Transient Wind Events and Their Effect on Drivetrain Loads

Post on 16-Jul-2015

278 views 3 download

Tags:

transcript

Transient  Winds  and  Their  Effect  on  Drivetrain  Loads  

Before We Start q  This  webinar  will  be  available  at  

www.windpowerengineering.com  &  via  email  

q  Q&A  at  the  end  of  the  presenta:on  

q  Hashtag  for  this  webinar:  #WindWebinar  

Moderator Presenter

Nic Abraham Windpower Engineering

& Development

Doug Herr AeroTorque

•  Increasing  awareness  of  how  transient  aerodynamic  events  affect  wind  turbine  drivetrains.  

•  Introducing  new  research  data  on  how  to  control  these  impacts.  •  Growing  the  understanding  of  the  speed  of  these  events  and  

how  current  systems  cannot  stop  them  from  occurring.  •  Understanding  how  an  asymmetric  approach  to  torque  control  

can  enhance  the  system.  

•  What  are  the  types  of  wind  events  that  can  damage  drivetrains?    •  What  is  the  current  research  saying  about  the  roles  of  sheer  

winds  and  turbulence?  •  What  are  the  effects  to  the  drivetrain  when  the  turbine  is  

subjected  to  significant  wind  or  other  operaAng  events?  

•  AeroTorque  was  spun  out  of  PT  Tech  Inc.  in  March  of  2013.      •  PT  Tech  has  spent  the  last  36  years  working  to  reduce  transient  

torque  loads  in  many  different  types  of  equipment.      •  Both  companies  are  under  EBO  Group,  an  100%  employee  

owned  company.  

Our  mission  is  to  extend  the  usable  life  of  the  drivetrain  by  proacAvely  working  with  owners  and  strategic  partners  and  to  build  a  stronger,  more  sustainable  financial  model  for  the  wind  industry  fleets.  

•  Extreme  operaAng  gust  (EOG)  •  Extreme  direcAon  change  (EDC)  •  Extreme  coherent  gust  (ECG)  •  Extreme  coherent  gust  with  direcAon  change  (ECD)  •  Extreme  wind  shear  (EWS)  

per  IEC  61400-­‐1  

Shear  winds  have  the  following  characterisAcs:  •  Are  usually  caused  by  nearby  topography,  o\en  cliffs  or  

ridges  •  Cause  the  wind  to  flow  verAcally  up  the  face  of  the  turbine,  

rather  than  through  the  blade  sweep  •  Can  load  the  blades  unevenly    

Turbulent  winds  have  the  following  characterisAcs:  •  Are  non-­‐linear  winds,  flowing  without  a  pa]ern  •  Can  be  caused  by  surrounding  roughness  and  structures  •  Can  also  cause  a  reducAon  in  power  producAon  •  Will  load  the  blades  unevenly  •  Can  even  be  caused  by  nearby  turbines    

Li\ing  force  has  an  opposite    effect  on  the  wind,  pushing    it  tangenAally,  causing  spin  in  the  opposite  direcAon  

Source:  WE  Handbook-­‐  2-­‐  Aerodynamics.  Wind  Turbine  Blade  Aerodynamics  (2009):  1-­‐10.  Gurit  Wind  Energy  Handbook.  Gurit  Holding  AG,  14  Dec.  2009.  Web.  1  Oct.  2014.  

“Horn’s  Rev”  turbulence  

Photo:  Va)enfall/Christian  Steiness

Texas  Tech  and  NREL  research  with  dual-­‐doppler  systems  show  the  downwind  effect  at  80  meters  

Schroeder,  John.  Improving  Wind  Farm  Efficiency  Using  Advanced  Doppler  Radar  Technologies.  Lubbock,  TX:  Texs  Tech  U,  2013.  Print.

       

   

Rotor  inerAa  

Generator  inerAa  

Photo  courtesy:  Aaron  Greco/Argonne  National  Laboratory

Gaining  producAon  at  lower  wind  speeds  can  improve  the  operaAng  profits  at  lower  wind  sites.  

Significantly  more  wind  must  be  deflected  with  larger  blades  

The  WOPR  number  provides  a  raAo  of  the  maximum  accessible  wind  power  the  blades  must  withstand  compared  to  the  maximum  power  the  turbine  can  extract  from  the  wind.  

WOPR  =  (Cut-­‐out  Speed  ÷  Rated  power  speed)3    

Example:    Cut-­‐out  speed  =  25mps        Rated  power  wind  speed  =  15mps,      WOPR  number  is  (25  ÷  15)3  =  (1.667)3  =  4.6        The  blades  could  produce  4.6  ;mes  the  power,  if  the  generator  could  harness  it.      

 Reduce  cut-­‐in  to  12mps  with  larger  rotor  =  (25/12)  3  =  9  WOPR  

Nine  :mes  the  poten:al  power!      Generator  iner:a  can  momentarily  cause  higher  loading!  

To  improve  the  economics  and  increase  producAon,  rotor  sizes  have  moved  from  89  meters  to  117  meters  since  2005,  a  growth  of  31%.    

89.34   92.29   90.9   93.25   95.32   98.91  105.7  

111.35  117.03  

0  

20  

40  

60  

80  

100  

120  

140  

2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   2014  

AVER

AGE  SIZE  

YEAR  

ROTOR  DIAMETER  IN  METERS  

   

   

   

   

A  control  system  can  only  react  as  fast  as  the  mechanical  system  that  it  controls.  Can  a  control  system  react  fast  to  prevent  a  torque  reversal?    

Sense  the    Wind  speed  

IniAate  blade  pitch  

Stop  pitching  

How  quickly  can  it  respond  to  a  gust  or  an  emergency  stop  command?  

   

   

   

•  As  turbines  have  and  conAnue  to  grow  in  size,  potenAal  transient  loading  from  wind  events  has  increased  

•  Current  control  systems  cannot  react  fast  enough  to  stop  damage  •  Asymmetric  torque  control  miAgates  sudden  reverse  loads,  as  well  

as  higher  freqency  loads  •  The  addiAon  of  an  asymmetric  torque  device  in  exisAng  turbines  is  

a  major  step  in  extending  the  life  of  drive  components  and  reducing  O&M  costs  

   

Questions? Nic Abraham Windpower Engineering & Development nsharpley@wtwhmedia.com Twitter: @WPE_Nic

Doug Herr AeroTorque dherr@aerotorque.com Phone: 330.590.8105 Twitter: @AeroTorque

Thank You q  This  webinar  will  be  available  at  

www.windpowerengineering.com  &  email  

q  Tweet  with  hashtag  #WindWebinar  

q  Connect  with  Windpower  Engineering  &  Development  

q  Discuss  this  on  the  EngineeringExchange.com