Universal Thermodynamics of Strongly Interacting Fermi Gases · 2017. 4. 25. · Universal...

Post on 13-Mar-2021

3 views 0 download

transcript

Universal Thermodynamics of Strongly Interacting Fermi Gases

Takashi Mukaiyama

Japan Science Technology Agency, ERATO

University of Electro-Communications

BEC in a cold atom system

1995 Realization of atomic gas Bose-Einstein

condensation

Science 275, 637 (1997).

JILA

MIT

MPQ

vorticesinterference

Mott-insulator phase

Atom laser

Bose nova

Super-radiance

MIT

JILA

Cold atoms are

• very dilute (1011~1014 cm-3),

• with no impurities, no defects.

Amenable to simple theoretical description

J. R. Ensher, et al.,

Phys. Rev. Lett. 77, 4984 (1996).

Condensate

fra

ction

5% deviation of critical temperature

from theoretical predictions・3% shift due to finite number correction

・2% shift due to interaction

BEC in a cold atom system

There are two channels corresponding to different

spin states.

Feshbach resonance

bound state

E

ROpen (scattering) channel

Closed (bound) channel

Resonance occurs when open and closed channel

are energetically degenerate.

S. Inouye, et al.,

Nature 392, 151 (1998).

Inter-atomic interaction is tunable !!

Loss near Feshbach resonance

S. Inouye et al.,

Nature, 392, 151 (1998).

scattering

length

Number of

atoms

E

R

loss due to

vibrational quenching

Vibrational quenching

JILA

1999 Fermi degenerate gas

ultracold fermionic atoms

At the Feshbach resonance for and ,

no loss occurs due to Pauli exclusion principle.

ultracold : s-wave is the dominant collision channel.

Identical fermions do not collide.

Identical bosons : l=0(s-wave), l=2 (d-wave), …

Identical fermions: l=1 (p-wave), l=3 (f-wave), …

Collision channel

Think about two-component fermions

Therefore two-component fermions are stable even at

a Feshbach resonance.

So, we are able to prepare an interacting

(reasonably stable) two-component Fermi gas of

atoms with an arbitrary interaction strength !!

Ideal Fermi gas

n-1/3

T

Thermodynamic behavior of an ideal Fermi gas is

described by its temperature T and density n.

Thermodynamic of an ideal Fermi gas

1

B1

1 1,

11n z e k T

z ee

Fermi-Dirac distribution

10

3/2

3/2

3/22 2

1

2

4 2

DN d

z e

V mLi z

3/2

2 2

1

10

2

4

1

1

s

s t

V mD

tLi z dt

s z e

3/2

3/2

B 3/22 2

3/2

3/2

F2 2

1 2

4 2

1 2

6

N mn k T Li z

V

mE

2

2/32

F 62

E nm

Thermodynamic of an ideal Fermi gas

3/2

B3/2

F

3

4

k TLi z

E

F F

B B F B F

exp exp expE E

z ek T k T E k T E

3/2

B F3/2

F B F

3exp

4

k T ELi

E k T E

B

F F

k Tf

E E

Thermodynamic of an ideal Fermi gas

10

5/2

B5/2

F F

1

3

4

DE d

z e

k TELi z

NE E

B

F F

E

k TEf

NE E

Other thermodynamic functions also have this similarity.

B

F F

F

k TFf

NE E

B

B F

S

k TSf

k E

Internal energy :

Helmholtz free energy :

Chemical potential :

Entropy :

,B

FF

E ideal

E

Nf

k

E

T

E

,B

FF

F ideal

F

Nf

k

E

T

E

,

FF

Bideal

E

Tf

k

E

,B

FB

S ideal

s

Nf

k

k

T

E

Dimensionless

functions

Thermodynamic of an ideal Fermi gas

Material specific parameter, such as m, is taken up by EF (TF).

(Shape of the functions do not depend on the particle’s nature.)

Universal thermodynamics

Ultracold, dilute, interacting Fermi gases

n-1/3R

T

・ dilute : details of the potential is much smaller than n-1/3

・ ultracold : s-wave is the dominant channel.

collide only with

The collision process can be described by a single

parameter, so-called scattering length as.

B t s

F

F in, ,Ef k T E EE

NEa

,B

FF

E ideal

E

Nf

k

E

T

E

Ideal Fermi gas Fermi gas with interaction

Thermodynamic of an interacting Fermions

Ultracold dilute Fermi gas

n-1/3

T

as

R

Remember the fact that as is tunable!!

|as| ∞

Then, what happens when…

This situation is called unitarity limit.

n-1/3

T

as

Unitarity limit and Universality

Thermodynamics depends only by the density n and temperature T.

as drops out of the description of the thermodynamics.

Universal thermodynamics holds again…?

Unitarity limit and Universality

n-1/3T

Thermodynamics depends only by the density n and temperature T.

as drops out of the description of the thermodynamics.

Universal thermodynamics holds again…?

