UNIT 1 ORGANIC REAGENTS - I SCY1620cloudportal.sathyabama.ac.in/coursematerial... · 1. ORGANIC...

Post on 02-Aug-2021

39 views 1 download

transcript

1

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF CHEMISTRY

UNIT – 1 ORGANIC REAGENTS - I – SCY1620

2

1. ORGANIC REAGENTS – I

Introduction to Organic Reagents, Types of Reagents, Oxidation Reagents, DDQ, SeO2,

KMnO4,OsO4 , Epoxidation of Olefins ,Jones Reagent, Oppenauer Oxidation, HIO4.

KMnO4

1. cis Hydroxylating agent

KMnO4

OH

OH

KMnO4

OH

OH

KMnO4

OH

OH

OOH

OOHOH

OH

KMnO4

OOHOH

O

OOHO

OH

+

+

Potassium permanganate will attack on double bond which is having less steric hinderance.

KMnO4

OH

OH

C6H6

KMnO4

OO

OH

[18 crown -6]

OH

OH

O

O

KMnO4

3

OsO4

O

OH

OsO4

pyridine

O

OHOH

OH

OsO4, ether, Pyridine

OH

OH

OH

OH K3[Fe(CN)6]

OH

OH

O

O

OsO4, ether, Pyridine OH

OH

O

O

O

O

KClO3, OsO4

Ether, Pyridine

O

O

O

O

OH

OH

OOH H2O2

OsO4, KClO3

OOHOH

OH

OHOsO4

ETHER, NMO

OH

OH

OH

OsO4

TBHP, t-Bu-OH, Et4NOH

OH

OH

O

O

+

OsO4, NaIO4

dioxane, H2O

N

OO

NH

H

H

N

OO

OH

OH N

OO

O

Prepared by Dr K> CHENNAKESAVULUDept. of ChemistrySIST, CHENNAI

N

OO

OH

OH

OsO4, NaIO4

OsO4, ether, Pyridine

OH

OH

OH

OH K3[Fe(CN)

6]

OH

OH

O

O

OsO4, ether, Pyridine OH

OH

4

Epoxidation of olefins

OO

O H

O

OH

HO

OH

R1

Cl

O OH

Cl

O O OH

m-chloro benzoic acidm-chloro perbenzoic acid (mcPBA)

PAA (Peroxy acetic acid)H2O2 Alkyl peroxide

Epoxides and their nomenclature

O

oxirane

EPOXY ETHANE

O 1,2 EPOXY PROPANE

2-methyloxirane

O2,3 EPOXY BUTANE

2,3-dimethyloxirane

O 1,2 EPOXY CYCLO HEXANE

7-oxabicyclo[4.1.0]heptane

5

Epoxidation of olefins

O

OHOH

O O OH

PBA

O

OHOH

O O OH

PBA

SYN EPOXIDE

HH

H

H

PBAO

O

+

Major

Minor

O

PBA

PBA

O

PAAO

PAA

O

6

JONES REAGENT

OH CrO3, CH

3COCH

3, H

2SO

4

O

OHCrO

3, CH

3COCH

3, H

2SO

4O

HIO4

H OH

H OH HIO4

O

H

2

H O

H O

H

H

I

O

O–

OH

OH

OH

OH

+H

H

I

O

O

OH

OH

O

OH

H

H

I–

O

O

O–

OH

O

O

O

H

2

7

DDQ

O

O

Cl

Cl

CN

CN

H H

DDQC

+

H

H

H

C+

HH

H

H

H

H HH

H

O

O

Cl

Cl

CN

CN

O–

OH

Cl

Cl

CN

CN

C+

H

H

H

O

O

Cl

Cl

CN

CN

H H

DDQ

HH

Ph

H Ph

O

O

Cl

Cl

CN

CN

PhC

+

Ph

PhPh

OH

O

O

Cl

Cl

CN

CN

OO

OOH

O

OH

O

O

Cl

Cl

CN

CN

OOH

O

O

O

O

Cl

Cl

CN

CN

O

OH

OHO

8

O

O

OH

Ph

C6H6

DDQ

O

O

O

Ph

O

C6H

6

DDQ

O

CH+ ClO 4

-

O

Ph

Ph

PhH

DDQ

C6H6, H3O+

DDQ

HClO4, AcOH

C+

Ph

Ph

Ph

ClO 4

-

O

H DDQ

AcOH O

PhO

O

DDQ

AcOH

OH

O

O

2

DDQ

CH3OH

O

O

O

O

O

O

OH

H

DDQ

HClO4, AcOH

O

9

SeO2

SeO2

OH

OH

+

SeO2

OH

NSeO2

N

OH

N SeO2 NO

H

SeO2

O H

O

+

OH

OH

+

OHOH

OH

OH

Ether , Pyridine

OsO4

O

Ether , Pyridine

OsO4O

OH

OH

Prepared by Dr K> CHENNAKESAVULUDept. of ChemistrySIST, CHENNAI

10

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF CHEMISTRY

UNIT – 1 ORGANIC REAGENTS - II – SCY1620

11

1. ORGANIC REAGENTS – II

Reducing Agents , Hydride ion transfer mechanism, Electron Transfer mechanism LAH, NaBH4,

