The Use of Artificial Neural Networks for the Optimisation of...

Post on 17-Mar-2021

2 views 0 download

transcript

von Karman Institute for Fluid Dynamics

The Use of Artificial Neural Networks for the Optimisation of

Turbomachinery Components

R.A. Van den Braembusschevon Karman Institute for Fluid Dynamics

Ercoftac Introductory course on “ Design Optimisation”, Garching, 1-3 April 2003

von Karman Institute for Fluid Dynamics

Main problems

⇒ Geometry definition

⇒Convergence speed

real optimum

⇒ Target specification

Optimisation

MinimiseF=F(U,Xi) i=1,ND

Xi=ND geometrical parameters

Aerodynamic constraintsRk(U,Xi)=0. k=1, Neq*Npt

Geometric constraintsGj(Xi) ≤ 0 j=1, Ncond

von Karman Institute for Fluid Dynamics

Parameterisationreduced number of unknown

18 geometric parameters to be defined

• continuous curvature

• geometrical constraints

Geometry definition

von Karman Institute for Fluid Dynamics

Allow all possible Blade Geometries !

Geometry definition

von Karman Institute for Fluid Dynamics

Gradient Method

•Define search direction

n+1 calculations

•Perform 1D search

1 calculation

•Respect constraints

•Verify convergence

m steps

n parameters * m iterations ⇒ (n+1)*m N.S. calculations

Convergence

von Karman Institute for Fluid Dynamics

Systematic Search

covering design space

n parameters * 3 values ⇒ 3n N.S. Solutions 38=6561

Convergence

x

x x

x

x x

x

x

x

von Karman Institute for Fluid Dynamics

Convergence

Initial blade selectionInitial blade selectionInitial blade selectionInitial blade selection

Each new geometry is analysed by Navier Stokes

Genetic Algorithms

Use information on previous designs to define new ones

von Karman Institute for Fluid Dynamics

Convergence

Gene design variable digitChromosome design variable Individual blade shapePopulation set of bladesFitness performance of an

individual.

coding

Genetic algorithm

von Karman Institute for Fluid Dynamics

Convergence

Child abcDEF

•Tournament selection

•Uniform crossover (p=0.5)

•Jump Mutation

Parent #1

abcdef

Child abcDEM

Parent #2

ABCDEF

(*) D. Carroll http://www.cuaerospace.com/carroll/ga.html

Genetic algorithm

von Karman Institute for Fluid Dynamics

Convergence

•fast but lower accuracy

⇒ ANN + GA

•slow but high accuracy

⇒ NS

Genetic algorithm

Two level optimisation

von Karman Institute for Fluid Dynamics

Artificial Neural Network (*)

learning: definitions of coefficients Wi(n),bi(n)

predict: performance predictioninput output

(*) http://www-ra.informatik.uni-tuebingen.de/SNNS

Network structure

=+=

n

jibipjiWFTia

11111 ))()(),(()(

von Karman Institute for Fluid Dynamics

Artificial Neural Network

Non-dimensionalisation -1 < output < 1

)(11

1)(

xexFT −+

=

-1

11FT

x

∑=

+=n

jibipjiWFTia

11111 ))()(),(()(

model free relation

sigmoid function

von Karman Institute for Fluid Dynamics

Artificial Neural NetworkLearning process

Training by back propagation of errors

≈≈≈≈ function minimalisation by gradient technique (objective = error)

Learning time >< Navier Stokes

1−∆+∂∂=∆ ii WWE

W αγ

∑=

+=n

jibipjiWFTia

11111 ))()(),(()(

von Karman Institute for Fluid Dynamics

Artificial Neural NetworkLearning process

local minimum

von Karman Institute for Fluid Dynamics

Artificial Neural NetworkLearning process

merit function ≈≈≈≈ objective function m(x) = f(x) -ρm dm(x)

von Karman Institute for Fluid Dynamics

Accuracy:

Noise in data (error in the predictions – measurements)

* same Navier Stokes solver

* on similar grids•Learning process (number of training samples)

(number of validation samples)

•Network structure (number of hidden layers)(number of nodes)

• Database (covering design space)

• Self-learning

Artificial Neural Network

von Karman Institute for Fluid Dynamics

Artificial Neural NetworkLearning process

training + validation error

von Karman Institute for Fluid Dynamics

Accuracy:

Noise in data (error in the predictions – measurements)

* same Navier Stokes solver

* on similar grids•Learning process (number of training samples)