B B F

F

, ,E

Ef k T k T U a

NE

,B

FF

E ideal

E

Nf

k

E

T

E

Ideal Fermi gas Fermi gas with interaction

BB B F B B F, ,

F F

, , ,E E a E a

k TEf k T k T U a f k T k T f

NE E

When the scattering length

diverges…

There is a hypothesis that the thermodynamic functions

again have the universal form.

Universal hypothesis

Thermodynamic of an interacting Fermions

Universal thermodynamics

According to universal hypothesis, all thermodynamics should obey

the universal functions:

Internal energy :

Helmholtz free energy :

Chemical potential :

Entropy :

Dimensionless

universal functions,

(shape of the function

is different from those

for an ideal gas)

F

B

F

E

k T

Nf

E

E E

F

B

F

F

k T

Nf

F

E E

B

FF

k T

Ef

E

B

B

F

S

k T

Nf

s

k E

System looks like a non-interacting Fermi gas.

(no other dimensional parameters involved in the problem)

Bertsch’s Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body

system composed of spin ½ fermions interacting via a

zero-range, infinite scattering-length contact interaction.

Neutron star

Wikipedia

Besides pure theoretical curiosity, this problem

is relevant to neutron stars!

Universal thermodynamics

F, ,gsE f N V m N E pure number

Universal thermodynamicsH. Hu, P. D. Drummond & X.-J. Liu,

Nature Physics 3, 469 - 472 (2007)

is still not known…

T is constant over the cloud (thermal equilibrium).

EF depends on the position (local density).

B

F 0

k T

E n

B

F

k T

Eis position-dependent.

B B

F 0F

k T k T

E nE n

r

Global measurement only gives the integration of

all the different phases.

B

F

E

k Tf

E

Goal of this experiment

Measurement of local thermodynamic quantities

and

the determination of the universal thermodynamic function.

: local energy density

F B FE k T

F F

E

Tf

n E n T n

r

r r rF

B

F

E

k T

Nf

E

E E

Experiment setup

原子の冷却(レーザー冷却)

Liの蒸気(450℃)

金属Li

Zeeman Slower

Zeeman Slower

共鳴光による減速ドップラーシフトをゼーマンシフトでキャンセル

MOT

吸収イメージ

T = 200 K

N > 108

MOT(磁気光学トラップ)四重極磁場と共鳴光を組み合わせた冷却

共振器光トラップ

T = 200 K

N = 5×107

Cavity enhanced

optical dipole trapMOT

T = 200 K

N > 108

l = 1064nm, P = 10 W, w = 250 m

⇒ トラップ深さ U = kBх5 K

共振器で増幅 ×100

w = 260 m トラップ深さ kBх2 mK

=

R=99.9%

R=98.3%

error signal

6Li

Glass Cell

Optical dipole trap

- No need to use multiple-coil configuration as used in a magnetic trap

- wide optical access

- trap can be turned off very quickly

6Li

Glass Cell

シングルビーム光トラップ

T = 200 K

N = 5×107

Cavity enhanced

optical dipole trapSingle beam

optical trap

T = 80 K

N = 1×107

共振器光トラップ:定在波によるトラップ

単純に絞ったビームにトラップしなおす

1 s

time

Cavity

Signal

Error

Signal

Trigger

・共振器の光強度を断熱的に下げる・フェッシュバッハ共鳴を使った散乱断面積の増強・共振器トラップに重なるようにビームを入射

トラップした原子全体が熱緩和しない調和型のトラップではない

原子状態とフェッシュバッハ共鳴6L

i原子

のs波

散乱

長(a

0)

磁場 [G]

B = 650 - 800 G

molecular BEC

B = 0-450 G

degenerate Fermi gas

Experimental scheme

Optical dipole trap

(1064nm)

834Gauss( Resonance magnetic field of Feshbach resonance )

6Li

: |F=1/2, mF=+1/2>

: |F=1/2, mF=-1/2>

N ~ 106

Equal mixture of

F

F

[ ]( ) (

(

)

)Ef T

n ET

n

r

r

r

Determination of local energy (r)

density profile

n r

2

3p r r

Trap( ) ( ) ( ) 0p n V r r r

・ Equation of state of unitary gas :

・ mechanical equilibrium (eq. of force balance) :

( )n r ( )p r ( ) r

Useful equations :

F[ ]Ef T T

FT T

2

3p r r Trap( ) ( ) ( ) 0p n V r r rand total potential2E E

Adiabatic B-field sweep to turn off

the interactionentropy S

total vs E S

1 T S E

total vs E T

Determination of temperature T

Le Luo and J.E. Thomas,

J Low Temp Phys 154, 1 (2009).

F

F

[ ]( ) (

(

)

)Ef T

n ET

n

r

r

r

F

F

[ ]( ) (

(

)

)Ef T

n ET

n

r

r

r

2

3p

Trap( ) ( ) ( ) 0p n V r r r

Our scheme

F[ ]Ef T T

FT T

Experimental determination of fE [T/TF ]

M. Horikoshi, S. Nakajima,

M. Ueda and T. Mukaiyama,

Science, 327, 442 (2010).