Electrophilic Reducing Agents, Allanes and Boranes, Hydroboration, Dissolving metal reduction,

Birch Reduction, Clemmensen Reduction, Wolf-Kishner Reduction Lindlars Reagent.

A Z

H H

REDUCING AGENTS

HYDRIDE TRANSFER ELECTRON TRNASFER

A Z

H-

A Z

HH

3O+

A Z

H H

A Z

A Z

A Z

A Z

H

H+

electron from reducing agent

electron from reducing agent

A Z

HH+

LAH FUNCTIONS

ACID HALIDESESTERSANHYDRIDESEPOXIDESACID

ALCOHOLS

AMIDESNITRILESAZIDESNITROIMINES

AMINES

HALOCOMPOUNDSSULPHONATES

HYDROCARBONS

12

LAH MECHANISM

O OH + Al(OH)34

Al–

H H

H H

Li+

O4

Al–

H H

H H

Li+

O– Al

H H

H

O

Al–

H

H H

OO–

O

Al–

H

H H

O

Al–

H

H H

O

Al–

H

H O

O

Al–

H

H O

O

O–

O

Al–

H O

H

O

O

Al–

H O

O

O

Al–

H O

O

O

Al–

OO

O

OH + Al(OH)34

13

LAH CHEMICAL REACTIONS

O

OH

H OH

H

+

O

CH3

CH3

CH3

MAJOR MINOR

OH

H

CH3

CH3 CH3

OH

H

CH3

CH3

CH3

+

MINORMAJOR

ENDO EXO

CH3

CH3

CH3

O

LAH

CH3

CH3 CH3

OH

H

CH3

CH3

CH3

H

OH+

MINORMAJOR

LAH

LAH

O

H

OH

H

OH

H

LAH, RT, ETHER, H3O+

LAH, 0 TO 5o C, ETHER,

H3O+

O

O

LAH

OH

OH

CH4

N

O

LAH N

N

OLAH

N

N OH

LAH

N

Br

LAH

O

N

O

H

NH

+

14

NaBH4

NH2

O

O

H

Na+

B–

HH

H H

NH2

O

H

OH

O

OO

Li+

Al–

HH

H H

O

OOH

Na+

B–

HH

H H

OH

OH

OH

OH+

O

OO O

LAH

OH

O O

OH

O

O

OO

O

OH

H OH

H

+

O

CH3

CH3

CH3

MAJOR MINOR

OH

H

CH3

CH3 CH3

OH

H

CH3

CH3

CH3

+

MINORMAJOR

ENDO EXO

CH3

CH3

O

CH3 CH3

OH

H

CH3

CH3

H

OH+

MINORMAJOR

NaBH 4

NaBH 4

ENDO APPROACH

EXO APPROACH

NaBH 4

O

CH3

CH3

OH

H

CH3 CH3

OH

H

CH3

CH3

+

MINORMAJOR

NaBH 4

15

AlH3 and BH3

AlH3 and BH3

CarbonylEsterAcidsAcid halidesAcid anhydridesepoxides

Alcohols

AmidesNitrilesinaminesIsocyanates

Amines

O

N

AlH3

Et2O

N

O

ClAlH3

Et2O

OH

AlH3 and BH3

Ph3P

AlH3

Cl Cl

O

AlH3

OH

N

O

N+

O–

O

AlH3

NH2

N+

O–

O

NH

O

AlH3 NH

16

BH3

N+ O

–O

OOH

B2H6

N+ O

–O

OH

N+ O

–O

O

B2H6

N+

O–

O

O

B

H

H

H

N+

O–

O

O

B

H

H

N+ O

–O

O

N+

O–

O

O

B

H

O

N+

O–

O

N+ O

–O

O

N+

O–

O

O

B

O

O

N+

O–

O

N+ O

–O

H3O+

N+

O–

O

OH

OH

N+ O

–O

OH

N+

O–

O

BH3

OHO

OO

O

BH3

O

O

O

O

BH3

O

O

BH3

17

Wolf Kishner Reduction

O N N

H

H

H

H

N N

H

H

OH-

N N–

H

C–

N N

H

H+

N N

HH

C–

H

H+

H

H

