Theoretical Spectroscopy · Theoretical Spectroscopy Patrick Rinke Fritz-Haber-Institut der...

Post on 09-Aug-2020

0 views 0 download

transcript

Theoretical Spectroscopy

Patrick Rinke

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin - Germany

Materials Theory Lecture

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 1

Excited States in (Material) Science – Are Ubiquitous

Theoretical SpectroscopyExperiment/Spectroscopy

appropriate?

accurate?

Material Properties + Applications

appropriate?

accurate?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 2

Excited States in (Material) Science – Are Ubiquitous

Theoretical SpectroscopyExperiment/Spectroscopy

appropriate?

accurate?

Material Properties + Applications

appropriate?

accurate?

photoemission DFT+G W0 0

from

first

principles

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 2

Band structures: photo-electron spectroscopy

- -

-

-

+

Photoemission

hn

GW

- -

-

Inverse Photoemission

-

-

hn

-

GW

- -

-+

Absorption

-

hn

BSETDDFT

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 3

Experimental: angle-resolved photoemission spectroscopy

photoemission: photon in – electron out

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 4

Experimental: angle-resolved photoemission spectroscopy

ARPES

=+1qo

Binding Energy (eV)8 6 4 2 0

Masaki Kobayashi, PhD dissertation

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 5

Experimental: angle-resolved photoemission spectroscopy

ARPES

=+1qo

Binding Energy (eV)8 6 4 2 0

Masaki Kobayashi, PhD dissertation

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 5

ARPES vs GW : the quasiparticle concept

Quasiparticle:

single-particle like excitation

A ( )k

e spectralfunction

e

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 6

ARPES vs GW : the quasiparticle concept

Quasiparticle:

single-particle like excitation

Ak(ǫ) = ImGk(ǫ) ≈Zk

ǫ− (ǫk + iΓk)

ǫk : excitation energyΓk : lifetimeZk : renormalisation

A ( )k

e quasiparticle-peak

ek

qp

Gk

e

The aim is to calculate the Green’s function G!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 6

Green’s function and screening

-

-

-

-

-

---

--

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 7

Green’s function and screening

-

-

-

-

-

-

--- -

-

-

--

+

ejected

system polarizes

tt-

-- -

- -

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 7

Green’s function and screening

-

-

-

-

-

-

---

-

-

-

-

-+- -

-

-

--

+

ejected

system polarizes

tt tt

polarization is

time-dependent

hole is screened dynamically

-

--

--

- -

- -

W (r, r′, t) =

dr′′ε−1(r, r′′, t)

|r′′ − r′|

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 7

Green’s function and screening

-

-

-

-

-

-

---

-

-

-

-

-+- -

-

-

--

+

ejected

system polarizes

tt tt

polarization is

time-dependent

hole is screened dynamically

-

--

--

- -

- -

quasiparticle

W (r, r′, t) =

dr′′ε−1(r, r′′, t)

|r′′ − r′|

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 7

GW Approximation - Screened Electrons

-

-

-

-

-

-+

-

--

G: propagator

W

GS=GW :

W: screened

Coulomb

Self-Energy

ΣGW (r, r′, t) = iG(r, r′, t)W (r, r′, t)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 8

G0W0 Approximation in Practise

1 start from Kohn-Sham calculation for ǫKSs and φKS

s (r)

2 KS Green’s function:

G0(r, r′; ǫ) = lim

η→0+

s

φKSs (r)φKS∗

s (r′)

ǫ− (ǫKSs + iη sgn(Ef − ǫKS

s ))

3 GW : χ0 = iG0G0 → W0 = v/(1− χ0v) → Σ0 = iG0W0

4 G0W0: ǫqps = ǫKSs + 〈s| Σ(ǫqps ) |s〉 − 〈s|vxc|s〉

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 9

GW Approximation - Screened Electrons

-

-

-

-

-

-+

-

--

G: propagator

W

GS=GW :

W: screened

Coulomb

Self-Energy: Σ = Σx + Σc

Σx = iGv:◮ exact (Hartree-Fock) exchange

Σc = iG(W − v):◮ correlation (screening due to other electrons)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 10

On the importance of screening – Silicon

ǫqpnk = ǫLDAnk + 〈φnk|Σx +Σc(ǫ

qpnk)− vxc|φnk〉

exp: 1.17 eV

Hartree-Fock (exchange-only) gap much too large

Screening is very important in solids!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 11

ARPES – GW: wurtzite ZnO

H L A G K M G

Ener

gy r

elat

ive

to(e

V)

EF

0

-2

-4

-6

ZnO G W0 0

@OEPx(cLDA)

Yan, Rinke, Winkelnkemper, Qteish, Bimberg, Scheffler, Van de Walle,

Semicond. Sci. Technol. 26, 014037 (2011)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 12

