UPDATED LBNL Energy Benefits of Water Metering 20160809 the... · kWh Kilowatt hour LBNL Lawrence...

Post on 29-Mar-2019

217 views 0 download

transcript

LBNL 1005988

Exploring the Energy Benefits of Advanced Water Metering

Michael A. Berger, Liesel Hans, Kate Piscopo, and Michael D. Sohn

Energy Analysis and Environmental Impacts Division Energy Technologies Area

August 2016

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

1

DISCLAIMER

ThisdocumentwaspreparedasanaccountofworksponsoredbytheUnitedStatesGovernment.Whilethisdocumentisbelievedtocontaincorrectinformation,neithertheUnitedStatesGovernmentnoranyagencythereof,norTheRegentsoftheUniversityofCalifornia,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebyitstradename,trademark,manufacturer,orotherwise,doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesGovernmentoranyagencythereof,orTheRegentsoftheUniversityofCalifornia.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereof,orTheRegentsoftheUniversityofCalifornia.

ErnestOrlandoLawrenceBerkeleyNationalLaboratoryisanequalopportunityemployer.

2

ABSTRACT

Recentimprovementstoadvancedwatermeteringandcommunicationstechnologieshavethepotentialtoimprovethemanagementofwaterresourcesandutilityinfrastructure,benefitingbothutilitiesandratepayers.Thehighlygranular,near‐real‐timedataandopportunityforautomatedcontrolprovidedbytheseadvancedsystemsmayyieldoperationalbenefitssimilartothoseaffordedbysimilartechnologiesintheenergysector.Whilesignificantprogresshasbeenmadeinquantifyingthewater‐relatedbenefitsofthesetechnologies,theresearchonquantifyingtheenergybenefitsofimprovedwatermeteringisunderdeveloped.SomestudieshavequantifiedtheembeddedenergyinwaterinCalifornia,howeverthesefindingsarebasedondatamorethanadecadeold,andunanimouslyassertthatmoreresearchisneededtofurtherexplorehowtopography,climate,watersource,andotherfactorsimpacttheirfindings.Inthisreport,weshowhowwater‐relatedadvancedmeteringsystemsmaypresentabroaderandmoresignificantsetofenergy‐relatedbenefits.Wereviewtheopenliteratureofwater‐relatedadvancedmeteringtechnologiesandtheirapplications,discusscommonthemeswithaseriesofwaterandenergyexperts,andperformapreliminaryscopinganalysisofadvancedwatermeteringdeploymentanduseinCalifornia.Wefindthattheopenliteratureprovidesverylittlediscussionoftheenergysavingspotentialofadvancedwatermetering,despitethesubstantialenergynecessaryforwater’sextraction,conveyance,treatment,distribution,andeventualenduse.WealsofindthatwaterAMIhasthepotentialtoprovidewater‐energyco‐efficienciesthroughimprovedwatersystemsmanagement,withbenefitsincludingimprovedcustomereducation,automatedleakdetection,watermeasurementandverification,optimizedsystemoperation,andinherentwaterandenergyconservation.Ourfindingsalsosuggestthattheadoptionofthesetechnologiesinthewatersectorhasbeenslow,duetostructuraleconomicandregulatorybarriers.InCalifornia,weseeexamplesofdeployedadvancedmeteringsystemswithdemonstratedembeddedenergysavingsthroughwaterconservationandleakdetection.Wealsoseesubstantialuntappedopportunityintheagriculturalsectorforenablingelectricdemandresponseforbothtraditionalpeakshavingandmorecomplexflexibleandancillaryservicesthroughimprovedwatertrackingandfarmautomation.

Keywords:waterresourcesmanagement,advancedmeteringinfrastructure,water‐energynexus,energyservices

3

ACKNOWLEDGEMENTS

ThisworkwassupportedbytheU.S.DepartmentofEnergy’sOfficeofEnergyPolicyandSystemsAnalysisunderLawrenceBerkeleyNationalLaboratoryContractNo.DE‐AC02‐05CH11231.

WewouldliketothankDianaBauer,SandraJenkins,andAliceChaooftheU.S.DepartmentofEnergy’sOfficeofEnergyPolicyandSystemsAnalysisfortheirvaluablesupportandsuggestions.WewouldalsoliketothankArianAghajanzadehofLBNLforhisvaluablefeedback.

4

TableofContents Introduction.....................................................................................................................................81.1 MethodsandScope................................................................................................................................81.2 TheWater‐EnergyNexus....................................................................................................................91.3 AdvancedWaterMetering...............................................................................................................12

EnergyBenefitsofAdvancedWaterMetering...................................................................172.1 EmbeddedEnergySavings...............................................................................................................172.2 ElectricLoadManagementandDemandResponse................................................................222.3 SupportingEnergy,Water,andClimatePolicyGoals............................................................26

ChallengesandBarriers.............................................................................................................283.1 ValueCapture.......................................................................................................................................283.2 WaterRights.........................................................................................................................................293.3 UtilityCoordinationandConflictingPriorities........................................................................30

CaseStudy:California.................................................................................................................324.1 Background...........................................................................................................................................324.2 EmbeddedEnergyofWaterinCalifornia...................................................................................324.3 PotentialforEnergyEfficiency.......................................................................................................354.4 PotentialforPeakLoadReduction...............................................................................................374.5 Summary................................................................................................................................................40

ConcludingRemarks...................................................................................................................41

FutureWork...................................................................................................................................42

References......................................................................................................................................44

5

ListofFigures

Figure1:Energy‐waterflowdiagramshowingthemajorsourcesandsinksofbothwaterandenergyresourcesintheUnitedStates,usingdatafrom2011(USDOE“TheWater‐EnergyNexus”).Sectorsdiscussedinthisreportareoutlinedinred.........10

Figure2:High‐leveldiagramofadvancedwatermeteringsystem(Sensus2016).BasicAMIsystemsincludeasubsetoftheshownfunctionality,andinclude,ataminimum,smartwatermeters,acustomerportal,andcentralizeddatacollectionandprocessing.............................................................................................................................................15

Figure3:Non‐RevenueWaterperformanceofutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database(Kingdometal.2006)......................................................................................................................................................18

Figure4:Left,California’sInvestorOwnedUtilities’serviceterritories(CEC).Right,locationandsizeofCalifornia’sregulatedwaterutilities(CaliforniaWaterAssociation).30

Figure5:EnergyintensityrangebycomponentforCalifornia’sthreeIOUs(GEIConsultantsandNavigantConsulting2010)..................................................................................................35

Figure6:Averagedailydemandprofilesforapproximately35,000agriculturalcustomers’intervalmetersfromPG&E’sserviceterritory,2003‐2012.Figureshowshowdailyagriculturalloadprofileshaveflattenedsince2006,butstillpeakduringmid‐dayhours.ReproducedfromOlsenetal.(2015).......................................................39

ListofTables

Table1:Summaryofcommonwatermeteringtechnologies............................................................13

Table2:Summaryofcommonadvancedwatermeteringcommunicationstechnologies....14

Table3:Estimatedwaterandembeddedenergysavingsfromprogram‐relatedleakrepairs,andpotentialuntappedsavings(ECONorthwest2011)....................................................21

Table4:WaterandEnergyConsumptionbySectorinCalifornia....................................................33

Table5:RangeofEnergyIntensitiesWaterUseCycleSegment(CEC2005)..............................34

Table6:Summaryofestimatedwaterandenergyimpactpotentialforvariouswater‐relatedadvancedmeteringstrategiesinCalifornia.............................................................40

6

AbbreviationsAB AssemblyBill

ADR Automateddemandresponse

AMI Advancedmeteringinfrastructure

AMR Automaticmeterreading

AS Ancillaryservices

AWWA AmericanWaterWorksAssociation

BG Billiongallons

CEC CaliforniaEnergyCommission

CPUC CaliforniaPublicUtilitiesCommission

DCU Datacollectionunit

DR DemandresponseDWR DepartmentofWaterResourcesEBMUD EastBayMunicipalUtilityDistrictGPM GallonsperminuteGW GigawattHEM HomeenergymanagementIHD In‐homedisplayIOU InvestorownedutilitykWh KilowatthourLBNL LawrenceBerkeleyNationalLaboratoryMG Milliongallons

MIU MeterinterfaceunitMNF MinimumnighttimeflowMTU MetertransmissionunitM&V Measurementandverification

MW Megawatt

NRW Non‐revenuewater

PUC PublicUtilitiesCommission

RF RadiofrequencySB SenateBill

SCADA SupervisoryControlAndDataAcquisition

SWP StateWaterProject(ofCalifornia)

TOU Time‐of‐useUSDOE UnitedStatesDepartmentofEnergy

VFD Variablefrequencydrive

7

GlossaryofTerms

AdvancedMeteringInfrastructure(AMI):Atechnologysystemthatconnectscustomermeterstotheutilitythroughabi‐directionalcommunicationnetwork,suchastelephonewiresorradiofrequencytransmission,andstoresandanalyzesthecollecteddatainacentraldatabase.Utilitiescancollectmeterdataatfrequentintervals,relaythatdatatocustomers,andhaveadditionalcapabilities(e.g.remoteshutoff)dependingonthesystemconfiguration.

AutomaticMeterReading(AMR):Atechnologysystembywhichautilitycandigitallycollectandstoremeterreadings.Datacanbecommunicatedthroughhand‐helddata‐loggers,radiofrequencytransmission,ortelephonewires.Doesnotallowtwo‐waycommunicationbetweenutilityandmeters.

MunicipalWaterSystem:Theinfrastructurethatextracts,conveys,andtreatswaterforuseintheresidentialandcommercialsectors.Someindustrialcustomersarepartofthemunicipalsystem,howeverthemajorityself‐supplywater(Maupinetal.2014).

EmbeddedEnergyofWater:Theamountofenergyusedtocollect,convey,treat,anddistributewatertoendusers,andtheamountofenergyusedtocollect,transport,andtreatwastewater.

8

Introduction 

Thisreportidentifiesthewaysinwhichadvancedwatermeteringisbeingusedtoenableenergybenefitsandhighlightswhattheresearchsuggeststobeprominentareasoffutureopportunity.Thisreportisthesynthesisofacomprehensiveliteraturereview,interviewswithsubjectmatterexperts,andoriginalanalyses.Section1provideshistoricalcontextofthewater‐energynexusandwaterdevelopment,definescommonlyusedterminology,anddescribesthemethodsused.Section2isanin‐depthdiscussionoftheopportunitiesforenergybenefitsaffordedbyimprovedwatermetering.Section3highlightsbarriersandchallengestorealizingtheseenergybenefits.Section4exploresthescaleofopportunitiesandthebarrierstorealizingtheenergybenefitsofadvancedwatermeteringinCaliforniathroughahigh‐levelquantitativeanalysisanddiscussion.Sections5and6provideconcludingremarksandrecommendationsforfuturework.

