.6

0.8

Norm

alize

din

tens

ity[a

.u.]

Ti-KαK-Kα

(a)

Fe-Kα

Fe-KβCa-KαArClSi

S

1 2 3 4 5 6 7 8Energy [keV]

0.0

0.2

0.4

0.6

0.8

Nor

mal

ized

inte

nsity

[a.u

.]

Mn-KαTi-Kα

K-Kα

S

(b)

Fe-Kα

Fe-KβCa-Kα

ArClSi

1 2 3 4 5 6 7 8Energy [keV]

0.0

0.2

0.4

0.6

0.8

Nor

mal

ized

inte

nsity

[a.u

.]

Mn-KαK-Kβ

K-Kα

S

(c)

Fluorescence spectra of a document in a reference point (a) and in a point where stain removerwas supposed to be applied (b) (the spectra are normalized with respect to the Ti-Kα line).In (c) the difference between the two spectra (a) and (b) is reported, revealing a probableapplication of a conventional stain remover containing S, K, and Mn.

Multi-element SDDs

The 12-element SDD detector

Center hole2.4 mm

SDD cell5 mm2

Detector chip17x17 mm2

Sensitive area12x5 mm2

= 60mm2

“Front” Sidecollecting anode,JFET,Basing electrodes

Detector thickness 300 µm

“Back” Sidenon-structured radiation entrance window.

The 12-element SDD detector

Detector performances

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts 165 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts 155 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts

160 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

4000

5000

Cou

nts

160 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

4000

Cou

nts

153 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000C

ount

s 152 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts

150 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts

152 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

4000

Cou

nts 153 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

4000

Cou

nts

148 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

Cou

nts

152 eV FWHM

2000 2500 3000 3500 4000Channels

0

1000

2000

3000

4000

Cou

nts 156 eV FWHM

55Fe radioactive source – T = -10 °C – Tennelec TC244 gaussian shaping amplifier τsh = 0.5 µsCount rate ≈ 10 kcps / channel. Average FWHM: 154.7 eV

A new multi-element Semiconductor Srift Detector optimized for XRF Elemental Mapping

Project FELIX INFN Gr.5 2003-04

A new multi-element Semiconductor Srift Detector optimized for XRF Elemental Mapping

Thickness 450 µm14 mm

Front sideCollecting anode and transistor

Back sideRadiation entrance window

SDD4 collimator

Collimated area ≈ 4 x 15 mm2

SDD4: collecting region

Collecting anodeand input JFET

Ultra-lowDetector + JFETcapacitance:Cd+Cg ≈ 120 fF

SDD4 potential energy

Collecting anodeand

input JFET

Radiation entrancewindow

CDET+CJFET ≈ 120fF

130.4 FWHM

Det 1

130.4 FWHM

Det 2

130.3 FWHM

Det 3

132.1 FWHM

Det 4

SDD4 preliminary results

Radiation source: 55FeCount rate ≈ 2 kcps / channelτsh=1.5µs NO collimation

SDD4 preliminary results

Peak to valley ratio

P/V≈6000

Tsh=500ns Beam collimated: ∅≈500µm

SDD4 preliminary resultsResolution vs count rate

55FeTsh=350ns

Counts per channel

SDD4 measurement head setup

SDD4

Sample

Polycapillarylens

The ceramic board with electronic components

The collimator

The Peltier refrigerators and the Be windows

Peltierelements

Berilliumwindow

Berilliumwindow

Readout electronics + Data acquisition systemfor the SDD4

VPA

VPA

VPA

VPA fast/slow shaper

peak stretcher

peak stretcher

peak stretcher

peak stretcher

fast/slow shaper

fast/slow shaper

fast/slow shaper

ADC

FPGA

+

RAM

RESET

SEL

VLSI chip

HOST PC

Scheme of principle of the new fast acquisition system presently under development (the histogram is made ‘on board’)