(number of validation samples)

•Network structure (number of hidden layers)(number of nodes)

• Database (covering design space)

• Self-learning

Artificial Neural Network

von Karman Institute for Fluid Dynamics

Σ

Σ

Σ

FT2

FT2

FT2

W2(k)

W2(1)

b2(1)

b2(2)

b2(k)FT1

FT1

FT1

FT1Σ FT3

W3(k)

W3(1)

b3(1)

Σ FT3

b3(2)

Σ FT3

b3(m)

Σ FT3

b3(3)

Σ FT3

b3(m-1)

Po1

ß1

Xn

X1

η

ß2

Mm

M1

Mm-1

Σ

b1(n)W1(n)

W1(1)

Σ

b1(3)

Σ

b1(2)

Σ

b1(1)

Artificial Neural Network

one hidden layer - number of nodes ?

von Karman Institute for Fluid Dynamics

Artificial Neural NetworkNetwork structure

Critical number of hidden nodes:

More hidden nodes less learning error

more prediction error

1*

++−=

outin

outouttrainh nn

nnnn

von Karman Institute for Fluid Dynamics

Accuracy:

Noise in data (error in the predictions – measurements)

* same Navier Stokes solver

* on similar grids•Learning process (number of training samples)

(number of validation samples)

•Network structure (number of hidden layers)(number of nodes)

• Database (covering design space)

• Self-learning

Artificial Neural Network

von Karman Institute for Fluid Dynamics

Database

Geometry:Blade definition by Bezier Curves

18 parameters

Aerodynamic conditionsInlet and outlet flow conditions

Po1, To1,

1, P2

PerformanceEfficiency �

Outlet flow angle

Mach number distribution

(40 points)

Mis

s

input & output of Navier Stokes calculation

von Karman Institute for Fluid Dynamics

Test function : 6 parameters 6 parameters

F=1-0,001(A-D)3+0,002(C+E)(F-B)-0,06(A-F)2+(F+C)(E+A)

1<A<5 2<B<3 4<C<5 3<D<4 2<E<3 2<F<6

Full factorial (2 values) 26 =64 samples

Half factorial 25=32 samples

1/4 factorial 24=16 samples

DatabaseDOE

von Karman Institute for Fluid Dynamics

A B C D E F1 1 2 4 3 2 2 19.582 5 2 4 3 2 2 47.583 1 3 4 3 2 2 19.574 5 3 4 3 2 2 47.575 1 2 5 3 2 2 22.586 5 2 5 3 2 2 54.587 1 3 5 3 2 2 22.578 5 3 5 3 2 2 54.579 1 2 4 4 2 2 20.19

10 5 2 4 4 2 2 49.7511 1 3 4 4 2 2 20.1812 5 3 4 4 2 2 49.7413 1 2 5 4 2 2 23.1914 5 2 5 4 2 2 56.7515 1 3 5 4 2 2 23.1816 5 3 5 4 2 2 56.7417 1 2 4 3 3 2 25.5818 5 2 4 3 3 2 53.5819 1 3 4 3 3 2 25.5720 5 3 4 3 3 2 53.5721 1 2 5 3 3 2 29.5822 5 2 5 3 3 2 61.5823 1 3 5 3 3 2 29.5624 5 3 5 3 3 2 61.5625 1 2 4 4 3 2 26.1926 5 2 4 4 3 2 55.7527 1 3 4 4 3 2 26.1828 5 3 4 4 3 2 55.7429 1 2 5 4 3 2 30.1930 5 2 5 4 3 2 63.7531 1 3 5 4 3 2 30.1732 5 3 5 4 3 2 63.7333 1 2 4 3 2 6 30.19

Sample Parmeters Response

Full factorial64 calculations

Low influence of variable C

Large influence of variable A

DatabaseDOE

von Karman Institute for Fluid Dynamics

A B C AB AC BC ABC

a + - - - - + +b - + - - + - +c - - + + - - +adc + + + + + + +ab + + - + - - -ac + - + - + - -bc - + + - - + -(1) - - - + + + -