1.1 Methods and Scope 

Thisreportcoversthreebroadefforts.Ourfirsttaskwasaliteraturereviewofthreeprimaryareas:(1)thewater‐energynexus;(2)advancedmeteringinboththeenergyandwatersectors;and(3)applicationsofsynergisticwater‐energyactivitiesenabledbyimproveddatacollectionandsystemcontrol,whichincludesapplyingwater‐relateddatatoprovideenergybenefits(e.g.,energyefficiency).

Oursecondtaskwastogainanappreciationofthecurrentstateofpracticebyinterviewingexpertsfromacademia,industry,utilities,andregulatorybodies.Weinterviewedtwoacademicresearchers,tworesearchersfromindependentindustrythinktanks,engineersatafacilitiesdepartmentofalargecollegecampus,membersofastatepublicutilitiesandservicescommission,seniorengineersatamunicipalutilityresponsibleforprovidingbothwaterandenergy,anoperationsexpertatautility‐focusedsoftwarecompany,andasenioradvisoratanagriculturalsensorscompany.Duetotherecentdemandforresearch,technicalexpertise,andmarketsolutionsinthewater‐energyspaceintheSouthwesternUnitedStates,fouroftheseexpertsarefromCaliforniaandtwoarefromtheRockies.AnotherisfromtheMidwest,andtwoarebasedontheEastCoast.

Lastly,wepresentascopingstudyandfollow‐ondiscussionoftheenergybenefitsofadvancedwatermeteringinCalifornia.WechoseCaliforniaasacasestudybecausethereexistsmomentumfortacklingwater‐energyissuesfromregulators,industry,andconsumers.Thesignificantfour‐yeardroughtaffectingmuchoftheAmericanSouthwest,particularlyCalifornia,hasmotivatedabroadinterestinimplementingimprovedwatermetering.Wethereforeanticipatetheavailabilityofarelativelylargeamountofwater‐energydatafrompilotstudiesinthenearfuture.Finally,weseeincreasedactivitiesfrom

9

regulatorsandotheragencies,includingtheCaliforniaPublicUtilitiesCommission(CPUC)andtheCaliforniaEnergyCommission(CEC),totackleresourceuseefficiencymatters.

Thisresearchfocusesprimarilyonthemunicipalandagriculturalsectors.Wesurveyedindustrialapplicationsofwatermeteringforenergybenefits,andconcludedthatmostindustriesforwhichenergyandwaterarevariablecostshaveinternalizedandattemptedtooptimizetheirprocesses.Additionally,industrialapplicationsvarywidelyingeographyandprocess,makinghigh‐levelscopingandassessmentunwieldy.Forthesereasons,furtherdiscussionofadvancedwatermeteringforenergybenefitsintheindustrialsectorhasbeenlefttothoseindustryexpertsbettersuitedtoadditional,tailoredanalyses.

1.2 The Water‐Energy Nexus 

PeterGleick’sseminal1994report,“WaterandEnergy”,setthefoundationforunderstandinghowwaterandenergysystemsarefundamentallyinterconnected.Overthelasttwodecades,thewater‐energynexushasgainedattentionduetolocal,regional,national,andglobalconcernsregardingenergysecurity,waterscarcity,andtheimpactsofglobalclimatechange.Forexample,thehistoric2012‐2015NorthAmericanDroughtimpactedelectricitygenerationcapacitybyrestrictingsurfacewaterwithdrawalsusedforpowerplantcooling,aswellasdrasticallyreducinghydropowerresourceavailability(Pulwarty2013).Situationssuchasthishighlighthowwaterandenergysystemsareinextricablylinkedandthepotentialvulnerabilitiesthiscreates.Workhasalsobeendonetoquantifythemagnitudeofthelinksbetweenwaterandenergysystems,exemplifiedbyFigure1.

Asaresultofthegrowingappreciationofhowinterconnectedwaterandenergysystemsare,theUnitedStatesDepartmentofEnergy(USDOE)hasidentifiedareasinneedofproactiveandimprovedjointsystemoptimizationandmanagement(USDOE“TheWater‐EnergyNexus”).Inaddition,USDOEhasinvestedinextensiveresearchontechnologiesthatcanimprovetheenergyefficiencyofwatersystemsorreducetheuseofwaterduringenergyproduction,aswellaspoliciestoenhancetheeffectivenessofjointsystemsmanagement.

10

Figure1:Energy‐waterflowdiagramshowingthemajorsourcesandsinksofbothwaterandenergyresourcesintheUnitedStates,usingdatafrom2011(USDOE“TheWater‐EnergyNexus”).Sectorsdiscussedinthisreportareoutlinedinred.

11

1.2.1 Embedded Energy of Water 

Theembeddedenergyofagivenunitofwaterishighlydependentuponthelocation,underlyingtopographyofthewaterinfrastructure,andwatersource(deMonsabertetal.2009).Forexample,a2005CECreportonwater‐relatedenergyusefoundthattheaverageembeddedenergyforNorthernandSouthernCaliforniawas4,000and12,700kWh/MG,respectively,withevengreaterspreadinembeddedenergyvaluesduetolocalsystemcharacteristics(CEC2005).Additionally,theenergyneededforprovidingwatercanbeasignificationportionofallenergyuse,withtheCEC’sreportestimatingthat5%ofenergyconsumptioninCaliforniacanbeattributedtotheconveyance,distribution,andtreatmentofwater.

Terminology: Energy for Water 

Theliteratureregarding“energyforwater”systemslacksasetofagreedupondefinitionsforcommontermsandmetricsnecessaryforquantitativediscussion.Termsincluding“energyintensity,”“associatedenergy,”“embodiedenergy,”and“embeddedenergy”areoftenusedinterchangeablyandwithoutformaldefinition.Theterminologyusedthroughoutthisreportis“embeddedenergy,”andhasthefollowingdefinition.

“EnergyEmbeddedinWater”referstotheamountofenergythatisusedtocollect,convey,treat,anddistributeaunitofwatertoendusers,andtheamountofenergythatisusedtocollectandtransportusedwaterfortreatmentpriortosafedischargeoftheeffluentinaccordancewithregulatoryrules.(GEIConsultantsandNavigantConsulting2010)

Itisimportanttonotethat“embeddedenergy”specificallyandintentionallyexcludestheenergyuseassociatedwithwater‐relatedenduses(e.g.,residentialwaterheating),andistypicallyreportedasanamountofenergyperunitofwater(kWh/gallon).End‐usespecificenergyuseisexcludedfortworeasons:(1)thefocusofthisreportisonlarge‐scaleadvancedwatermeteringsystems,whichdonotdisaggregateend‐uselevelwaterandenergyuse;and(2)theenergyneededforspecificwater‐relatedendusesdeservesdetailedresearchonatechnology‐by‐technologyandend‐use‐by‐end‐usebasis,andisoutsidethescopeofthisstudy.

Additionally,“energyintensity”willbeusedthroughoutthisreportinreferencetotheamountofenergyrequiredperunitofwaterforindividualsegments(e.g.,wastewatertreatment)ofthewatersystem.

12

Improvedwaterflow,pressure,andleakagedatacollection,enabledbyadvancedwatermeteringtechnologies,couldbettercharacterizetheembeddedenergyinwatersystems,whichinturncouldhelpidentifyandprioritizeresearchanddevelopmentopportunitiestotaplargepotentialefficiencygainsforbothwaterandenergy.Targetingwater‐energyprogramsinareaswheretheembeddedenergyishighest,forinstance,ismorelikelytoresultinsignificantenergysavingsthanprogramsinareaswheretheembeddedenergyofthewatersystemislow.Inordertofullycapitalizeonthesepotentialsavings,however,moreinformationabouttheenergyintensityofindividualprocesses(e.g.,freshwatertreatment),howthatenergyintensitydiffersbygeographyandtopography,andthetemporaldifferencesinenergyintensityisneeded(USDOE“TheWaterEnergyNexus”).

1.3 Advanced Water Metering 

Sincethedevelopmentofthefirstcommercialmechanicalwatermeterinthe1850s(Walski2006),water‐meteringtechnologyhassteadilyimprovedinprecision,accuracy,andreliability.However,onlyrecentlyhavecommunicationstechnologiesimprovedandbecomecost‐effectiveenoughtochangehowthedatageneratedbythesemetersarecollected.Table1outlinesthecommonvolumetricandleakdetectionmetertechnologies,andTable2outlinesthecommunicationscomponentsthatrelaythemeterdata.

Traditionally,customer‐levelmeteringrequireswaterutilityemployeestophysicallyvisitindividualcustomersitesonasemiannualormonthlyscheduletoreadthewatermeter’slogger,whichonlyprovidesthetotalvolumeofwaterthathasbeenusedsincethelastreading,andhastobemanuallyenteredintoacentraldatabaseforbillingpurposes.Giventhetimeandlaborinvolved,thetraditionaloperatingmodelisanexpensiveprocessthroughwhichcustomersandutilitiesgainverylittleknowledgeofthetemporalaspectsofcustomerwateruse.Assuch,recentadvancementsinmeteringandcommunicationstechnologieshaveresultedindrasticallyimproved,moreintegratedmethodsofmetering,communication,datastorage,andanalytics.Twotechnologiestohavemajorimpactsonwatermeteringinfrastructureareautomaticmeterreading(AMR)andadvancedmeteringinfrastructure(AMI).

AMRisasysteminwhichthecustomermetersareabletosendconsumptiondataatregularintervalsthroughcommunicationinfrastructuresuchasradiofrequency(RF)ortelephonewires.NotonlydoesAMRallowformorefrequentdatacollection,butmostAMRsystemsalsoeliminatetheneedforutilityemployeestovisitindividualsites.However,itdoesnotallowtwo‐waycommunicationbetweenthemetersandtheutility(e.g.,theutilitycannotremotelytellthemetertochangerecordingbehavior).Forthisreason,metersinanAMRsystemarenotconsidered“smart”metersandareprimarilyusedinthewatersectortoreducethelaborcostofdatacollection.Improvedmeteraccuracyandstandardizingmeterinventoriesareadditionalbenefits(Kooetal.2015).

13

Table1:Summaryofcommonwatermeteringtechnologies.

MeteringTechnology DescriptionNormalOperatingRange

Mechanical

1

Useseitherpositivedisplacementorvelocity‐basedmethodstomeasurevolumeofwaterconsumed.Theoverwhelmingmajorityofutilitymetersaremechanical,andtheyaretypicallyusedforresidentialandcommercialbillingpurposes.

NutatingDisk:0.25‐170GPM2

OscillatingPiston:1‐50GPM3

Multi‐jetImpeller:1‐100GPM4

Static

5

Usesstaticmeasurementmethods,suchasmagneticoracousticflowsensors,tomeasurevelocityofwaterflow,andthencomputevolumetricwaterconsumption.Muchnewerthanmechanicalmeters,staticmetershavebeenusedinindustrialandcommercialsettings,butareincreasinglycommonforresidentialapplications.