O

N2H

4, NaOH

ON

2H

4, NaOH

O

O

N2H

4, NaOH

O

18

Birch Reduction

Na, Liq Ammonia

Na, Liq Ammonia

NNH

Na, Liq Ammonia

O

OO

O

OO

O

B.R

OH OH

+

Major Minor

O O

H

HO

H

H

+

Major

B.R

B.R

19

The effect of electron donating and withdrawing groups on Birch Reduction (B.R.)

O OH OH

OHO OH OHO OH

N+ O

–O

N+

O–

O

B.R B.RB.R

FORMS NOT FORMSFORMS FORMS FORMS NOT FORMS

N+ O

–O

N+O

O

N+

O–

O

B.RB.R

FORMSFORMS

20

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF CHEMISTRY

UNIT – 3 ORGANIC REAGENTS - III – SCY1620

21

3. ORGANIC REAGENTS - III

Introduction to organo-metallic reagents, Grignard reagent, Gilman’s reagent, LDA, 1, 3

dithianes, Wittig Reagent, Peterson olefination

Gilman’s Reagent

Preparation:

CuI + CH3Li CH3Cu + LiI

CH3CU + CH3Li (CH3)2CuLi

Cl

+ (CH3)2CuLi + CH3Cu + LiI

Ph

I

+ (CH3)2CuLi

Ph

CH3Cu + LiI

+

Reactions

Br

Br

(CH3)2CuLi

BrO

(CH3)2CuLi

O

O

O

O OHH

(CH3)2CuLi

22

Gilman’s Reagent Reactions

O

O(CH

3)2CuLi

O

OH

OTs

(CH3)2CuLi

O

(CH3)2CuLi

O O

+

O O O

+(CH

3)2CuLi

OO

(CH3)2CuLi

O

23

Grignard Reagents

MgCl

+ MgCl(OH)H

2O

D2O

D

ROH

RNH2

MgCl(NHR)+

MgCl(OR)+

MgCl(OD)+

MgCl

MgCl

MgCl

MgCl(COOR)+

MgCl

RCOOH

MgCl(SR)+

MgCl

RSH

MgCl(C2H)+

MgCl

C2H

2

24

ESTERSAMIDESACID HALIDESNITRILES

1 eq of RMgX

2 eq of RMgX

Alcohol

Carbonyl Compounds

O

O

Excess of RMgX

OH

RR OH

OPhMgX

OH

Ph

O

EtMgBr

OH

BH3

BH2

H2O, CO, OH-

O

H

OCH

3MgI O

CH4

Wittig Reagent: Conversion of carbonyl compounds to olefines by using phosphoranes or

phospharus ylides called wittig reaction.

O + (Ph)3P=CH2 + (Ph)3P=O

P+

Ph

Ph

Ph

CH2

PEtO

EtO

CH2

O

Li+

O

+ P+

Ph

Ph

Ph

CH2

YLIDE

25

P+

Ph

Ph

Ph

CH2

O

+

Li+

OH

P

PhPh

Ph

Ph - CHO

OH

Ph

O

CH3MgBr

OH

Con. H2SO4+

Major Minor

OP

+Ph

Ph

Ph

CH2–

O

H H

Witting Reagent

OP

+Ph

Ph

Ph

C–

O

H

OLi

+

O

C O + P+

Ph

Ph

Ph

CH2

C

26

P+

Ph

Ph

Ph

CH2

O

+

Li+

OH

P

PhPh

Ph

Ph - CHO

OH

Ph

O

CH3MgBr

OH

Con. H2SO4+

Major Minor

OP

+Ph

Ph

Ph

CH2–

O

H H

Witting Reagent

OP

+Ph

Ph

Ph

C–

O

H

OLi

+

O

C O + P+

Ph

Ph

Ph

CH2

C

27

Peterson’s olefination

Conversion of carbonyl compound into olefines by using lithio or magneisio derivates of silyl

compounds called peterson's olefination.

