Transport Phenomena Problems

Post on 22-Oct-2014

253 views 9 download

Tags:

transcript

Some problems about transport phenomena (molecular and

convective behavior)

Ruben D. VargasWalter J. RosasAngel A. GalvisMayra P. Quiroz

Laura CalleWatson L. Vargas

Departamento de IngenierΓ­a quΓ­micaUniversidad de los Andes, BogotΓ‘ D.C. , Colombia

Outline Introduction

Drainage of liquids

Transient diffusion in a permeable tube with open ends

Heating of a semi-infinite slab with variable thermal conductivity

Conclusions

Introduction

Drainage of liquids

J.J. van Rossum, Appl. Sci. Research, A7, 121-144(1958)V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, N.J. (1962)

Wall of containing vessel

Initial level of liquid

Liquid level moving downward with speed s

x

y

Drainage of liquids

Wall of containing vessel

Initial level of liquid

Liquid level moving downward with speed s

x

y

𝛿 ( 𝑧 , 𝑑 )=√ πœ‡πœŒ 𝑔

𝑧𝑑

When time tends to infinite𝛿 ( 𝑧 , 𝑑 )=0

At the initial time

𝛿 ( 𝑧 , 𝑑 )=∞

Drainage of liquids

When time tends to infinite𝛿 ( 𝑧 , 𝑑 )=0

At the initial time

𝛿 ( 𝑧 , 𝑑 )=βˆžπ›Ώ ( 𝑧 , 𝑑 )=√ πœ‡

𝜌 𝑔𝑧𝑑

Drainage of liquids

Unsteady-state mass balance on a portion of the film between z and z + Ξ”z to get:

Accumulation= in- out

 

 

Drainage of liquids

It’s dividing by

 

Lim Ξ”z 0 

Drainage of liquids

With the following assumption:

We obtain:

Drainage of liquidsTaking the terms to one side of the equation

Supposing that viscosity and density remains constant

We can obtain this first order differential equation:

Drainage of liquids

Is clear:

So,

We need solve this equation:

𝛿 ( 𝑧 , 𝑑 )=√ πœ‡πœŒ 𝑔

𝑧𝑑

?

𝑓 ( 𝑧 ) h𝑑𝑑𝑑

+𝜌 π‘”πœ‡

𝑓 2 ( 𝑧 )h2 (𝑑 ) 𝑑𝑓𝑑𝑧h (𝑑 )=0

Replacing

𝛿2

Drainage of liquids

𝑓 ( 𝑧 ) h𝑑𝑑𝑑

+𝜌 π‘”πœ‡

𝑓 2 ( 𝑧 )h2 (𝑑 ) 𝑑𝑓𝑑𝑧h (𝑑 )=0

𝑓 ( 𝑧 ) h𝑑𝑑𝑑

+𝜌 π‘”πœ‡

𝑓 2 ( 𝑧 )h3 (𝑑 ) 𝑑𝑓𝑑𝑧

=0

h𝑑𝑑𝑑h3(𝑑 )

=βˆ’πœŒ π‘”πœ‡

𝑓 ( 𝑧)𝑑𝑓𝑑𝑧 ?

Drainage of liquidsSo we can solve h(t):

πœ™=βˆ’πœŒ π‘”πœ‡

𝑓 (𝑧)𝑑𝑓𝑑𝑧

h𝑑𝑑𝑑h3(𝑑 )

=βˆ’πœŒ π‘”πœ‡

𝑓 ( 𝑧)𝑑𝑓𝑑𝑧 ?

With a β€œbeautiful” substitution!

Drainage of liquids

πœ™=βˆ’πœŒ π‘”πœ‡

𝑓 (𝑧)𝑑𝑓𝑑𝑧

From :

Solving to f(z):

This equation can be write as:

Is possible to arrange the terms and integrate

Drainage of liquids

In summary:

 We obtain:

Heating of a semi-infinite slab with variable thermal conductivity

x

y

y=0; T1

y=∞

The surface at y = 0 is suddenly raised to temperature T 1 and maintained at that temperature for t > 0. Find the time-dependent temperature profiles T(y,t) Thermal conductivity varies with temperature as follows:

π‘˜π‘˜0

=(1+𝛽 )( 𝑇 βˆ’π‘‡ 0

𝑇1βˆ’π‘‡ 0)

Heating of a semi-infinite slab with variable thermal conductivity

 

 

 

 

 

Dimensionless heat conduction equation:

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

Replacing , we can obtain:

 

Heating of a semi-infinite slab with variable thermal conductivity

 

 

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

πœ™ (πœ‚ )=1βˆ’ 32

πœ‚+12

πœ‚3

Heating of a semi-infinite slab with variable thermal conductivity

 

Heating of a semi-infinite slab with variable thermal conductivity

Using uniqueness

 

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

 

 

 

Heating of a semi-infinite slab with variable thermal conductivity

 }