Ultrasonic:0.05‐160GPM6

Magnetic:0.7‐180GPM7

Compound

8

Incorporatesmultiplemeasurementtechnologies,typicallyonetechnologythatperformswellathighflows,andonethatperformswellatlowflows.Typicallyusedforcommercialormulti‐familyresidentialapplications.

0.5‐4000GPM8,9

AcousticLeakDetection

10

Deployedonwaterdistributioninfrastructure,thesesensorsusesoundwavestomeasureflowlevelsduringthenight,whenambientnoiseanddemandarelowest,andthenrelaysthedatatothecentralserverforanalysis.

N/A

1NiagraMeters,“NutatingDisc”2BadgerMeter,“Recordall®DiscSeriesMeters”3Sensus,“accuSTREAMTMMeters”4RG3Meters,“Multi‐Jet–BottomLoad–Meters”5Sensus,“AccuMAGTMWaterMeters”

6BadgerMeter,“E‐Series®UltrasonicMeters”7Sensus,“accuMAGTMMeters”8ZennerPerformance,“CompoundMeters”9BadgerMeter,“Recordall®CompoundSeriesMeters”10Sensus,“Permalog+AcousticMonitoringSensor”

AMIisthenaturalextensionofAMRtechnology,withmoresensorintegration,two‐waycommunication,systemcontrols,andreal‐timeanalytics.WaterAMIconsistsof“smart”watermetersthatmeasurethevolumeofwatertransferredbetweenlocationsandreportsthisinformationthroughbi‐directionalcommunicationwiththesystem’scommunicationsinfrastructure.Thisvolumetrictransactionistypicallyonlyrecordedwhenautilitytransferswaterfromitsownershiptoabuildingoperator,suchaswhenthewatercrosses

14

autilitymeter,howeveritcanalsoberecordedwithinautility’sdistributioninfrastructureasameansofmonitoringflows(Janković‐Nišićetal.2004).Thesesmartwatermetersgivetheutilitymorecapabilities,includingflexibledatarecording,real‐timeanalyticslikeleak‐detection,andremoteshutoff(e.g.,inthecasewhenalargeleakisdetected).Thedatageneratedbythesmartwatermetersiscollectedandrelayedthrougharangeofcommunicationsinfrastructures(e.g.,RF,telephonewires)totheutility’scentralserver,wheredataiscleaned,analyzed,andstored.

Table2:Summaryofcommonadvancedwatermeteringcommunicationstechnologies.

CommunicationsTechnology Description Functionality

MeterRegister

1

Translatesmechanicalorsolid‐statemetersignalsintovolumetricreading.Displaysthisinformationvisually,storesitforcollection,ortransmitsittoanMeterInterfaceUnit(MIU)orMeterTransmissionUnit(MTU).

Dependsgreatlyontheregistertype.Minimumresolutionsaslowas1gallon.

MeterInterfaceUnit(MIU)orMeterTransmissionUnit(MTU)

2

Collectsreadingsfromindividualmeterregistersandcommunicatesthem,alongwithtimestampinformation,toaDataCollectionUnit(DCU).SomecanalsoacceptssignalsfromAMInetwork.

Typicallycollectsdataatintervalsbetween15minutesand1day.*

DataCollectionUnit(DCU)

3

CollectsandtransmitsdatafrommultipleMIU/MTUs.Technologyandusecasesvarygreatly.Infixednetworksystems,theyareoftenmountedontelephonepoles,andcommunicateviaradio.In“handheld”AMRsystemsDCUsaresmallhandhelddevicesthatcommunicatewithmetersviatouchorradio.

SomeDCUsstorecollecteddata(28daysor600,000transmissions4),butmanysimplyrelaydatafromMIU/MTUstocentralstorageandprocessingservers.

*Mostadvancedmeterscancollectandtransmitreadingsoncommand,andthereforethefrequencyatwhichconsumptionismeasuredisdictatedbytheutility’sneedsanddatamanagementandanalyticscapabilities.1BadgerMeter,“Recordall®TransmitterRegister”2BadgerMeter,“ORION®CellularEndpoint”

3Sensus,“StandardFlexNet®BaseStations”4Aclara,“STARNetworkDCUII”

15

Inadditiontocustomer‐levelmeteringtechnology,allwaterutilitiesimplementsomelevelofSupervisoryControlAndDataAcquisition(SCADA)systems.SCADAisaremotemonitoringandcontrolsystemthatoperatesinreal‐timetoautomateandassistthemanagementoftreatmentandpumpingprocesses.SCADAsystemsmonitorandcontrolwaterandwastewatertreatmentplants,measuringanumberofimportantprocesscharacteristics,includinginflowsandoutflows,treatmentstatus,andwatertemperature.SCADAsystemsdonotinherentlystoreandanalyzepastdata,howeversomenewersystemsarecapableofbeingintegratedwithmoreadvancedanalyticaltools(Cherchietal.2015).

Figure2:High‐leveldiagramofadvancedwatermeteringsystem(Sensus2016).BasicAMIsystemsincludeasubsetoftheshownfunctionality,andinclude,ataminimum,smartwatermeters,acustomerportal,andcentralizeddatacollectionandprocessing.

ThewaterindustryistrendingtowardsAMIandmoreadvancedSCADAinfrastructure(Laughlin2003;Turner2005).Figure2showsadiagramofanadvancedmetering,sensors,andcontrolssystemanditsmanycomponentsandcapabilities.Thiswiderangeofdata

16

collection,controls,andanalyticscapabilitiesallowwaterutilitiestoutilizeadvancedmeteringsystemstoreducewaterlossthroughimprovedleakdetection(Brittonetal.2013),reduceoperatingcoststhroughstreamlinedbilling(BealandFlynn2015),implementvolumetricratestructurestoincentivizewaterconservation(Borisovaetal.2014),andutilizehigh‐frequency,nearreal‐timedataforavariousstrategicsystemmanagementefforts(Stewartetal.2013).Endusersbenefitfrombehind‐the‐meterleakdetectionanddetailedinformationabouttheirwaterconsumption,bothofwhichcanleadtomoreefficientwateruseandlowerwaterbills(Brittonetal.2013).Moregenerally,advancedwatermeteringprovidesmoretransparentinformationaboutwhere,when,andhowwaterisconsumed,whichcanenableconservationandgreaterefficiency(PacificInstitute2014).Finally,whilewaterAMIsystemshavedemonstratedsignificantwaterconservation(Ritchie2015),theirvalueasanenergy‐savingtoolhasnotyetbeenthoroughlyexplored.

17

Energy Benefits of Advanced Water Metering 

Inthissection,wewillreportonthecurrentstateofwaterAMIinthemunicipalandagriculturalsectors,itsmarketpenetration,anditscurrentapplicationsforenergysavingsandbenefits.Itisimportanttonotethatquantifying,comparing,andprioritizingtheseenergyopportunitiesmustbedoneonacase‐by‐casebasisasapartofthecost‐benefitanalysisforanadvancedwatermeteringsystemsuchasAMI.

2.1 Embedded Energy Savings 

2.1.1 Water Conservation Through Altered Behavior 

Studieshavedemonstratedthatinformationprovidedbyadvancedmeteringofenergyandwatercanencouragebehavioralreductionsinconsumptionbyincreasingconsumerknowledgeabouttheirresourceuse.Webportals,textmessagealerts,andIn‐HomeDisplays(IHDs)areexamplesofcommunicationsplatformsusedtomakeresourceconsumptionmoretransparenttoconsumers.Intheenergysector,Faruquietal.foundthatIHDsthatdisplaythenear‐real‐timeinformationabouthomeenergyusecollectedbysmartmeterscanreduceenergyuseby7%(2010).Barissetal.foundthatasmartelectricitymeterrolloutto1,000customersinLatviaresultedinanaverage19%decreaseinelectricityconsumptioncomparedtoacontrolgroup(2014).Finally,ameta‐analysisofresearchon“feedback”mechanisms,whichincludesimprovedbilling,advice,andreal‐timeusagedata,andtheirimpactsonresidentialelectricityusagefoundthatfeedbackcanprovidesavingsbetween4and12%(Ehrhardt‐Martinezetal.2010).

Asimilaropportunityispresentinthewatersector.Implementingadvancedwatermeteringsystemsandprovidinguserswithmuchmoregranular,real‐timedataonwaterconsumptioncanresultinwaterconservation.Forexample,a2013paperbyFieldingetal.exploretheimpactofcustomer‐specificwateruseinformationonconsumptionpatterns,andfindthatdailyconsumptiondatafromsmartwatermeterscanreducewaterconsumptionbyanaverageof9%.Additionally,a2014pilotstudyatEastBayMunicipalUtilityDistrict(EBMUD),whichsupplieswaterthroughouttheSanFranciscoEastBay,installedwaterAMIsystemsthatprovidedhourlywaterconsumptiondata(inunitsoftenthsofagallonperhour)tocustomersthroughanonlinewebportal.EBMUDfoundwatersavingsbetween5‐50%,withanaverageof15%,amongresidentialcustomersaftertheinstallationofthesavings,whilenotingthatsomeofthesesavingsarelikelyduetocustomer‐sideleakrepair(EBMUD2014).Whenconsumersuselesswater,theembeddedenergynecessarytoprovidethatwaterisavoided,asthewaterutilityneedstoextract,treat,anddistributelesswater,reducingtheenergydemandsofthewaterutility.Unfortunately,veryfewstudiesquantifytheembeddedenergyreductionsattributabletothesewaterreductions.

18

2.1.2 Leak Detection and Repair 

Aswaterinfrastructureistypicallylocatedunderground,watermaindegradationanddamagefromsoilpressure,excavationandconstructionthreats,treerootgrowth,freeze‐thawcycles,andearthquakesarecommonoccurrences.Theresultingwaterleakagefromwatermainsintothesurroundingsoilarecalled“physicallosses”andarenotonlydifficulttodetect,butalsorepresentamajorsourceofwaterloss,knownasnon‐revenuewater(NRW),thatutilitiescannotfinanciallyrecoverorbilltocustomers.AnothersourceofNRWare“commerciallosses”,whichconsistofwaterthatflowsintoawatersystembutisnotcorrectlyaccountedforflowingoutofthesystem.Commerciallossesaretheresultoffaultyorinaccuratemeters,datahandlingerrors,orwatertheft.NRWiscalculatedusingEquation(1).