G0W0 Band Gaps

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Experimental Band Gap [eV]

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

The

oret

ical

Ban

d G

ap [

eV]

LDAOEPx(cLDA)OEPx(cLDA) + G

0W

0

CdS

zb-GaNZnO

ZnS

CdSe

ZnSe

InNGe

wz-GaN

Rinke et al. New J. Phys. 7, 126 (2005), phys. stat. sol. (b) 245, 929 (2008)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 13

Nitrides (Al,In,Ga)N – Areas of (potential) Application

LEDs and Laser Diodes

High Frequency, High Power(e.g. HEMT)

Photovoltaics

Water Splitting

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 14

Group-III nitrides

(potential) applications

solid state lighting

photovoltaics

RGB projectors

until ∼2006

debate over gap of InN

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 15

Band gap of InN

1016

1017

1018

1019

1020

1021

carrier concentration (cm-3

)

0.40.60.81.01.21.41.61.82.02.22.4

Ega

p+E

F (eV

)

Wu et alHaddad et alIoffe InstituteBriot et alTansley and FoleyRF sputteringDC sputteringButcher et alSugita et al

Figure adapted from Butcher and TansleySuperlattices Microstruct. 38, 1 (2005)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 16

How can first principles calculations contribute?

Proposed reasons for band gap variation e.g. Butcher and Tansley Superlattices Microstruct. 38 (2005)

high carrier concentration ⇒ Moss-Burnstein effect

impurities, point defects, trapping centers

non-stoichiometry

formation of oxides and oxynitrides

metal inclusions, formation of metal clusters

First principles approach:

Density-functional theory (DFT) (ground state)

◮ atomistic control◮ stoichiometric, defect and impurity free structures

many-body perturbation theory in the GW approximation (excited state)

◮ method of choice for calculation of band gaps in solids

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 17

InN – GW band structure and Moss-Burstein effect

M/8|k

[110]|

0.0

0.5

1.0

1.5E

nerg

y [e

V]

Γ A/4|k

[001]|

w-InN

1020

1019

1018

1017

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 18

InN – GW and Moss-Burstein effect

1016

1017

1018

1019

1020

1021

carrier concentration (cm-3

)

0.60.81.01.21.41.61.82.02.2

Eg(n

) (e

V)

parabolic (meff

=0.07 m0)

G0W

0@OEPx(cLDA)

P. Rinke et al. APL 89, 161919 (2006)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 19

Group-III nitrides

(potential) applications

solid state lighting

photovoltaics

RGB projectors

now

debate over gap of InNsettled

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 20

Future Technologies – Organic Electronics

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 21

Hybrid inorganic/organic systems (HIOS)

ZnO/PTCDA organic electronics

organic field effect transistors (OFET)

organic light emitting diodes (OLED)

organic photovoltaic cells (OPVC)

. . .

Hybrid inorganic/organic interfacesare omnipresent!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 22

Hybrid inorganic/organic systems (HIOS)

ZnO/PTCDA

ZnO/p-sexiphenyl(courtesy of S. Blumstengel)

organic electronics

organic field effect transistors (OFET)

organic light emitting diodes (OLED)

organic photovoltaic cells (OPVC)

. . .

Hybrid inorganic/organic interfacesare omnipresent!

hybrid electronics

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 22

Hybrid inorganic/organic systems (HIOS)

ZnO/p-sexiphenyl(courtesy of S. Blumstengel)

Combine the best of two worlds...

inorganic materials:

stable crystal structures

good growth control

high charge carrier mobilities

organic materials:

strong light-matter coupling

large chemical space gives diverserange of properties

... or more!

great potential for:

synergies between different materials

new physics at interface

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 23

Potential for new physics at HIOS

solid organic

HIOS

Potential for new interface morphologies.

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 24

Open questions at HIOS

-

polaronic-

band-like?

What is the nature of charge carriers?

New quasiparticles?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 25

Open questions at HIOS

valence band

conduction band

molecular states

-

HOMO

LUMO

-free carrier

What does the notion of “state” imply?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 26

Open questions at HIOS

valence band

conduction band

molecular states

-

HOMO

LUMO

- polaron

??

-

-

polaron?

free carrier?

+ polaron ??

What does the notion of “state” imply?

How do “states” line up energetically?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 26

Open questions at HIOS

valence band

conduction band

molecular states

-

HOMO

LUMO

- polaron

??

-

-

polaron?

free carrier?

hybrid state?

+ polaron ??

What does the notion of “state” imply?

How do “states” line up energetically?