Researchers involved: A.Longoni, C.Guazzoni, S.Buzzetti

PRESTAZIONI DEL NUOVO SISTEMA DI ACQUISIZIONE

1 10 100 1000 10000Input rate [kcps]

1

10

100

1000

Out

put r

ate

[kcp

s]Channel #1Channel #2Channel #3Channel #4Fitting: X*exp(-X*2200e-6)Y = X

Tau=450nsPT=920nsRT=1500nsST=60nsPUR Disabled

Rate performance

Some applications of themulti-element SDDs

The concept of the multi-element spectrometer for XRF elemental mapping

Researchers involved: A.Longoni, C.Fiorini

Poly-capillary X-ray minilens

MicrofocusX-ray generator

Sample

A polycapillaryX-ray lens

allows:

an higher photon fluxin a small excitation spot

Poly-capillary X-ray minilens

MicrofocusX-ray generator

SDD ring detector

A ring detector centeredon the excitation beam

allows

•a larger collection angle of the fluorescence

•an higher detection efficiency at low energy

A multi-element detector allows:

•an higher detection rate for the same total active area

The excitation-detection unit

CapillaryX-ray lens

Microfocus X-ray generator * W anode50 kV max DC voltage, 30 W max anode load

12 element SDD

The X-ray mini-lens parametersBeam FWHM in focus

30

35

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30

E (keV)

FWH

M (u

m)

Gain in focus

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30

E (keV)

Gai

n

Measured with 15 µm pinhole

70 µm

2500

f1

L

f2

Φ

f1=40 mmf2=20 mmL=77 mmΦ=0.094 rad

The spatial resolution of the spectrometer - 1

MicrofocusX-ray generatorW anode

Poly-capillary X-ray minilens

SDD ring detector

Silicon wafer knife edge cut300 µm thick

x

Be window D

Knife-edge test

D=1mm FWHM=78µm(slightly out of focus)

Geology

6 mm

Chromite

0 1 2 3 4 5 6 7 8 9 10Energy [keV]

1

10

100

1000

Cou

nts

Si Ca

Cr

Fe

Ni

W

Chromite: main elements

6 mm

Lombard buckle – inlaid work (agemina) Second quarter of VII century A.C.Trezzo d’Adda, Italy

Ag Fe

Cu

7 mm

Roman (?) ring

Ag

Pb Si2 mm

Mretallurgy: study of an Iron-Nichel alloyFe Ni

0.5 mm0.5 mm

Fe Ni

Iron powder with Nickel grains partially diffused on the Iron surfaceduring the syntherization process at 1120 C

Biolology

Poly-capillary X-ray minilens

MicrofocusX-ray generator

SDD ring detector

Sample: Leaf

C substrate

A leaf feed with a fertilizer

K Ca Mn

Fe Cu

Leaf ‘fluorescence’ (detail)

Scanned area 6x6 mm, 61x61 points, 100µm x 100µm pitch, 0.5s meas time per point, 6 SDD activeMax counts/pixel: K 406 Ca 2386 Mn 1902 Fe 3822 Cu 6874

Leaf ‘radiography’ (detail)

Poly-capillary X-ray minilens

MicrofocusX-ray generator

SDD ring detector

Sample: Leaf

Ca substrate

Absorption of Kα Ca line (3.69 keV)Scan: 21x21points, 250 µm x 250 µm steps, measurement time 1s/point

TechnologyAlumina board for electronic circuits

Scanned area4x4mm2

Gold coating

Silver strips

41x41 sampled points100x100 µm steps1 s measurement time per point

AuAg Al

The Gamma ray imaging detectors

SDD arrays coupled with a scintillator crystal

Development of a small Anger Camera for high position resolution γ-ray imaging

Applications in Medical Imaging:

• compact diagnostic systems for human imaging(thyroid gland diagnostic, brain imaging, breast imaging..)