(1) %

100%

Whilecommerciallossesdonothaveassociatedenergyimpacts,physicallossesrepresentrealwastedenergyintheformofembeddedenergyandassociatedGHGemissions.Atypicalruleofthumbestimateforphysicalwaterlossesis10‐15%intheU.S.andcanbehigherindifferentpartsofthecountryandtheworld(Heringetal2013).Figure3showsthedistributionofNRW,asafractionoftotalwaterinputs,forutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database,whichcompileswaterutilitydatafromaroundtheworld.Onecanseethatover15%ofutilitiesintheIBNETdatabasehadNRWfractionsover50%in2006.

Figure3:Non‐RevenueWaterperformanceofutilitiesinTheInternationalBenchmarkingNetworkforWaterandSanitationUtilities(IBNET)database(Kingdometal.2006).

19

IntheUnitedStates,itwasestimatedthat5‐10billionkWh/yearofelectricityisassociatedwithNRW,whichisapproximately6‐13%ofallelectricityusedbywateragenciesannually(AWWAWaterLossControlCommittee2003).TheWorldBankestimatesthat80%ofNRWindevelopedcountriesisduetoreallosses,whichmeansapproximately4‐8billionkWh/yearofelectricityiswastedthroughleaksintheU.S.Forperspective,thatisenoughelectricitytopower360,000‐720,000householdsannually(EIA2015).Theseleaksoccuron“bothsidesofthemeter,”meaningonthecustomer’sside(e.g.inhomes)andontheutility’sside(e.g.inwaterdistributioninfrastructure).Onthewhole,thefollowingdiscussionoftheavailableliteraturesuggeststhatasubstantialfractionofthewastedelectricityassociatedwithleakscouldbesavedthroughleakdetectionenabledbyadvancedmunicipalwatermetering.

Customer‐Side Leak Detection 

TherecentDeOreoetal.report,“ResidentialEndUsesofWater,Version2”,foundthatleaksaccountfor13%ofallresidentialindoorwaterconsumptionacrosstheU.S.(2016).Customer‐sideleakscanbedetectedthroughanumberofmethods,includingwaterauditsandanalysisofwaterconsumptiondatathatrangeincomplexitybutaregreatlyimprovedwhencoupledwithanAMIsystem.OnewaterproviderinQueensland,Australiaanalyzedhourlyconsumptiondataforall22,000oftheirresidentialcustomersandidentifiedapproximately800householdsthathadcontinuouslyusedwaterfor48straighthours,indicatingahighlylikelihoodofleaks.Afterprovidingasubsetofthesecustomerswithextensiveanalysisoftheirminimumnighttimeflow(MNF)valuestocommunicatethepresenceofleaks,thewaterprovidersawan89%reductioninMNFwithinthesubset(Brittonetal.2013).TheCityofSacramento,California,beganimplementingawaterAMIsystemin2009.Afterinstalling17,600smartwatermeters,theymonitoredtheirperformancefrom2010‐2011.Throughanalysisofthevolumetricconsumptiondatacollected,1,076leakswereidentified,75%ofwhichwereverifiedinthefield.TheCityestimatedthatfixingtheseleakssavedanestimated236milliongallonsofwateroverthetwo‐yearperiod,orapproximately12.6gallonspercapitaperday(CaliforniaDWR2013).EBMUDhascompletedeightwaterAMIpilotprojectsthroughouttheirresidentialservicearea,includinganacousticleakdetectionsystem.TheAMIsystemscommunicatehourlyconsumptiondatawithresidentialcustomersviaawebportal,whichsendscustomersnotificationswhenconsumptionpatternsindicateasuspectedleak.Preliminaryresultsfromthesepilotprojectsindicatethatthesesystemshavebeeneffectiveatidentifying“asurprisingnumberofleaks”(EMBUD2014),andEBMUDhassincerequestedfurtherinformationfromvendorsregardingcurrentAMIsystemcapabilities(EBMUD2015).

20

Utility Infrastructure Leak Detection 

Expertshaveidentifiedthatdailywatersystemoperationscouldbedrasticallyimprovedwithbetterdata(Tarrojaetal.2016).Byaugmentingcurrentoperationalmodelsandprocedures,largelybasedonSCADAsystemdata,withwaterAMIdata,expertssuggestedthatthedevelopmentandapplicationofadvancedalgorithmstoquicklyandaccuratelydetectleakscouldrealizesubstantialoperationalcostsavings.Theseanalyticalcapabilitiescouldenablewaterutilitiestotakepreventativemeasuresbyidentifyingminorleaksbeforetheybecomeexpensivecatastrophicpipefailures.However,utility‐sideleakdetectionistypicallymorecomplexthancustomer‐sidedetection,primarilyduetothenumberofinputsandoutputspresentinwaterdistributionnetworks.Anumberofstudieshaveproposedsolutionstothistechnicalproblem.Zanetal.discusshowdatafromflow,pressure,andacousticsensorscanbeanalyzedwithjointtime‐frequencyanalysistodiagnoseleaksinamunicipaldistributionsystem(2014).Gouletetal.(2013)andColomboetal.(2009)showdifferentmethodsusingflowandpressuredatarecordedathighfrequencythatcouldbeadequateinprovidingleakdetection.Loureiroetal.demonstratehowtoleveragesmartwatermeterdatatoperformwaterbalancesondistrictmeteredareas(discreteanddistinctsectionsofwaterdistributioninfrastructure)inordertodetectleaks(Loureiroetal.2014).Inthefield,citiesofLeesburg,VirginiaandMonaca,PennsylvaniareducedtheirNRWfrom15%to7%and50%to15%,respectively,afterinstallingAMItodiagnoseandreducedistributionleaks(Richie2015).

OneoftherarestudiesthatestimatesembeddedenergysavingsassociatedwithwaterefficiencyprojectsisECONorthwest’s2011study,“EmbeddedEnergyinWaterPilotProgramsImpactEvaluation”,whichanalyzes9pilotprogramsimplementedbyCalifornia’sthreeenergyIOUsincollaborationwithlocalwaterutilities.Oneofthereport’skeyfindingscamefromaSouthernCaliforniaEdison(SCE)leakdetectionprogramthatutilizedwateraudits,supportedbyvolumetricwatermeterdata,toidentifyleaksinwaterdistributioninfrastructureforthreewateragencies:

“SCE’sLeakDetectionprogramappearstoofferthegreatestenergysavingspotential(atrelativelylowcost)amongallthePilotprograms.Inparticular,theenergysavingsdocumentedinthisreportarebasedonleaksthatwereactuallyrepairedduringtheprogramperiod;potentialachievablewater(andenergy)savingswereestimatedtobemuchhigherbytheprogramimplementationcontractor.”

Whilethispilotprogramwasnotutilizinga“smart”watermetersystem,butratherperforminganalysisonhistoricaldata,itdiddemonstratethatthemagnitudeofenergysavingsassociatedwithleakrepairissignificant.TheestimatedannualwaterandenergysavingsforthisprogramarereportedinTable3.

21

Table3:Estimatedwaterandembeddedenergysavingsfromprogram‐relatedleakrepairs,andpotentialuntappedsavings(ECONorthwest2011).

Water(MG)Energy–Agency

(kWh)Energy‐All

Sources(kWh)

SavedfromRepairs

83 178,143 497,788

PotentialSavings 263 583,277 1,662,621

Energysavingsareshownforboththewateragency(Energy–Agency),andfromallsources(Energy–AllSources),whichtypicallyincludesextractionorconveyanceofwaterforwhichtheagencyisnotresponsible.

Identifyingleaksindistributioninfrastructurebeforecatastrophicpipefailuresoccurcansavetheutilitytime,money,andlaborwhilealsoreducingtheembeddedenergyrequiredtoprovidewaterthroughoutthesystem.AlthoughfurtherresearchisneededtobetterquantifyandcomparethecostsandbenefitsofusingAMI,acousticleakdetectionsensors,SCADA,oracombination,manytechnologiesthatcanperformleakdetectioncurrentlyexist.Additionalpilottestsonalargerscalecouldfurtherimproveourunderstandingofthebarrierstoadoptionandoptimaldeploymentstrategies.

2.1.3 Energy Efficient Infrastructure Design and Operation 

Currently,waterinfrastructureisdesignedtomeettheflowrequirementsneededatabsolutepeakdemand,andtheabsolutepeakdemandiscomputedusingengineeringestimatesofmaximumdailyconsumptionandnotnecessarilyontheanalysisofhistoricalconsumptiondata.Pumpsareselectedtomeetpeakdemandandarenotoperatedintheiroptimalefficiencyattypicaldemandflows.Ineffect,thismeanswaterinfrastructureisoverdesignedforthemajorityofdemands,whichmayleadtoinefficientoperationandthushigherembeddedenergyofthewaterdeliveredbythesystem.Thisrelianceonengineeringbestestimatesofpeakflows,ratherthanaconsumption‐databaseddesignapproach,couldalsobeincreasingthecosttobuildandmaintainwaterinfrastructure.FurtherresearchisneededonhowbesttointegratethewealthofhighlygranularwaterAMIdataintosystemandinfrastructuredesignpractices.

WaterinfrastructureintheUnitedStatesandthroughoutmuchoftheworldisquiteold,andisthereforeconstantlybeingmaintained,replaced,improved,andexpandedtomeetthegrowingneedsofindustry,rapidlyurbanizingdemographics,andagrowingpopulation.Aswaterinfrastructureistypicallyunderground,repairingandreplacingpipesisexpensive.Thissituationpresentsopportunitiestoleveragethehigh‐quality,high‐resolutiondatafromAMIsystemstoprioritizetherepairandreplacementofsystem

22

components.Sincewaterutilitiesareoftenbudgetconstrainedandpipereplacementisdonebasedonbest‐guesspipe“lifetime”schedules,itisnotuncommonforutilitiestospendhundredsofthousandsormillionsofdollarstoexcavateandreplacepipesthatareingoodcondition.Thisinefficiencycouldbereduced,andtheembeddedenergyofthewatersystemloweredduetolowerwaterlossrates,ifutilitieshadadvancedwatermeteringdatatoidentifyandprioritizeleakingpipesforreplacementratherthanusingtraditionalrule‐of‐thumbreplacementperiods.

Dataaboutchangesinwaterdemandpatterns,providedbyAMI,couldinformimprovedmedium‐tolong‐termwaterforecastingmodels.TheimprovedaccuracyoftheseAMI‐supportedmodelscouldprovideutilityoperationalmanagersthecontrol,feedback,andmonitoringcapabilitiestomorereadilyalterconveyanceanddistributionpumpingpatterns.Thesemodelscouldalsoimproveinfrastructureredesignbyidentifyingareaswherethedistributionnetworkisover‐orunder‐designed,ideallyleadingtomoreoptimalsizingofpipesandpumpsaswellasimprovedsitingofpumping,storage,andmonitoringresources.Moregranularandreal‐timedataaboutwaterconsumptionthroughoutawaterdistrictcouldalsobebetterlinkedtothedistrict’senergyuse,andhelptoquantifypumpshiftingopportunitiesfordemandresponseorsupportthesitingprocessforadditionalwaterstorageinfrastructure.