Factorial effectTreatment Combination

)(5,0 abccbalA +−−= )(5,0 abccbalBC +−−=

)(5,0 abccbalB +−+−= )(5,0 abccbalAC +−+−=

)(5,0 abccbalC ++−−= )(5,0 abccbalAB ++−−=

ABC = + C = C*ABC = ACABC = + C = C*ABC = AC22B = ABB = AB

DatabaseDOE

von Karman Institute for Fluid Dynamics

DatabaseDOE

effecteffect

p ro b

a bi li

ty

p ro b

a bi li

ty

64 samples 32 samples

von Karman Institute for Fluid Dynamics

DatabaseDOE

16 samples 8 samples

effect effect

prob

abili

ty

prob

a bili

ty

von Karman Institute for Fluid Dynamics

ANN's global error for diffrent number of training samples

104 105110

144

42

64

19

9

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

8 8.1 rand 01 8.2 rand 01 8.3 rand 01 16 16 rand 01 32 64

Num ber of samples

Glo

bal e

rror

[%]

8 8.1 rand 01 8.2 rand 01 8.3 rand 01 16 16 rand 01 32 64

∑=

����

����

��

��

⋅=samplesn

i

samplesn_

1

_:100eExact_valu

valuePredicted_ -eExact_valuyDescrepanc

DatabaseDOE

von Karman Institute for Fluid Dynamics

Artificial Neural Network

35 sample Database

von Karman Institute for Fluid Dynamicsbased on 25 samples

Artificial Neural Network

von Karman Institute for Fluid Dynamics

Objective function

OF2D = Pgeom + Pmeca + PAeroBC + Pmach + P Manuf + P cost

β2

ξ

...

Ablade

Imin

Imax

α

Rle

Rte

RLE

β1blade

Buri

dsdM

sdMd2

2ds

dRC

used for ANN or NS

m&

von Karman Institute for Fluid Dynamics

Turbine blade design

Table 1. Imposed parameters, mechanical and aerodynamic requirements

β1flow(ο) 18.0 Imposed After

M2is 0.9 Min. Max. 18 modif.

Re 5.8 10.5 surface 5.2 10.-4 6.8 10.-4 5.36 10.-4

γ=Cp/Cv 1.4 Imin(m4) 7.5 10.-9 1.2 10.-8 7.45 10.-9

Τu(%) 4 Imax(m4) 1.25 10.-7 2.2 10.-7 1.28 10.-7

Cax(m) 0.052 αImax -50.00 -30.00 -37.50

Pitch/Cax 1.0393 β2flow(ο) -57.80 57.80 -57.62

TE thick (m) 1.2 10.-3 loss coef.(%) 0.0 0.0 1.9

Requirements

von Karman Institute for Fluid Dynamics

Evolution of Mach number and Geometry

Design ConvergenceTurbine blade design

von Karman Institute for Fluid Dynamics

Design Convergence Turbine blade design

self learning process

von Karman Institute for Fluid Dynamics

Quasi 3D Design

von Karman Institute for Fluid Dynamics

Quasi 3D Design

von Karman Institute for Fluid Dynamics

Quasi 3D Design

von Karman Institute for Fluid Dynamics

Quasi 3D Design

von Karman Institute for Fluid Dynamics

Geometry definition

Full 3D Radial impeller design

variable

dependent variable

von Karman Institute for Fluid Dynamics

Design space limitation

Full 3D Radial impeller design

von Karman Institute for Fluid Dynamics

Full 3D Radial impeller design

01

22

33

.

..)(

βββββ

+++=

u

uuu

Blade angle variation

von Karman Institute for Fluid Dynamics

Geometry definition

Geometry definition

Rtgdm

d m )(. βθ =

Full 3D Radial impeller design

von Karman Institute for Fluid Dynamics

Full 3D Radial impeller design

Cost function evolution

von Karman Institute for Fluid DynamicsMach number evolution

shroud hub

Full 3D Radial impeller design

von Karman Institute for Fluid DynamicsGeometry evolution

meridional blade to blade

Full 3D Radial impeller design

von Karman Institute for Fluid Dynamics

Concurrent designRequirements

Optimiser =

Geometry generator

+

Search Vehicle

ANN

Performance Analysis

Result OK

Navier Stokes solver

FEA Stress

analysis

Database

ANN

Stress Analysis

Database

no

yes

von Karman Institute for Fluid Dynamics

Conclusions•ANN accuracy depends on quality of Database

•number and quality of “independent” samples

•architecture of ANN

•learning process

•Efficient design system

•two level optimisation

•self learning

•fully automated

•Realistic designs (geometry model)

•Accurate: based on Navier Stokes solver

•Easy off-design analysis

•2D and 3D compressors and turbines, axial and radial

von Karman Institute for Fluid Dynamics