Ultracold molecules - a new frontier for quantum & chemical … · 2015-04-24 · Ultracold atomic...

Post on 06-Jul-2020

1 views 0 download

transcript

Jun Ye

JILA, NIST & CU, Boulder

Debbie Jin

University of Virginia April 24, 2015

NIST, NSF, AFOSR, ARO

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold atomic matter Precise control of a quantum system

The most precise measurements, e.g., clock

Quantum information

Quantum sensors

Control: A tool for understanding complexity

Strongly correlated many-body quantum systems

• Superfluidity & Superconductivity

• Quantum magnetism • Quantum chemistry

Control atomic interactions Regulate atomic motions

Atomic Interactions

0 ∞ interaction strength

We can understand & control them!

Short-range collisions

• Extend capability to control complex quantum systems

Quantum gas of polar molecules

E

Exotic

quantum

matter

well-understood microscopics

tunable, long-range interactions

non-equilibrium quantum dynamics

• Study frontier problems in strongly correlated quantum

material, with

E

Quantum metrology, Correlated material, Chemistry

Ultracold molecules: The challenge

energ

y

E/kB=6000 K

two atoms

molecule

KRb

Molecules are complex!

energ

y

two atoms

molecule

100 K

vibration

Ultracold molecules: The challenge

Molecules are complex!

energ

y

0.1 K

rotation

Ultracold molecules: The challenge

Molecules are complex!

energ

y

Ultracold molecules: The challenge

Molecules are complex!

energ

y

38 mK

nuclear spin

Ultracold molecules: The challenge

log 1

0(d

en

sity

[cm

-3])

log10(T [K]) -9 -6 -3 0

3

6

9

12

Stark, magnetic,

optical deceleration

Buffer-gas cooling

Photo-association

Coherent state transfer

Quantum degeneracy

Technology for making cold molecules

Quantum degeneracy

~ kBT Towards

quantum regime

Carr, DeMille, Krems, Ye, New. J. Phys. 2009.

Laser cooling Evaporative cooling Sympathetic cooling

Quantum gas

of molecules

• High resolution collisions/reactions

• Precision test

energ

y

two atoms

molecule

Associate ultracold atoms into molecules

6000 K

Large, floppy molecules

>

V(R)

Ebinding

Magnetic field B

R R R R

Energy

Make Feshbach molecules

Zirbel et al., Phys. Rev. Lett. 100, 143201 (2008).

Magnetic field B

Scattering length a

0 ∞

Start with ultracold atoms

40K 87Rb

Interaction tuned by scattering resonance

Weakly bound molecules

energ

y

6000 K

• no dipole moment • losses

Coherent two-photon transfer – the absolute ground state

Beat note 125 THz

Laser 2 Laser 1

frequency

6000 K

970 nm 690 nm

(entropy-less chemistry)

Fully coherent, >90% efficiency

36 nuclear spin states: We populate & control single state S. Ospelkaus et al., Phys. Rev. Lett. 104, 030402 (2010).

Polar molecules in the quantum regime

87Rb Bosons

K.-K. Ni et al., Science 322, 231 (2008). KRb molecules

(Dipole ~0.5 Debye)

Temperature ~ 100 nK

Density ~1012/cm3

T/TF ~ 1.3

104 times colder, 106 times more dense than other cold molecule gases

40K Fermions

A. Chotia et al., Phys. Rev. Lett. 108, 080405 (2012).

T = 200 nK > 1 s lifetime

Density (

10

12

cm

-3) Two-body loss

Time (s)

Chemistry near absolute zero Trapped molecules in the lowest energy state (electronic, vibrational, rotational, hyperfine)

2)()( tntn

KRb + KRb K2 + Rb2

Cold collisions between identical Fermions (1) Particles behave like waves

(2) Angular momentum is quantized

(3) Quantum statistics matter

0110 Fermions c L = 1, p-wave collisions

s p d

0 1ħ 2ħ

Ultracold chemistry

At low T, the quantum statistics of fermionic molecules suppresses chemical reaction!

Energ

y

distance between the molecules

deBroglie wavelength

Ospelkaus et al., Science 327, 853 (2010).

Rate proportional to T

Distinguishable molecules do not enjoy the suppression rate is x 100 higher !

Energ

y

distance between the molecules

deBroglie wavelength

Ospelkaus et al., Science 327, 853 (2010).

Ultracold chemistry

Anisotropic dipolar collisions

mL = +1, -1

mL = 0

p-wave barrier

K.-K. Ni et al., Nature 464, 1324 (2010).

Collisions under a single partial wave (L = 1).

0.00 0.05 0.10 0.15 0.20

10-12

10-11

10-10

10-9

3D

D

D(

cm

3s

-1)

Dipole moment (D)

E M. de Miranda, et al., “Controlling the quantum stereodynamics of ultracold bimolecular reactions,” Nature Phys. 7, 502 (2011).