Additionally,pressuremanagementofwaterdistributionssystemshasbeenshowntoloweroverallleakageratesandenergyuse.Xuetal.found thatreducinginletpressuretoadistributionsystemby14%ledtoan83%reductioninminimumnightflow(MNF)andanassociatedsavingsof62,633cubicmetersofwater,1.1x106MJofenergy,and68tonsofCO2equivalentgreenhousegasemissionsperyearperkilometerofpipe(2014).However,duetothevariablenatureofdistributionsystemstructure,operation,andwaterqualityrequirements,theauthorsobservethattheseresultscannotbedirectlyextrapolatedtoothersystems.Pressuremanagementapproachescanbesupportedbyimprovedwatermetering,throughbothSCADAandAMIsystems,whichmayallowforloweroperatingpressures,thoughfurtherresearchanddemonstrationworkisneededbeforeconclusionscanbedrawn.

2.2 Electric Load Management and Demand Response 

Waterinfrastructureisasignificantcontributortopeakelectricaldemandsonthegrid,andthereforepresentsanopportunityforpermanentloadmanagementanddemandresponse(DR).Forexample,theCaliforniawatersupplyaloneisestimatedtorequire2‐3GW,or3‐5%ofthestate’stotalelectricitydemand,onpeakdays(Fujitaetal.2012;CEC2005).Opportunitiestoshiftorreducethepeakdemandfromthewatersectorcouldaddresspeaksystemdemandissues,potentiallyresultinginlowerelectricitypricesandreducingthelikelihoodofdemandexceedingcapacity.Additionally,waterisreadilystorable,andwater

23

systemsfacedifferentconstraintsthanelectricalsystems,makingwater‐relatedenergyapotentiallyflexibleandreliableDRresource.Improvedwaterdemandforecasting,enabledbyadvancedwatermetering,couldsupportsystemoperatorsandencouragecustomerstoshifttheirwaterdemandsoutofpeakelectricitydemandperiods.

2.2.1 The Municipal Sector 

Olsenetal.estimateanaverageofapproximately1.1GWofmunicipalpumpingdemand,whichdoesnotincludelargewaterconveyancesystems,duringsummermonthsintheWesternInterconnection,ofwhichapproximately15MWisreadilyavailableforDR(Olsenetal.2013).Whileindividualcustomersarefarremovedfromthepeak‐electricityimpactsoftheirwateruse,waterutilitiesresponsibleforconveying,treating,anddistributingwateroftenfacetime‐of‐use(TOU)energyprices,whichincentivizesthemtominimizethecostsassociatedwithusingenergyduringpeakhours.Ourinterviewswithwaterandenergyutilityexperts,aswellasobservationsfromtheliterature,indicatethatsomeutilitieshaveimplementedadvancedwatermeteringandwaterstoragetohelpthemshiftsomepumpingandtreatmenttooff‐peakhourstoreducetheirenergycosts(Fujitaetal.2012;Cherchietal.2015),whileothersparticipateinelectricdemandresponseprograms(EPRI2013).However,therearestillveryfewreportsthatdemonstrateandquantifyexamplesofwater‐AMI‐supportedresponsiveloadmanagement.

Onthecustomersideofthemeter,increasingconnectivity,epitomizedbytheInternetofThings(IoT)concept,willlikelyaffectwater‐relatedenergyconsumptionthroughbehaviorchangeandadvancedhomeautomation.A2010CECstudyonresidentialpeakelectricaldemandfoundthatcustomerswhowereaskedtominimizetheirwaterconsumptionduringtheelectricalutility’son‐peakperiodusedapproximately50%lesswaterduringpeakelectricityhoursascomparedtoacontrolgroupwhowasnotprovidedthismessaging(House2010).Ifimplementedacrossthewateragency’stotalresidentialpopulation,thestudyestimatedtheregionalwaterdistrictcouldreducetheirpeakelectricloadby3MW.Thestudyproposedthatalikelyexplanationofthisreductionisconsumersshiftinglawnirrigationtoeveningornighttimehours.Otherexamplesofthissortofdemandshiftingflexibilityinclude“smart”appliances,suchasclotheswashersanddriers,connectedthroughtheIoTtoahomeenergymanagement(HEM)system.SuchHEMsystemsarecapableofshiftingapplianceloadstooff‐peakhourswithminimaleffectsonlevelofservice.Thesetypesofhomemanagementsystemscanbeexpensive,butitispossiblethatintegratingwatermanagementintoahomeenergyandwatermanagementplatformwouldprovideco‐benefits.Forexample,AMI‐enabledpricingstructures,suchastime‐of‐usewaterprices,couldincreasetheabilityofthesehomemanagementsystemstocapturevaluefortheconsumer.

24

2.2.2 The Agricultural Sector 

Theconceptofjointenergyandwatermanagementisbecomingincreasinglyimportantintheagriculturalsector,asgrowersmaketheswitchfromwaterinefficientfloodirrigationtoadvancedwater‐efficientprecisionirrigationsystems.Althoughmodernizedirrigationmethodsusemuchlesswater,theyaretypicallymoreenergyintensiveduetotheneedtopressurizeextensivepipingsystems.OnestudyestimatesthatthemodernizationofSpain’sirrigationsystemsfrom1950to2007reducedthewaterperhectareoffarmingby21%,butincreasedtheenergyperhectareby657%(Corominas2010).AnotherstudyoftwoirrigationdistrictsinAustraliafoundthatswitchingfromgravityfedirrigationtopressurizedirrigationcouldincreaseelectricityintensities,intermsofenergyperunitare(MJ/hectare),by8‐179%dependingoncroptype(Jackson2009).Asthreatstowatersecuritygrow,includingashiftingclimateanddwindlinggroundwaterreserves,theyacceleratethetransitiontowaterefficientirrigationsystems,andtheagriculturalsector’senergydemandsarelikelytoincrease.Olsenetal.estimateagriculturalwaterpumpingcurrentlycontributes2.7GWofloadduringsummermonthsintheWesternInterconnection,ofwhichapproximately400MWisreasonablyavailableforDR(Olsenetal.2013).Giventhisenergy‐watertradeoff,developingsystemsthatimprovetheflexibilityofagriculturalwaterandenergydemandsareanticipatedtobegrowingareasforbothR&Dandadvancedwatermeteringapplications.

Onemethodcurrentlyusedintheagriculturalsectoristhepracticeofshiftingwaterpumpingtooff‐peakperiods,whenthedemandontheelectricitygridislowest.Factorsthatlimittheeffectivenessofthisdemandmanagementstrategyarethetotalvolumeofwaterstorageavailableinasystem,themaximumcapacityofpumpsabletomovewaterintoasystemafterpeakhours,waterdeliveryschedules,andtheuncertaintyinwaterdemandforecasting(Marksetal.2013).Thisstrategycanbeusedbyindividualfarmsthathaveon‐sitestorage,butisoftenmostcost‐effectiveforirrigationdistricts.Forexample,theElDoradoIrrigationDistrictlowereditsminimumstoragetanklevelsandinstalledanadditional5‐million‐gallonstoragetank,whichreduceditson‐peakelectricityusagebymorethan60percent(CEC2005).Third‐partyDRaggregatorshavealsobegunfocusingontheagriculturalcommunity,andmanualDRparticipationhasincreasedamonggrowersrecently.

Inourinterviewswithexpertsfromtheagriculturalsector,theyindicatedthat,inordertoimproveoperationalflexibilityonafarm,growersneedtheconfidencetobewillingtochangeirrigationscheduleswithrelativelylittleadvancenotice.TheseassertionsaresimilartothosemadebyOlsenetal.,whoindicatethattheremainingissuesstilllimitingtheparticipationofagriculturalcustomersinDRinclude(1)insufficientoperationalflexibilityand(2)insufficientcommunicationandcontrolinfrastructure(2015).Sincemaximizingcropyieldswhileminimizingcroprisksisthegrowers’primarygoal,theyoften

25

seeimpromptuchangestoirrigationashigh‐riskpropositions.ThisexplainswhymostDRintheagriculturalsectoriscurrentlycontrolledmanually;growersreceiveadvancednoticeofDReventsanddecidewhethertomanuallyshutoffpumpsandotherprocesses.Withoutcommunicationandcontrolinfrastructureinplace,participationinDRinvolveshightransactioncosts,makingitdifficulttosecurelargequantitiesofreliableDRfromtheagriculturalsector.

Automateddemandresponse(ADR)isatechnologyandcommunicationsstrategythatallowsirrigationcontrolsystemstoautomaticallyandrapidlyrespondtoDRsignalsfromthegrid,whilestillleavingthegrowertheabilitytooverrideaDReventcalliftheydeemitnecessary.EnablinganirrigationsystemforADRcanfaceresistance,however,duetotheneedforinstallingvariablefrequencydrives(VFDs)and/orautomaticpumpcontrols,thepossibilityofchanginggrowers’irrigationhabits(Marksetal.2013),andtheaddeduncertaintythatanirrigationscheduleoptimizedforpeakloadshiftingmayharmcrophealth(Olsenetal.2015).Oneoutstandingtechnologicalgapisdevelopingamethodforestimatingrisktocropusingdata‐drivenalgorithmsandforecasting.However,growerstypicallydon’thaveaccesstoreal‐timedataonplantandsoilmoisturelevels;only12%ofgrowersintheUnitedStatesuseeithersoilorplantmoisture‐sensingdevicestohelpdeterminewhentowatercrops(USDA2013).Expertsalsoproposedthaton‐farmadvancedwatermeteringcouldhelpalleviatethisconcernbyquantifyingwatervolumesdispensedand,throughdata‐drivenalgorithms,estimatingriskofcropdamage.Thesealgorithmshavenotyetbeendeveloped,butpresentanopportunityforlesseningthepotentialriskfromoperationalchangessuchasdailyloadshiftingorfast‐responseDR.DemonstrationprojectscouldbeinstrumentalinquantifyingtheDRpotentialandinprovidingtheevidenceneededtoameliorateconcernsofcroprisk,resultinginasubstantialincreaseintheamountofDRpotentialrealizedintheagriculturalsector.

Lookingtoafutureelectricgridwithgreaterintegrationofintermittentrenewableenergyresources,therearelikelytobelargeancillaryservices(AS)marketstosupportgridreliabilityandefficiency.CurrentmanualagriculturalDRresourcescanprovidepeakloadshedding,seenastraditionalDR,butarenotcapableofsupplyingthehighlycontrollable,rapidresponseresourcenecessarytoprovideAS.However,agriculturalsystemscomposedofmechanicalpumps,waterstorageintheformofstoragetanksandpotentiallyin‐soilstorage,representahighlyflexibleresourcethatcouldtheoreticallybecapableofprovidinglargequantitiesofAS.Furtherresearchintoirrigationpumps’controllability,responsetime,andpracticalityisstillnecessarytoquantifythemarketpotentialforprovidingsuchenergyservices.