O + Si C–

HLi

+

O

+ Si C–

H

Cl

O–

Si

H

Cl

O

Si

H

O

Si

H

O

H

28

LDA

N–

Li+

+

O

CH–

O

CH–

O

+

N–

Li+

+

O

C–

O

CH–

O

+

O +LDA

C–

O

CH–

O

1:1 YIELD

MINOR

MAJOR

+

MINORMAJOR

N–

Li+

+

O

CH–

O

O

N–

Li++

O

CH2–

+ CH3Cl

OCH4

29

UMPOLOUNG REACTION OR 1,3 DITHIANES

O

HSHSH

+

C

SS

CH3H

nBu Li

C–

SS

CH3

+ C2H

5 Cl

C

SS

CH3

C

CH3

O

SHSH

+

O

H

H

SHSH

+

C

SS

H H

nBu Li

C–

SS

H

+ CH3Cl

C

SS

CH3H

C

CH3

O

SHSH

+nBu Li

C–

SS

CH3

CH3Cl

Acetaldehyde to ethyl methyll ketone conversion

Formalaldehyde to Acetone conversion

30

Benzaldehyde to acetophenone conversion

O

HSHSH

+ SS

H

nBu Li

C–

SS + CH3Cl

O

SHSH

+

O

H

H

SHSH

+

C

SS

H H

nBu Li

C–

SS

H

+ CH3Cl

C

SS

CH3H

C

CH3

O

SHSH

+nBu Li

C–

SS

CH3

CH3Cl

31

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF CHEMISTRY

UNIT – 4 GREEN CHEMISTRY – SCY1620

32

4. GREEN CHEMISTRY

Need - principles - planning of green synthesis, Examples of green reactions - Importance

and experimental conditions required, Green reactions in condensation, oxidation, reduction,

rearrangement and addition reactions Microwave assisted reactions, solid state synthesis and

ionic liquid reaction.

GREEN CHEMISTRY

IT IS AN APPROACH TO DESIGN, MANUFACTURE BY ELIMINATING CHEMICAL HAZARDS.

Benfits of Green Chemistry1. Economical2. Energy efficient3. Lowers the cost of production4. Less waste5. Fewer accidents6. Safer products7. Healthier work place and environment8. Protect human health and environment9.Competitive Advantage

12 Principle1. PREVENTION 2. ATOM ECONOMY3. LESS HAZADOUS CHEMICALS4. DESIGNING THE SAFER CHEMICALS5. SAFER SOLVENTS AND AUXILARIES6. DESIGN FOR ENERGY EFFICIENCY7. USE OF RENEWABLE RESOURCES8. REDUCE THE DERIVATES9. CATALYSIS10.BIODEGRADABILITY11. REAL TIME ANALYSIS FOR POLLUTION PREVENTION12. SAFER CHEMISTRY FOR ACCIDENT PREVENTION

33

ACYLATION IN IONIC LIQUIDS

O

+

ClOO

O

O

O

+

96% 4%

GREEN CHEMISTRY

Copper triflate in bmimBF4

O

+

ClOO

O

O

O

+

Acetonitrile

93%7%

64%

CONDENSATION REACTION IN IONIC LIQUIDS

H

O

NaOH aq/ Solvent/reflux for 3hours CH–

H

O

H

O

+

H

H

H

O

OH

H

H

H

O

H

O

NaOH aq/ Solvent/reflux for 3hours

H

O+

CH–

H

O

H

O

C–

H

OH

O

H

O

H

H

H

O

H

H

H

O+

Product (B)

A

PRODUCT A

1

2

3

4

1

3

Aldol condensation

Cross Aldol condensation

H

O

34

WITTIG REARRANGEMENT IN IONIC LIQUIDS

Witting Rearrangement

O H

+ (Ph)3P=CH(COCH3)

(CH3CO)HC H

Ph3PO+

Chromatography or crystallization

in presence of Ionic liquid

1-butyl-3-methylimidazolium tetrafluoroborate or bmimBF4

O H

+ (Ph)3P=CH(COCH3)

(CH3CO)HC H

Ph3PO+

solvent

bmimBF4 EXTRACTION CAN BE DONE WITH TOLUENE

THE SAME IONIC LIQUID CAN BE REUSED.1 USE = 82%2ND USE= 83%6TH USE = 91%

DIESALDER REACTION IONIC LIQUIDS

+

O

O

O

O

H

O

O

H

+

Endo product Exo product

emim Cl/(AlCl3) - (48% AlCl3)

basic , 22 hours

Yield = 32%Endo/Exo = 4.88

emim Cl/(AlCl3) - (51% AlCl3)

Acedic , 22 hours

Yield = 53%Endo/Exo = 19

emim Cl/(AlCl3) - (48% AlCl3)

basic , 72hours

Yield = 95%Endo/Exo = 5.28

emim Cl/(AlCl3) - (51% AlCl3)

Acedic , 72 hours

Endo/Exo = 19 Yield = 79%

35

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF CHEMISTRY

UNIT – 5 INTRODUCTION TO PERICYCLIC REACTIONS – SCY1620

36

4. INTRODUCTION TO PERICYCLIC REACTIONS

Pericyclic reactions are concerted reactions.