• small animal imaging systems with < 0.5 mm positionresolution

The first prototype of SDD - CsI(Tl) Anger camera

Milliporepaper

CsI(Tl) crystal

2.4 mm

C.Fiorini, et al., Nucl. Instr. Meth., Vol. A512, 2003.

Total area = 5 mm2×19 ~ 1cm2

CsI(Tl) thickness = 3 mmT = -10°C

E = 122 keV (57Co)

SDD - CsI(Tl) Anger camera: final results

⇒ intrinsic resolution~ 160 µm

ø collimator ~ 180 µm

E=122keV (57Co) ⇒ factor 10 better than conventionalAnger Cameras

500 µm

500 µm

0.5 mm

0.5 mm

0.71 mm

57Co position scan

γ-ray Imaging57Co source

lead slab

γ-ray detector 1 mm

0.5 mm

The monolithic array of 77 SDDs: front side

29 mm

26 mm

• 77 units, 8.7 mm2 each

⇒ active area = 6.7 cm2

• active area: 29 × 26 mm2

• two interconnection layersavailable (polysilicon, Al)

• output pads for bias/signals placed outsidethe active area

Detector back side

Anti-reflectivecoatings implementedExpected QE > 80%

lambda = 560nm

0 10 20 30 40 50 60 70 80 90Degrees

0

10

20

30

40

50

60

70

80

90

100

trans

mis

sion

bonding pads

Preliminary caracterization of the whole array:55Fe spectra measured with bias optimized for each unit