Inourinterviewswithexperts,theyseeagenerallyslowrateofadoptionofAMItechnologiesinthissector.Wehaveheardmanyanecdotalexplanationsforthis,including:concernsoflosingcontrolofanirrigationschedule;anincreasedrisktocrops;anda

26

generaldisinterestinhavingwaterusemonitored,recorded,andmadeavailabletoothers.However,furtherresearchisneededtobetterunderstandthesebarrierstoadoptionandtheassociatedopportunitycosts.

2.3 Supporting Energy, Water, and Climate Policy Goals 

Withincreasingconcernsaboutgreenhousegasemissions,waterscarcity,andnaturalresourcemanagement,municipalitiesworldwidearefacingstricterregulationsregardingwaterandenergyefficiencyaswellaspressuretoprovideevidencethataresourcemanagementprogramisachievingthosegoals.Anumberofstudieshavesuggestedthatenvironmentalgoalscanbemetmoreefficientlyandeconomicallybyapproachingenergyconservationthroughwaterusage;forexample,in2005,theCECreportedthatCalifornia’sstateenergyefficiencygoalscouldbemetbyfocusingsolelyonwateruse,athalfthecostoftraditionalenergyefficiencytargets,astheenergysavingsassociatedwithwaterefficiencyare,onaverage,lessexpensivetoachieve(CEC2005).However,thereisstillconsiderableuncertaintyabouthowtoaccuratelymeasuretheembeddedenergyinwater,quantifycostsavings,allocateenergyreductions,anddevelopatransparentmetricforjointwater‐energyprograms(CooleyandDonnelly2013;YoungandMackres2013).ThewealthofdatageneratedbywaterandenergyAMIsystemscouldprovidecrucialevidence,andnotonlyimproveourunderstandingofwaterandenergyconsumption,butalsoidentifyareaswiththegreatestpotentialforimprovedstrategicresourcemanagement.

2.3.1 Measurement and Verification 

Measurementandverification(M&V)iscommonlyundertakentoquantifythebenefitsofanenergyorwaterefficiencymeasure,andiscrucialtoestablishingitsvaluetofacilityowners,operators,customers,andutilityprograms.M&Vinvolvesfirstdocumentingtheenergyand/orwateruseofafacilitybeforeandafteranefficiencymeasureisinstalled,thenquantifyingandattributingchangesinusagetothemeasures.Intheenergysector,M&Veffortscancomprise1‐5%ofportfoliocosts(Jayaweeraetal.2013).ImprovedandautomatedM&VmethodsthattypicallyrelyonAMIdatacangeneratemorereliablebaselinestopredictwhattheenergyusemighthavebeenifameasurewasnotimplemented(Grandersonetal.2011).TheseAMI‐basedM&Vmethodscanbefasterandmoreaccurate,whichenablesmorecosteffectiveenergyefficiencyprograms(Grandersonetal.2015).RecentresearchsuggeststhatcoordinatedAMIsystemscanreducetheuncertaintyincostandbenefitvaluation,allowformoretransparentcomputations,andimprovetheattributionofcostsandbenefits(YoungandMackres2013).

2.3.2 Program Design and Prioritization 

InadditiontotheM&Vofjointwater‐energyprograms,waterAMIdatacancontributesubstantiallytosupportingtheprioritizationofthemosteffectivewaterandenergy

27

conservationstrategies.ThisishighlightedinStewartetal.’s2010paper,“Web‐basedknowledgemanagementsystem:linkingsmartmeteringtothefutureofurbanwaterplanning”.Australiafacedsignificantsustaineddroughtduring2002‐2012,whilewaterdemandgrowthforecastsindicateda37%growthbetween2001and2031(Birrelletal.2005).Stewartetal.observedthat,whiletherewerenumerousstrategiesbeingimplementedforresourcemanagementduringthisseveredrought,therewasofteninadequatedatatosupportwhichsolutionshadthemostprofoundorimmediateimpactsonwaterdemand.Stewartetal.proposedaweb‐basedknowledgemanagementsystemtoleveragetheinstalledwatermeteringtechnologytoimproveinfrastructureplanningandmanagement,waterdemandmanagement,andcommunicationofwaterconsumptionmetricstocustomers.Finally,Stewartetal.arguedthatdatafromwaterAMIisimperativetomanagetheincreasingstressonAustralia’sever‐shrinkingwatersupply.

Intheagriculturalsector,irrigationdistrictsandfarmstypicallycollectverylittledataaboutwaterconsumption(surfaceorgroundwater),whichcanbealostopportunityforimprovedon‐farmwatermanagement.AwaterAMIsystemthatalsohassoilmoisturesensors,forinstance,couldaidinlinkingwaterandenergyuseinwaysthatallowgrowerstooptimizetheseresourcesjointly(Riversetal.2015;ShuklaandHolt2014).Further,thedearthofoperationaldataaboutwhereirrigationwatercomesfrom,howandwhenitisappliedtofields,andtheenergyassociatedwithconveyingwateranddeliveringthroughanirrigationsystemleadstogreatuncertaintiesabouthowtobestdesignandimplementutilityandregulatoryprogramsthattargetenergyandwatersavings.Asasubstantialknowledgegap,werecommendstudiesfocusedoncollectingthisinformationinordertoconductareliablescopingstudyexaminingthepotentialcostsandbenefitsoffurtherworkinthisarea.However,nopilotstudiesorquantitativeinformationexistsonthevalueofwater‐energyinformationinagriculture.

28

Challenges and Barriers 

Inordertoachievewidespreadadoptionofadvancedwatermeteringanditsjointutilizationbyboththewaterandenergysectors,anumberofchallengesandbarriersneedtobeaddressedandovercome.Weidentifiedthreeprimarychallengesandbarrierstotheutilizationofadvancedwatermeteringtorealizeenergybenefits:(1)howwaterutilitiescapturevaluefromtheenergyservicesprovidedbywatermetering;(2)theimpactofwaterrights,especiallyappropriationdoctrineintheAmericanWest,onincentivestoinstallwatermetersandsharethemeterdatawiththepublic,regulatorybodies,orutilities;and(3)effectivecoordinationandcooperationbetweenwaterandenergyutilities.

3.1 Value Capture 

Advancedwatermeteringsystemscanbeexpensivewhencomparedtotraditionalmeteringdevices.Projectcostsrangewidelybasedonthenumberofcustomers,thespecificmeteringandcommunicationstechnologiesselected,thelevelofsoftwareintegration,andthestateofmeteringsystempriortoAMI/AMRimplementation.AsurveyofwaterAMIandAMRprojectsinAustraliaandNewZealandfoundprojectcostsrangingfromaslowas$45,000tosimplyupgrade5,000watermeterstosmartwatermeters;toashighas$36MtoinstallafullAMRsystemfornearly60,000residentialandnon‐residentialmeters(BealandFlynn2015).Additionally,Bealetal.foundthat,of16fundedadvancedwatermeteringprojectssurveyedinAustraliaandNewZealand,9(56%)werewhollyfundedbythewaterutilityand15(94%)wereatleastpartiallyfundedbythewaterutility,withfundingpartnersincludingfederalandstategovernments,schools,andfarmers.Thesamestudyfoundthatutilitiesmostoftenidentifiedreducingnon‐revenuewaterastheirtoppriority,withimproveddemandforecastingasanotherpopularmotivation.Whilebothoftheseprioritieshavedirecttiestoenergybenefits,asreducingnon‐revenuewaterreducesembeddedenergylostinthesystemandimprovingdemandforecastingimprovesawaterutility’sabilitytoprovideelectricDRservicesbyreducingtheriskthatdeferringpumpingwillresultininsufficientsupply,noneofthesebenefitswerequantifiedbythestudy.

Manywaterdistrictshaveobservedthat,duetohighcapitalcosts,makingthebusinesscaseforwaterAMIiscurrentlydifficult(Zunino2015).WhilepilotstudiesarebeginningtodemonstrateandquantifytheassociatedenergybenefitsofwaterAMI,thequestionoftenremainsastohowwaterutilitiescaptureandfullymonetizethesebenefits.Howthisquestionisresolveddependsonstateandlocalpolicies,whichareoftendeterminedbystatePublicUtilitiesCommissions.Forexample,theCaliforniaPublicUtilitiesCommission(CPUC)iscurrentlyintheprocessofimplementinganembeddedenergycostcalculatorintoitsenergyandwaterefficiencyprogramevaluations.TheoveralllackofvaluationanalysisoftheenergyandGHGbenefitsofwaterAMIremainsasignificantgapintheopen

29

literature.AmorethoroughunderstandingoftheenergybenefitsandclearerpathwaystocapturingthesebenefitsforthewaterutilitycouldimproveAMI’sbusinesscase,andpossiblyspurmorewidespreadadoption.

3.2 Water Rights 

Inorderforadvancedwatermeteringdatatobecollectedandutilized,regulatory,operational,andlegaldisincentivesneedtobelessenedorremovedentirely.AmajordisincentivetothecollectionandsharingofwaterdataintheAmericanWestishowwaterrightsaredetermined.WaterrightsintheAmericanWestaregenerallyprior‐appropriationrights(USArmyCorpsofEngineersandConsensusBuildingInstitute2012).Theserightsarebasedonfourprinciples:(1)intent,whichtypicallyconsistsoftheapplicationforapermit;(2)diversion,whichdefinesthephysicallocation;(3)beneficialuse,whichdefinestheintendedpurposeofawaterallocation(e.g.agriculture);and(4)priority,whichisthedateofthefirstwithdrawalmadeundertheright,witholderrightshavingpriorityovernewerrights.Akeyelementoftheprior‐appropriationdoctrineistheconceptofabandonmentorforfeiture,whichiswhenallorafractionofanallocationiseithernotusedaccordingtoabeneficialuse,orisnotusedatall.Thismeansthatifrightsownersarefoundtouselessthantheyhaveanallocationfor,theymayloseaportionoftheirallocationpermanently.Thissystem,pairedwithdatedreportinglaws,incentivizesrightsholderstoobscure,ornotevenreport,theirwateruse,asfulldisclosurecouldjeopardizeanowner’sallocation.