The characteristics of pericyclic reactions

1. It is single step reaction

2.There is no reactive inetermidiate.

3. It forms transition state

4. Simultanious bond formation and bond breaking

5. These are synchronus concerted reactions

6. These are common in olefinic system

7. There reactions are controlled by either heat or light

8. These are kinetically controlled reactions

SN1 reaction in high polar solvents is very fast

SN1 Reacion in low polar solvents is very slow

Energy profile diagram of pericyclic reactions

CH

CH2

CH

CH2

REACTION PATH

ENERGY

TRANSITION STATE

37

Classification of electrocyclic reactions

1. Electrocyclic reaction

2. Cyclo addition reaction

3. Sigma tropic reactions

4. Chelotropic reaction

5. Group transfer reaction

FMO ORBITALS OF ETHYLENE

Y2

BMO

ABMO

NODES= 1

NODES= 0

FMO ORBITALS OF 1,3 BUTADIENE

Y1

Y2

Y3

Y4

HOMO

LUMO

NODES=0

NODES=1

NODES=3

NODES=2

38

FMO ORBITALS OF 1,3,5 HEXATRIENE

Y1

Y2

Y3

Y4

Y5

Y6

HOMO

LUMO

NODES = 1

NODES = 0

NODES=2

NODES=3

NODES=4

NODES=5

39

Cyclo Addition Reaction Mechanism Thermal Approach:

Cycloaddition of ethylene + ethylene thermally SUPRA-ANTRA OR ANTRA-SUPRA

addition is allowed.

Cycloadditon of ethylene + ethylene photochemically SUPRA-SUPRA OR ANTRA –

ANTRA addition is allowed.

Y2

+

BMO

ABMO

Y1

A-S

S-S

Y1

Y2

Y2

Y1

S-A

Y2

A-A

Y2

Y2

BMO

ABMO

Y1

NOT ALLOWED

ALLOWED

THERMAL APPROACHPARTICIPATING LUMO

PARTICIPATING

HOMO

HOMO

LUMO LUMO

LUMOLUMO

HOMO

HOMOHOMO

Cyclo Addition Reaction Mechanism Photochemical Approach:

Y2

+

BMO

ABMO

Y1

S-S

S-A

Y2

Y1

A-A

Y2

A-S

Y2

Y2

BMO

ABMO

Y1

NOT ALLOWED

ALLOWED

PHOTO CHEMICAL APPROACH

PARTICIPATING LUMO

PARTICIPATING

LUMO BECOMES HOMO

HOMO

LUMO LUMO

LUMOLUMO

HOMO

HOMOHOMO

40

CYCLOADDITION REACTIONS EXAMPLES:

+

4p + 2p

O +

O

6p + 4pO

+CH2CH2

CH2 CH2

+

2p + 2p

O

O

O+

O

O

O

4p + 2p

41

+

SIGMATROPIC REARRANGEMENTS

Substituent

H

1,3 sigmatropic Rearrangement

Substituent

Substituent

Substituent

Substituent

[1,5] sigmatropic shift

[1,3 sigmatropic shift

Substituent

Substituent

Substituent

H

42

CHELOTROPIC REACTIONS

C

H H

+

+

SOO

SOO

43

ELECTRO CYCLISATION REACTION MECHANISM OF 1,3 BUTADIENE:

Electro cyclisation of 1,3 butadiene is thermally allowed

Electro cyclisation of 1,3 butadiene is photo chemically allowed.

Y2

Y3

HOMOLUMO

+

Δ

CON ROTATION

allowed

not allowed

CON ROTATIONDIS ROTATION

DIS ROTATION

Participating orbital Participating orbital

PHOTO CHEMICAL APPROACHTHERMAL APPROACH

hνΔ

not allowed

44

Electro cyclization of 1,3,5 hexatriene – Thermal approach

ΔCON ROTATION

DIS ROTATION

NOT ALLOWED

ALLOWED

1,3,5 HEXA TRIENE

Y3

PARTICIPATING ORBITAL IS HOMO

Electrocyclization of 1,3,5 hexa triene – Photo chermal approach

Y4

CON ROTATION

DIS ROTATION

1,3,5 HEXA TRIENE

PARTICIPATING ORBITAL NOT ALLOWED

ALLOWED