Do hybrid “states” form?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 26

Molecules on surfaces – a challenge for first principles

The objective is:

to develop an atomistic understanding of (nano)materials

!"#"$%&'()*$$

$$$$$$$$$$$$$+,$$

$$$$$$$$$$$$$$$$-,.$

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 27

Molecules on surfaces – a challenge for first principles

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+(

:;%#1'(,#%*+$'#(

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 27

Molecules on surfaces – a challenge for first principles

State-of-the-art for interfaces: density-functional theory (DFT)

local-density approximation (LDA)

generalized gradient approximation, e.g. PBE functional

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+(

:;%#1'(,#%*+$'#(

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 27

Molecules on surfaces – a challenge for first principles

Beyond state-of-the-art:

advanced density functionals e.g. hybrid functionals or RPA

Green’s function methods e.g. GW

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+(

:;%#1'(,#%*+$'#(

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 27

Molecules on surfaces – a challenge for first principles

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+(

:;%#1'(,#%*+$'#(

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 27

Level alignment at HIOS

conductionband

valenceband

molecularstates

EF

EIB: lectrone i bnjection arrier

HIB: oleh i bnjection arrier

injection limited current:

j ∝ AT 2 exp

(

−charge injection barrier

kBT

)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 28

Molecular levels at a surface

gas phasesurface

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 29

Molecular levels at a surface

gas phasesurface

+

electronaffinity (EA)

ionizationpotential (IP)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 29

Molecular levels at a surface

gas phasesurface

+

EA

IP

-

-

-

-

image effect

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 29

Molecular levels at a surface

gas phasesurface

+

EA

IP

-

-

-

-

image potentials

classical image potential:

metal: −1

4zsemiconductor/insulator: −

ε− 1

4(ε+ 1)

1

zε: dielectric constant

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 29

Molecular levels at a surface

gas phaseadsorbed

+

EA

IP

-

-

-

-

renormalization

+

classical image potential:

metal: −1

4zsemiconductor/insulator: −

ε− 1

4(ε+ 1)

1

zε: dielectric constant

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 29

The screened Coulomb interaction W

Work with screened coulomb interaction:

W (r, r′, t) =

dr′′ε−1(r, r′′, t)

|r′′ − r′|

ε(r, r′′, t): dielectric function

The challenge is to calculate W (r, r′′, t) from first principles!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 30

The screened Coulomb interaction W

Work with screened coulomb interaction:

W (r, r′, t) =

dr′′ε−1(r, r′′, t)

|r′′ − r′|

ε(r, r′′, t): dielectric function

The challenge is to calculate W (r, r′′, t) from first principles!

we use random-phase approximation (RPA) for W :

= + + + ...

v: bare Coulomb interaction

c0: Kohn-Sham polarizability

W

formally scales with (system size)4

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 30

From screening to quasiparticle energies

-

-

-

-

-

-+

-

--

G: propagator

W

GS=GW :

W: screened

Coulomb

Quasiparticle energies: G0W0 scheme

electron addition and removal energies

correction to DFT eigenvalues ǫDFT

nk :

ǫqpnk = ǫDFT

nk +ΣG0W0

nk (ǫqpnk)− vxcnk

includes image effect

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 31

GW for surfaces – CO on NaCl

Na ClOC

HOMO-LUMO gap of CO:

gap/eV LDA G0W0 Exp.@LDA

free CO : 6.9 15.1 15.8∗

CO@NaCl: 7.4 13.1∗Constants of Diatomic Molecules (1979),

Phys. Rev. Lett. 22, 1034 (1969)

surface polarization significant here

C. Freysoldt, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 103, 056803 (2009)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 32

GW for surfaces – CO on Ultrathin NaCl on Ge

CO

NaCl

Ge

Supported ultrathin films are novel nano-systems withunexpected features (PRL 99, 086101 (2007))

Additional electrons/holes on CO see two interfaces

Will the CO gap depend on NaCl thickness?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 33

GW for surfaces – CO on Ultrathin NaCl on Ge

12.512.612.712.8

G0W

0@LDA

2 3 4NaCl layers

7.47.57.67.77.8

DFT-LDA

5σ-2

π∗ spl

ittin

g (e

V)

3.03.13.23.33.4

2π∗

2 3 4NaCl layers

-2.1-2.0-1.9-1.8-1.7

G0W

0 cor

rect

ions

(eV

)Polarization at NaCl/Ge interface gives layer-dependent CO gap

⇒ molecular levels can be tuned by polarization engineering:◮ interesting for molecular electronics and quantum transport

C. Freysoldt, P. Rinke, and M. Scheffler, PRL 103, 056803 (2009)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 34

Molecules on surfaces – a challenge for first principles

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+(

:;%#1'(,#%*+$'#(

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 35

Electron gas at TTF/TCNQ interface

TTF and TCNQ crystals have

large band gap

but 2 dimensional electron gasobserved at interface

Nat. Mat. 7, 574 (2008)

What is the origin?