WhilewaterAMIisapowerfultechnologyformanagingwaterconsumption,manyrightsholdersarehesitanttoparticipateinutilityprograms(e.g.demandresponse)thatwoulddisclosethedetailsoftheirwaterconsumptiontopublicutilitiesorthreatenprofits(DinarandMody2003).Asaresultoftheselegalandregulatoryfactors,farmsthatembraceadvancedresourcemanagementstrategies,includingnetworkedadvancedwatermeteringsystems,typicallyinstallindependentandinternalsystemsthatdonotsharewaterdatawithwaterdistrictsorregulatoryagencies.Whiletheseinternaladvancedmeteringsystemscanprovidefarmerswiththesamelevelofinformationconcerningtheirwaterconsumption(alongwithsoilmoisture,temperature,weatherpatterns,etc.),theselocalinstallationslackthetwo‐waycommunicationbetweengrowersandtheutilityorirrigationdistrictthatiscommoninafullAMIsystem.Thetwo‐waycommunicationanddata‐sharingattributesofAMIenablemoreaccuratewaterusetrackingandM&Vtosupportjointwater‐energyprogramsandpoliciesintheagriculturalsector.Thisfindingisimportant,andshouldbeconsideredwhensettingpoliciesanddevelopingprogramstoensurewaterrightsholdersarenotdeterredfromparticipationbyrisktotheirwaterrightsandallocations.

30

3.3 Utility Coordination and Conflicting Priorities 

ToachievethemostenergybenefitswithexistingandfuturewaterAMIsystems,waterandenergyutilitieswouldneedtocollaborateonindividualprojectsandstrategicplanning.However,inourdiscussionswithexperts,theycommunicatedthatcoordinationacrosswaterandenergyentitiestoimplementjointwater‐energyprogramsisaverycomplextask.Anumberofelementsarecrucialtothesuccessofaproject,including:(1)determiningappropriateallocationofresourcesbetweenthetwoentities;(2)parallelprojectgoalsthatencouragecooperation;(3)streamlinedcommunications,legalreview,andinter‐agencyprocedures;and(4)standardizationofAMIdata.Expertsalsoindicatedthat,evenwithinmunicipalutilitiesthatprovidebothenergyandwaterservices,cross‐departmentcollaborationandcoordinationcanbedifficultandisrelativelyuncommon.

A2013surveybyCooleyetal.foundthat30%ofenergyandwaterexpertssurveyeddescribedtheinabilitytosharecustomerdataduetoprivacyconcernsasasignificantbarriertothesuccessofwater‐energyprograms.Thisinabilitytosharedataisoftenduetolegalandbureaucratichurdlesthatcanpreventthesuccessoftheproject,butcanalsobecausedbythefactthatutilitiesusedifferentsoftwareanddatamanagementarchitectures.SomeoftheseissuescouldbesolvedwithmorewidespreadstandardizationofAMIdata.

Figure4:Left,California’sInvestorOwnedUtilities’serviceterritories(CEC).Right,locationandsizeofCalifornia’sregulatedwaterutilities(CaliforniaWaterAssociation).

31

Itisalsocommonforsignificantmismatchestoexistbetweentheserviceterritoriesofenergyandwaterutilities.Forexample,Figure4showshowitisnotuncommonforCalifornia’senergyutilities’serviceterritoriestooverlapwithdozensofwaterutilities.Thismismatchbetweenwaterandenergyutilities’serviceterritories,aswellastherelativenumberofwaterutilitieswithinasingleenergyutility’sserviceterritory,hasbeencitedasaslight‐to‐moderatebarriertoimprovedwater‐energyprogramcoordination(CooleyandDonnelly2013).

 

32

Case Study: California 

4.1 Background 

ThestateofCaliforniaisaleaderinthecollectionofenergyusedata,withover12millionsmartmetersinstalledacrossthestate(IEI2014).However,thedeploymentofadvancedwatermetersandwaterAMIintegrationinCalifornialagsbehindthatofenergyAMI,mainlyduetooperationalneedsthatonlyenergyutilitiesface,suchastheneedtoaccuratelymeterdistributedenergyresourcesandtheneedtoenableTOU‐basedelectricityprices.In2004,California’sLegislaturepassedAssemblyBill(AB)2572,whichrequiresallmunicipalwaterconnectionstobemeteredandcapableofenablingvolumetricbillingforcustomersby2025(CaliforniaStateAssembly2004).Ineffect,theresolutionwillincreasethemeteringofwaterusestatewide.Althoughthisisapromisingstep,theresolutiondoesnotmandatetheperformancerequirementsofthemeteringorcommunicationsinfrastructure.ThismeansthedeploymentofadvancedwatermetersandAMIisdependentonutilityinvestmentcapabilities,incentives,andpriorities.Additionally,CaliforniarecentlypassedSenateBill555,which:(1)requiresurbanretailwatersupplierstocompleteandsubmitawaterlossauditreportannuallybeginninginlate2017;and(2)dictatesthattheStateLegislaturetoadoptrulesregardingthestandardizationoftheseauditsbyJanuary1,2017(CaliforniaStateSenate2015).ItremainsunclearexactlyhowtheseBillswillimpactthestateofadvancedwatermeteringinCalifornia.However,Californiaisoneofthefewstatesthathasinvestigatedandtakenstepstobetterquantifytheembeddedenergyofwaterconsumptionandtheenergydemandsofthewatersystemasawhole.

4.2 Embedded Energy of Water in California 

Howweathervariationandlong‐termclimatechangeimpactthewater‐relatedenergyneedsofthemunicipal,industrial,andagriculturalsectorsarenotwellunderstood,thoughthereareassumedtobesignificantdifferencesasCalifornia’ssurfacewateravailabilitydecreases,groundwaterdepthsincrease,andseveredroughtcontinuestoimpactthestate.TodeterminethescaleoftheopportunitiesforimprovingresourceuseinCalifornia,theCEC,Maupinetal.,andtheCaliforniaDepartmentofWaterResources(CDWR)performedassessmentsofwaterandwater‐relatedenergyuseinCalifornia.Theagricultural,industrial,andmunicipalsectors’estimatedannualwaterconsumptionandwater‐relatedenergyconsumptionareshowninTable4.ItisimportanttonotethatthevaluesinTable4arenotforidenticalcalendaryears,however;thoughthesestudiesrepresentsomeofthemostcomprehensiveassessmentscurrentlyavailableforCalifornia,datacollectioninthisfieldisinfrequentanduncoordinated,whichhasposedanotheranalyticalchallenge.

33

Table4showsthattheagriculturalsectoristhelargestconsumerofwater,accountingfor75%ofallwaterconsumedinthestate;municipaluseaccountsforapproximately24%,andindustrytheremaining1%.Table4alsoshowsthatthemunicipalsectorusesthemostwater‐relatedenergy,at64%,agricultureusesanadditional22%,andindustrialusestheremaining14%.ThelastcolumninTable4isanestimateofeachsector’senergyintensityofwater,orembeddedenergy,calculatedfromthetwoothercolumnsaccordingtoEquation2.Thiscalculation,shownintheWater‐RelatedEnergycolumn,isconsistentwiththisreport’sdefinitionofembeddedenergy,whichdoesnotincludeend‐useassociatedenergy.

Equation2

Table4:WaterandEnergyConsumptionbySectorinCalifornia

Sector

Water‐RelatedEnergyConsumption

(GWh/year)

WaterConsumption

(BG/year)

EmbeddedEnergyofWater(kWh/MG)

Agriculture 10,5601 8,5002 1240

Industry ~68001 1603 42,500

Municipal ~30,6001 2,7003 11,300

1(CEC2005);2(Maupinetal.2014);3(CDWR2013);Shadingindicatesmagnitudeofvalue,darker=larger.

Despiteusingtheleastwaterandwater‐relatedenergyofthesectors,theindustrialsectorhasthehighestembeddedenergy,at42,500kWh/MG.Thisresultisnotsurprising,asindustrialprocessesoftenpressurize,heat,and/ortreatwater,allofwhichareenergyintensive.Additionally,industriesthatreusewaterwillhavedrasticallylargerenergyintensities,asthesamevolumeofwatermaybeputthroughaprocessmultipletimes.Municipalwateruseisthenextmostenergyintensive,at11,300kWh/MG.Agriculturalwateruseistheleastenergyintensive,atapproximately1240kWh/MG,howeverthesevaluescanbehighlyvariableastheenergyuseisattributabletomanyfactorssuchasgeographiclocation,climate,andwatersource.Forexample,intheir2003report,Burtetal.indicatethattheembeddedenergyofagriculturalwaterinthecoastalregionsofthestateisapproximatelyfourtimesthatofwaterintheCentralValley,owinginparttotheenergycostofconveyingwatertothecoast.

Forcomparison,Table5showsbottom‐upestimatesoftheenergyintensityrangesforanumberofsegmentsofthewatercycle.Watertreatmenthasthelargestrangeofenergy

34

intensity,withthelowendrepresentingagriculturalorindustrialwaterthatdoesnotneedtobepotableandthehighendrepresentingdesalinatedwatertreatment.Watersupplyandconveyancehavethesecondlargestrangeofenergyintensity,withthelowendrepresentinggravity‐fedsupplysystemsforwhichnopumpingisnecessaryandthehighendrepresentinglargeinter‐basintransferprojectssuchastheStateWaterProject(SWP).

Table5:RangeofEnergyIntensitiesWaterUseCycleSegment(CEC2005)

Water‐UseCycleSegments

RangeofEnergyIntensity(kWh/MG)

Low High

WaterSupplyandConveyance  0 14,000

WaterTreatment  100 16,000

WaterDistribution  700 1,200

WastewaterCollectionandTreatment  1,100 4,600

WastewaterDischarge  0 400

RecycledWaterTreatmentandDistribution

400 1,200

Theonemajorwater‐usecyclesegmentnotincludedinTable5istheend‐useitself.Forexample,theenergyintensityofheatingwaterforresidentialclotheswashingorpressurizingindustrialwaterisnotincludedinTable5.Theseend‐use‐relatedenergyintensityfactorscanbeasignificantfractionoftheoverallenergyintensityofwater,especiallyintheindustrialsector.

35

Figure5:EnergyintensityrangebycomponentforCalifornia’sthreeIOUs(GEIConsultantsandNavigantConsulting2010).

Figure5,reproducedfromthe2010report,“EmbeddedEnergyinWaterStudiesStudy2:WaterAgencyandFunctionComponentStudyandEmbeddedEnergy‐WaterLoadProfiles”,showstherangesinenergyintensityofvariouscomponentsofthewatercycleforCalifornia’sthreeInvestorOwnedUtilities(IOUs).Whilethesevaluesarenotfromarepresentativestatisticalsample,theyareusefulforscopingandunderstandingvariabilityandembeddedenergysavingsopportunities.

ThevaluesfromTable4,Table5,andFigure5willbeusedtoscopethepossibleenergyimpactsofAMIacrossCalifornia.

4.3 Potential for Energy Efficiency 

TheinformationandcontrolsprovidedbyAMItocustomersandutilitiescanhavelargeenergyefficiencyimpacts.Suchopportunitiesincludemoreefficientsystemoperational

36

strategies,energysavingsthroughwaterconservationandleakdetection,andchangesinconsumerbehavior.ThefollowingsubsectionsdiscussthescaleoftheseopportunitiesinthemunicipalandagriculturalsectorsinCalifornia.