Theory: Büchler, Zoller, Bohn, Julienne

2D geometry – loss suppression

3D optical lattice – suppressing chemical reaction with quantum Zeno effect

τ = 25(2) seconds

A. Chotia et al., Phys. Rev. Lett. 108, 080405 (2012).

Lifetime ~ 20 s Filling ~ 5%

B. Zhu et al., Phys. Rev. Lett. 112, 070404 (2014).

Spin exchange in a lattice of molecules Barnett et al., Phys. Rev. Lett. 96, 190401 (2006). Micheli et al., Nature Phys. 2, 341 (2006). Gorshkov et al., Phys. Rev. Lett. 107, 115301 (2011).

Temperature and entropy requirements less stringent for molecules

Long-range dipolar interactions for direct (~kHz) spin

exchanges - motion & spin decoupled

Fully tunable with electromagnetic fields

2.23 GHz

70 kHz

270 kHz

Rotation Spin

Dipole moment

0,1

1,1

1,1

0,0

2.2GHz

A good system to study many-body quantum localization ?

D. Huse, G. Shlyapnikov, M. Lukin, E. Demler, …

Molecules (material) are physically pinned down, but spins (excitations) can be exchanged and mobile !

Energy flow in a macro-molecule !

Interaction strength for quantum magnetism

Flip-flop term

The oscillation frequency for a pair of molecules is 𝐽⊥/2ℎ.

104 Hz

208 Hz

A Dipolar Spin-Lattice Model

|N=0>

|N=1 >

• Start with N=0.

2

1• Drive a coherent spin superposition.

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

T (ms)

Co

ntr

ast

N=1.77x104

N=5x103

T (ms)

• Probe spin coherence at T. (Ramsey spectroscopy)

B. Yan et al., Nature 501, 521 (2013).

Nu

mb

er (

10

3)

Oscillations due to dipolar interactions

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

T (ms)

Contr

ast

N=1.77x104

N=5x103

Oscillation frequencies & decay time both depend on rotational states

|𝟏, 𝟎 ↔ |𝟎, 𝟎

|𝟏, −𝟏 ↔ |𝟎, 𝟎

Co

her

ent

tim

e

1/N scaling

Control dipolar interaction

𝐽⊥

2~ 102 Hz

for |0,0> to |1,0>

( 𝐽⊥

2~ 51 Hz for|0,0> to |1,-1>)

|1,-1

|1,0

|1,1

|0,0

Theory (MACE) Experiment

Co

ntrast

Co

ntrast

1

0

0.5

1

0.5

0

|1,-1

|1,0

|1,-1

|1,0

Dark squares: |0,0> -> |1,0> Red circles: |0,0> -> |1,-1> (time rescaled by ½).

One fitting parameter (filling 5-10%) reproduces the experiment

f = 106 Hz, f/√2, f/2

K. Hazzard et al., Phys. Rev. Lett. 113, 195302 (2014).

Highly filled optical lattice

~5% filling in a 3D lattice

Goal: A near zero entropy 3D lattice

Creating molecules in a 3D lattice

1. Rb MOTT insulator

2. Add lots of K atoms (tune Rb – K interaction energy)

3. Magnetic association & Raman transfer

Challenges: • Fermions have a lot of entropy • Size of the N=1 MI is small (need

to keep Rb density low)

Seeing effects of high Rb density in the optical trap

Rb Mott insulator imaged in-situ A superfluid BEC phase transition to a MOTT insulator

Lattice depth

12 Erec 18 Erec 24 Erec

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Rb (103)

filli

ng

50,000 Rb

2000 Rb

Imaging of K in momentum & real space

104

0.4

0.5

0.6

0.7

0.8

0.9

1.0K Filling vs Number

K Number

Pe

ak F

illin

g F

ractio

n

105

-300 -200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

aK-Rb

(a0)

Rb fill

ing

• Vary aKRb before loading lattice

• At aKRb = 0, Rb MI unaffected by K

• Filling is sensitive to Rb BEC fraction

Overlap of Rb and K

5000 Rb 105 K

Rb K

Rb & K overlap

• Load the lattice at aKRB = 0

• Jumping across the

resonance dilutes the filling (populating higher bands)

• Flip to a noninteracting spin state (|9/2,-7/2>) to avoid resonance when ramping B

• Flip back to |9/2,-9/2>, then proceed with Feshbach association

Pairing up K-Rb in lattice without heating

K: |F =9/2,mF =−9/2> + Rb: |F =1,mF =1>

B

A low entropy lattice of molecules Convert > 60% of Rb MOTT Insulator to KRb

• For BEC of a few 103 Rb, the

peak filling of Rb ~ 1

• To measure KRb, dissociate the molecules & count the numbers of K = Rb

0.1 1 100.0

0.2

0.4

0.6

0.8

Rb (104)

KR

bF

esh

ba

ch /

Rb

Image of KRb

Ground state KRb, ~ 40% filling in 3D lattice (entropy/molecule ~ 1.7 kB)

~5% filling

~5% filling

Special Thanks (KRb team):

Theory collaborations: J. L. Bohn, K. Hazzard, P. S. Julienne, S. Kotochigova, M. Lukin, A. M. Rey, P. Zoller

Former members:

Brian Neyenhuis

Amodsen Chotia

Marcio de Miranda

Dajun Wang

Silke Ospelkaus

Kang-Kuen Ni

Avi Pe’er

Josh Zirbel

Bryce Gadway

Bo Yan

Jacob Covey

Steven Moses