TTF

TCNQ

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 36

Electron gas at TTF/TCNQ interface

-3 -2 -1 0 1 2 3E-E

F [eV]

0

20

40

DO

S

DFT-PBE density of states

DFT-PBE:

predicts metallic interface

0.12 e/molecule charge transferto TCNQ

in seeming agreement withexperiment

TTF

TCNQ

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 36

TTF/TCNQ dimer at infinite separation

TTF TCNQ

EAIP

exp PBE expPBE

4.0

6.7

9.5

7.0

5.6

2.81.0

!

IP(TTF) > EA(TCNQ)

erroneous charge transfer

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 37

Ionisation Potential, Electron Affinity and (Band) Gaps

Could use total energy method to compute

ǫs = E(N ± 1, s)− E(N)

Ionisation potential: minimal energy to remove an electron

I = E(N − 1)− E(N)

Electron affinity: minimal energy to add an electron

A = E(N)− E(N + 1)

(Band) gap: Egap = I −A

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 38

∆SCF versus eigenvalues for finite systems

∞≈≈

data courtesy of Max Pinheiro

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 39

Ionisation Potential, Electron Affinity and Band Gap

so what about ∆SCF for excitations?

∆SCF: ǫs = EDFT(N)− EDFT(N ± 1, s)

reasonably good for I and A of small finite systems

but:

most functionals suffer from delocalization or self-interaction error(Science 321, 792 (2008))

⇒ the more delocalized the state, the larger the error

only truely justified for differences of ground states◮ ionisation potential, electron affinity◮ excited states that are ground states of particular symmetry

difficult to find excited state wavefunction (density)

excited state density is not unique

separate calculation for every excitation needed◮ not practical for large systems or solids

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 40

TTF/TCNQ dimer at infinite separation

culprit: self-interaction error in PBE

add Hartree-Fock (HF) exchange to removeself-interaction

⇒ PBE0-like hybrid functional:

Exc(α) = α(EHFx − EPBE

x ) + EPBEc

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 41

TTF/TCNQ dimer at infinite separation

0 0.2 0.4 0.6 0.8 1 α

-2

0

2

4

∆[e

V]

Experiment

PBE0(α)

artificial charge transfer

PBE0-like hybrid functional:

Exc(α) = α(EHFx − EPBE

x ) + EPBEc

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 41

TTF/TCNQ dimer at infinite separation

0 0.2 0.4 0.6 0.8 1 α

-2

0

2

4

∆[e

V]

Experiment

PBE0(α)

artificial charge transfer

How to choose α?

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 41

Performance of G0W0

TTF TCNQ

S

CH

H

NC

EA

IP

expG0W0 exp G0W0

6.7 6.7

9.5 9.7

3.7

-0.7

2.8

C6H4S4

all values in eV

C12H4N4

4.6

Exp.: JACS 112, 3302 (1990), J. Chem. Phys. 60, 1177 (1974),Adv. Mat. 21,1450 (2009),Mol. Cryst. Liquid Cryst. Inc. Nonlin. Opt. 171, 255 (1989)

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 42

TTF/TCNQ dimer – implications for interface

no charge transfer, but small charge rearrangement

2D electron gas not due to charge transfer

HOMO

LUMO

PBE optimal !

electron density difference

optimal-α calculations for interface in progress

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 43

Molecules on surfaces – a challenge for first principles

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+:(

;<%#1'(,#%*+$'#:(

.,)27&(+,#"&,"#'(

=6'&,#)*7&(+,#"&,"#'(

87>#%-)*%6(+,#"&,"#'(

!

!

!

!

!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 44

Molecules on surfaces – a challenge for first principles

!"#$%&'(#'&)*+,#"&-)*(./+)#0-)*(1')2',#3(

4'5'6(%671*2'*,( 8%*(/'#(9%%6+(7*,'#%&-)*+:(

;<%#1'(,#%*+$'#:(

.,)27&(+,#"&,"#'(

=6'&,#)*7&(+,#"&,"#'(

87>#%-)*%6(+,#"&,"#'(

!

!

!

!

!

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 44

Acknowledgements

GW for surfaces

Christoph Freysoldt

Nitrides

Abdallah QteishMomme WinkelnkemperJorg Neugebauer

GW in FHI-aims

Xinguo Ren

Support and Ideas

Matthias Scheffler

TTF-TCNQ

Viktor AtallaMina Yoon

gwst code

Rex Goby

FHI-aims code

Volker Blumthe whole FHI-aims developer team

Patrick Rinke (FHI) Theoretical Spectroscopy TU Berlin 2012 45