2.0

1.5

1.0

0.5

0.0

f E[T

/TF]

1.21.00.80.60.40.2

T/TF

2.0

1.5

1.0

0.5

0.0

f E[T

/TF]

1.21.00.80.60.40.2

T/TF

Ideal

2.0

1.5

1.0

0.5

0.0

f E[T

/TF]

1.21.00.80.60.40.2

T/TF

Unitary

About 800 images are analyzed.

F

F

( )[ ]

( ) ( )Ef T T

n E n

r

r r

Verification of the determined fE [T/TF ]

1. Energy comparison

pot internalE E

2 2

pot

3

2zE m z Potential energy par particle :

internal F ) d[ ]( EfE n n V N Internal energy par particle :

Comparison

Epot = Eint

total potential2E E

Verification of the determined fE [T/TF]

2. Effective speed of the first sound

6Li

Light pulse to make

density perturbation

Verification of the determined fE [T/TF ]

2. Effective speed of the first sound

0.1ms

1.1ms

2.1ms

3.1ms

4.1ms

5.1ms

6.1ms

7.1ms

Propagation time

Verification of the determined fE [T/TF ]

2. Effective speed of the first sound

Unitary gas shows hydrodynamic behavior due to the large collision rate

2

1 1

0

d d[ , ]

d dz

n x yu n

pm n x y

n

Effective speed of the first sound :

F[ ]2

3Efp T T

Comparison

Experiment

[ P. Capuzzi, PRA 73, 021603(R) (2006) ]

Verification of the determined fE [T/TF ]

2. Effective speed of the first sound

Experimental values vs. calculated values from fE [ ]

u1,Meas. = u1,Calc

Ideal

Unitary

The universal function of the internal energy fE [T/TF ]

F

F

[ ]EfnE

T T

2

3p

Trap( ) ( ) ( ) 0p n V r r r

Equation of state :

Universal hypothesis :

Mechanical equilibrium :

Epot = Eintu1,Meas. = u1,Calc

Speed of the first soundEnergy comparison

CCD

lens

absorption imaging

thermal bimodal pure BEC

momentum distribution measurement

Bosonic case

Is it condensed or not?

See the bimodal profile !!

… unfortunately this scheme does not work.

spatially

correlated pair

momentum

correlated pair

BEC limit BCS limit

BCS

BEC

B

Fermion pair condensate

G. Veeravalli et al.

Phys. Rev. Lett.

101, 250403 (2008)

m

2m

C. A. Regal et al., PRL 92,

040403 (2004)

JILA

M. W. Zwierlein et al.,

PRL 92, 120403 (2004)MIT

- slow enough to convert atom pairs into

molecules

- fast enough such that the momentum distribution

of the projected molecules reflects that of pairs

prior to the sweep

If we sweep the magnetic field

We can convert correlated pairs into tightly-bound molecules.

BCS

BEC

B

C. A. Regal et al.

Phys. Rev. Lett., 92, 040403 (2004)

magnetic field

sweep

“projection”

Bimodal distribution of a fermion pair condensate

BEC side BCS side

650 700 750 800 834 900

Unitarity limit

Magnetic field [Gauss]

Preformed pair

Bound molecule

Bimodal distribution

Condensate fraction vs Temperature

Max( ) 1C

Tf x CF

T

3.0(1)

Internal energy

Universal thermodynamic functions

Helmholtz free energy Chemical potential Entropy

][)(F

FfnN

F ][

)(F

f

n ][

B

SfNk

S

][][][ FFE fff 3][2][5][ FF fff ][][ FS ff

5 2 3

E F F

E F

S F

f f f

f f f

f f

F F( ) ( ) ( ) [ ( ) ]En E f T T r r r r

In the case of unitary gas, equation of state

is available (exceptional case !!) which enable us to

measure local thermodynamic quantities.

( ) 2 ( )/3p r r

High resolution local probe

W. S. Bakr et al.Nature 462, 74 (2009).

Then, how can we determine local thermodynamic quantities without

help of equation of state ?

・local probe

・control by electric fieldion =

Co-trapping system of ions and neutral atoms

The system that I’m setting up in University of Electro-Communications

ion

Neutral atoms

Summary

• The universal function of the internal energy was determined at the unitarity limit

• The other thermodynamic functions were derived from the thermodynamic relationship

• The critical parameters were determined at the superfluid transition temperature

M. Horikoshi, S. Nakajima, M. Ueda and T. Mukaiyama,

Science, 327, 442 (2010).

Ideal

Unitary

Masahito Ueda

(project leader)

M. Horikoshi

(Postdoc)

S. Nakajima

(Ph.D student)

T. Mukaiyama

(Group leader )

The team (ERATO project)

Unitary gas Efimov physics