2000 2400 2800 3200

0

200

400

600

1

2000 2400 2800 3200

0

200

400

600

800

2

2000 2400 2800 3200

0

400

800

1200

3

2000 2400 2800 3200

0

400

800

1200

4

2000 2400 2800 3200

0

400

800

1200

5

2000 2400 2800 3200

0

400

800

1200

6

2000 2400 2800 3200

0

200

400

600

800

1000

8

2000 2400 2800 3200

0

200

400

600

9

2000 2400 2800 3200

0

200

400

600

800

1000

10

2000 2400 2800 3200

0

400

800

1200

11

2000 2400 2800 3200

0

400

800

1200

12

2000 2400 2800 3200

0

400

800

1200

1600

13

2000 2400 2800 3200

0

400

800

1200

14

2000 2400 2800 3200

0

400

800

1200

15

2000 2400 2800 3200

0

400

800

1200

16

2000 2400 2800 3200

0

200

400

600

800

18

2000 2400 2800 3200

0

400

800

1200

19

2000 2400 2800 3200

0

400

800

1200

1600

20

2000 2400 2800 3200

0

400

800

1200

1600

21

2000 2400 2800 3200

0

400

800

1200

1600

22

2000 2400 2800 3200

0

400

800

1200

1600

23

2000 2400 2800 3200

0

400

800

1200

24

2400 2800 3200 3600

0

400

800

1200

25

2400 2800 3200 3600

0

400

800

1200

26

2000 2400 2800 3200

0

400

800

1200

27

2000 2400 2800 3200

0

400

800

1200

28

2000 2400 2800 3200

0

400

800

1200

1600

2000

29

2000 2400 2800 3200

0

400

800

1200

1600

2000

30

2000 2400 2800 3200

0

400

800

1200

1600

31

2000 2400 2800 3200

0

400

800

1200

1600

32

2400 2800 3200 3600

0

500

1000

1500

2000

2500

33

2400 2800 3200 3600

0

400

800

1200

34

2000 2400 2800 3200

0

400

800

1200

35

2000 2400 2800 3200

0

400

800

1200

1600

36

2000 2400 2800 3200

0

500

1000

1500

2000

2500

37

2000 2400 2800 3200

0

400

800

1200

1600

2000

38

2000 2400 2800 3200

0

400

800

1200

1600

2000

39

2000 2400 2800 3200

0

400

800

1200

1600

40

2400 2800 3200 3600

0

400

800

1200

1600

41

2400 2800 3200 3600

0

400

800

1200

1600

42

2400 2800 3200 3600

0

400

800

1200

43

2400 2800 3200 3600

0

400

800

1200

44

2400 2800 3200 3600

0

400

800

1200

1600

45

2000 2400 2800 3200

0

400

800

1200

1600

2000

46

2000 2400 2800 3200

0

400

800

1200

1600

2000

47

2000 2400 2800 3200

0

400

800

1200

1600

2000

48

2400 2800 3200 3600

0

400

800

1200

1600

2000

49

2400 2800 3200 3600

0

400

800

1200

1600

50

2400 2800 3200 3600

0

400

800

1200

1600

51

2400 2800 3200 3600

0

200

400

600

800

1000

52

2400 2800 3200 3600

0

400

800

1200

1600

53

2000 2400 2800 3200

0

400

800

1200

1600

54

2000 2400 2800 3200

0

400

800

1200

1600

2000

55

2000 2400 2800 3200

0

400

800

1200

1600

2000

56

2000 2400 2800 3200

0

400

800

1200

1600

2000

57

2400 2800 3200 3600

0

400

800

1200

1600

58

2400 2800 3200 3600

0

400

800

1200

1600

59

2400 2800 3200 3600

0

200

400

600

800

1000

60

2000 2400 2800 3200

0

400

800

1200

61

2000 2400 2800 3200

0

400

800

1200

1600

62

2000 2400 2800 3200

0

400

800

1200

1600

63

2000 2400 2800 3200

0

400

800

1200

1600

2000

64

2000 2400 2800 3200

0

400

800

1200

1600

2000

65

2000 2400 2800 3200

0

400

800

1200

1600

66

2400 2800 3200 3600

0

400

800

1200

68

2000 2400 2800 3200

0

200

400

600

800

69

2000 2400 2800 3200

0

400

800

1200

1600

70

2000 2400 2800 3200

0

400

800

1200

1600

71

2000 2400 2800 3200

0

400

800

1200

1600

72

2000 2400 2800 3200

0

400

800

1200

1600

73

2000 2400 2800 3200

0

400

800

1200

1600

74

2000 2400 2800 3200

0

400

800

1200

75

2400 2800 3200 3600

0

400

800

1200

76

2400 2800 3200 3600

0

200

400

600

800

77

room Tτshaping = 0.25µsVBACK optimized foreach unit: -76V ÷ -94V(alternatively R#1 canbe optimized for eachunit, with the same results)

noise is good anduniform amongall units

(3 units are not working)

The DRAGO project *(DRift detector Array-based Gamma camera for Oncology)

Purpose:development of a compactAnger Camera for γ-ray imagingwith sub-millimeter resolution

scintillator

77 SDD array

Peltier coolerflex cables to FE board

* Project INFN Gr.5 2003-05

The large-area SDDs

SDD 1cm2 x 3 for the experiment SIDDHARTAINFN – EU 6° program

Structuredside

Radiationentrancewindow

Unstructuredside

E ≈ 110 V/cm

E ≈ 80 V/cm

Detector Setup

e-

e+ toroidal H-target cell

scintillator = trigger

detector module 2 x 3 cm²

∑ 32 modules <-> 192 cm²

Conclusions

The Dectors here presented are today the best results of the “nearly old”idea of the the SDDs (E. Gatti and P. Rehak, 1983).

SDDs (under different commercial names) are nowadays widely used inseveral applications (SEMs, Synchrotrons, Portable XRF spectrometers, Mars exploration, …).Other devices derived from the original idea of Gatti and Rehak, the “fully depleted” PN-CCDs, are flying in a satellite for X-ray astronomy(XMM mission).New devices, similarly derived from the original idea, are on the way:CDDs, DEPMOS pixel arrays, avalanche SDDs, ….

The INFN has believed in SDDs and has supported their development,in cooperation with the MPI Halblaiterlabor, from the very beginning of these devices.