4.3.1 The Municipal Sector 

DeOreoetal.foundthatcustomer‐sideleakswaste31gallonsofwaterperhouseholdperdayinCaliforniaresidences,whichisapproximately17%ofallindoorconsumption(2011).AnEBMUDpilotstudythatinstalledAMIandutilizedanonlinecustomerportalwherecustomerscouldexaminetheirhourlywateruseobservedsubsequentwaterconservationbetween5%and50%,withanoverallaverageofapproximately15%afterinstallation(EBMUD2014).Giventhat2.9trilliongallonsofwaterareconsumedintheurbansectorannuallyinCalifornia(CDWR2013),andassumingaconservative10%savingsfrombehavioralandcustomer‐sideleakfixes,implementingwaterAMIstatewidecouldreducestatewidewaterconsumptionby290billiongallonsannually.UsingtheembeddedenergyestimatesfromTable4,thesewatersavingscouldresultinapproximately3.3TWhofembeddedenergysavings1throughconsumerbehaviorchangeandcustomer‐sideofthemeterleakfixesalone.

Regardingutility‐sideleaks,areportpreparedforSouthernCaliforniaEdisoncalculatedthatthephysicallossesinCalifornia’swaterdistributioninfrastructureaccountforapproximately11%oftheurbanwaterconsumedinthestate(WaterSystemsOptimization2009).Theauthorsfurtherestimatedthat40%oftheselossesarerecoverableeconomically,assumingthelostwaterisvaluedatretailprices,whilenotingthatvaluetobe“reasonableandratherconservative.”Thisassumptionisbasedonthestandardpracticeof“reactivemanagement,”whichmeansfixingleakswhentheyarereportedtotheutilitybycustomersorthegeneralpublic.IfAMItechnologiescouldreducethecostofrecoveringtheselossesthroughrapid,automatedleakidentificationandpreemptivepipereplacement(replacingwatermainsbeforetheyburst),wesuggest75%ofthesereallossesmaybeeconomicallyrecoverable.Thiswouldimply8%ofurbanwaterconsumedinthestate,equivalentto230BG/year,couldbeconservedwithAMI.UsingtheestimatesofembeddedenergyfromTable4,thesewatersavingscouldresultinapproximately2.6TWhofembeddedenergysavings2throughavoidedproduction,treatment,anddistributionofwater.

13.3TWhwascalculatedbymultiplying290BG/yearbythemunicipalembeddedenergyvalue,11,300kWh/MG,foundinTable4.22.6TWhwascalculatedbymultiplying230BG/yearbythemunicipalembeddedenergyvalue,11,300kWh/MG,foundinTable4.

37

Together,utility‐sideandcustomer‐sideleakrepaircouldhavesignificantenergy‐savingpotentialinthemunicipalsector.Theimportantoutstandingquestionishow,ifatall,waterutilitiescancapturethevalueoftheseenergysavingsasanaddedincentiveforupgradingandinstallingwaterAMIsystems.TheCPUC’snewWaterEnergyCostEffectivenessCalculatoraimstogiveutilitiespropercreditforenergysavingsattributabletowaterefficiencyprograms(CPUC2016),howeverweareunawareofademonstratedprojectwherebehavioralorAMI‐drivenwatersavingsweregivencreditforembeddedenergysavings.

4.3.2 The Agricultural Sector 

Arecentstudyreportsthatmorethan10TWhofelectricityisconsumedannuallyforpumpingagriculturalirrigationwaterinCalifornia(Marksetal.2013).Researchershavefoundthatimproveddatacollectionofbothwaterandenergyuseonfarmsiscrucialtoimprovingirrigationenergyefficiency,especiallywhenintegratedwithon‐farmenergymanagementsystems(Rocamoraetal.2013).Acasestudyofapressurizedirrigationpumpingsystemfoundthatbasicelectricalandhydraulicmeasurementsatthepumpingstationcouldachievemoreoptimalpumpoperation,resultinginenergysavingsofupto14%(Morenoetal.2007).Applyingaconservativeestimateofa10%energyefficiencysavingsfromimplementationofon‐farmAMIandimprovedcontrolstrategiesforthe10TWhofwater‐relatedenergyuse,theagriculturalsectorcouldcertainlyrealize1TWhofsavingsannually.

On‐farmleakswastebothwaterandenergy,butcanalsopresentathreattocrophealth,asundetectedleakscansaturateandkillwater‐sensitivecrops.Whiletherearesomecompanies(e.g.PowWowEnergy)marketingleakdetectionalgorithmstotheagriculturalsector,thereisnodataorwell‐supportedestimatesavailableforthemagnitudeofon‐farmleaks.California’sSustainableGroundwaterManagementAct,whichcameintoeffectin2016,giveswateragenciesthemandatetodevelopsustainablewatermanagementstrategies,includingenhanceddatacollectionongroundwaterwithdrawalsandwaterlossesduetoleaks(StateofCalifornia).Whileitisstillunclearhowmostagencieswillchoosetodevelopandimplementtheirplans,werecommendtheyexplorethepotentialofAMIsystemstoaddresssustainablewater‐energymanagementatboththecustomer‐andagency‐level.

4.4 Potential for Peak Load Reduction 

Peakelectricloadhoursaretypicallyinwarmsummermonthsandoccurduringthemidtolateafternoon.Thesepeakdemandhoursrequireelectricutilitycompaniestoprocureexpensivegenerationportfolioscapableofsupplyingpowerduringthesehours.Demandresponseandpermanentloadshiftingaretwosolutionstothisissue.TheCaliforniaEnergy

38

Commissionhasfundedanumberofstudiesexaminingthepeakelectricitydemandimpactsofwater.Intheseminal2005report,California’sWater–EnergyRelationship,theCECestimatedthatpeakelectricaldemandcouldbereducedbyapproximately250MWif“wateragenciesstatewideviewedtheir[water]storageasanenergyassetaswellasawaterasset.”Forcontext,asof2014,therewasapproximately2000MWofDRinCalifornia(Jarred2014).Additionally,itwasestimatedthatCalifornia’swater‐supplyrelateddemandexceeds2000MW(House2007).WesuggestthatfurtherpeakloadreductionsandloadshiftingthroughDRcouldbeenabledbymorewidespreadAMIandimprovedco‐optimizedwater‐energymodeling.Wediscussthispotentialforthemunicipalandagriculturalsectorsinthefollowingsubsections.

4.4.1 The Municipal Sector 

Ina2007follow‐onstudytotheCEC’sCalifornia’sWater–EnergyRelationshipreport,Houseetal.foundthat500MWofwateragencyelectricaldemandisusedtoprovidewaterandsewerservicestoresidentialwatercustomersthroughoutCalifornia.Thisestimatedoesnotincludethedemandneededtosupplywatertootherurbancustomers,includingcommercialandindustrialcustomers.Thesefindingsshowthatasignificantamountofpeakloadispresentthat,withproperinfrastructureinvestment(e.g.waterstorageandAMI)andimprovedoperations,couldbepartiallyshiftedtooff‐peakhours.

Unfortunately,thereisverylittlequantitativeinformationaboutthespecificoperationalchangesthatAMIenablesinthemunicipalsector.Inourinterviewswiththem,expertsindicatedthatthedataprovidedbyAMIwouldenablemoreflexibleandreliableoperationofwatersystems.Additionally,waterAMIsystemsthatmeasurehourlycustomerconsumptionwouldallowwaterutilitiestouseTOUwaterpricingtariffstoencourageoff‐peakwaterconsumption.

4.4.2 The Agricultural Sector 

Ina2007reportfortheCEC,Houseetal.estimatedthatroughly60%ofthestate’swater‐relatedpeakelectricaldemandisattributabletopumpingagriculturalirrigationwater.Furtherresearchhasexaminedtheshapeofagriculturalloadprofilesoverbothdailyandseasonaltimescales.FromarecentreportbyOlsenetal.,Figure6showsthedailyaveragedemandprofileforapproximately35,000agriculturalcustomersfromPacificGasandElectric’sserviceterritoryfortheyears2003‐2012.Itshowsthatthepercentofenergyusedduringpeakhours(between12and6PM),increasedfrom2003until2006,whenpeakdemandwas120%oftheannualaverage,andhassincedecreased,withpeakdemandatapproximately105%ofannualaveragedemandin2012.Thisshowsthat,whilethecurrenttrendismovingtowardsreducingtheintra‐dayvariationinhourlyload,thereisstillalargeamountofirrigationoccurringduringpeakhours.

39

Californiacurrentlyhasapproximately65MWofagriculturalpeak‐sheddingDRcapabilities,whichrepresentsapproximately6.5%ofthe1GWofestimatedloadshedpotentialinthestate(Olsenetal.2015).ThisDRismostlymanuallyoperated,andiseligiblefortheenergymarketand,moreimportantly,capacitycredit,whichiscurrentlytheprinciplevaluestreamforpeak‐shavingDR.ArecentinterimreportfromLBNL’s2015CaliforniaDemandResponsePotentialStudyfound68MWofagriculturalpeak‐sheddingDRcapabilitiestobecosteffectiveby2025(Alstoneetal.2016).However,thisinitialstudydidnotexplorechangestotheunderlyingtechnologystrategiesemployedintheagriculturalsector,andreliedonpastcustomerenrollmentratestoestimatethefractionofgrowersparticipatinginDR,whichmightbesignificantlyimpactedbyarolloutofadvancedwatermeteringsystems.

Figure6:Averagedailydemandprofilesforapproximately35,000agriculturalcustomers’intervalmetersfromPG&E’sserviceterritory,2003‐2012.Figureshowshowdailyagriculturalloadprofileshaveflattenedsince2006,butstillpeakduringmid‐dayhours.ReproducedfromOlsenetal.(2015).

AnadditionalareaofinterestforfutureresearchanddemonstrationprojectsisthatofagriculturalloadsprovidingAS,whichincludegridproductssuchasfrequencyregulationandcontingencyreserves.California’sambitiousRenewablesPortfolioStandardmandatesthat33%oftheelectricityusedinthestatecomefromrenewableenergysourcesby2020.Asrenewablesaremoredifficulttoforecast,havehighvariability,andcannotbecontrolled

40

inthesamewayastraditionalgenerators,itispredictedthatthedemandforASwillgrowwithhigherrenewablepenetration.Figure6suggeststhat,sinceagriculturalloadsarepresentatalltimesofday,theycouldbeavailabletomeetASneedsatthemostopportunetimesofday,suchasduringmulti‐houreveningramps.WerecommendfurtherscopinganalysisforthispotentialopportunitytomeetthefuturegridneedsinCalifornia,aswellasotherstatesandcountrieswithambitiousrenewableenergygoalsandsizeableagriculturalsectors.Asco‐authorsontheAlstoneetal.DemandResponsePotentialStudy,weareawareofongoingworkthatwillexploreandquantifythevalueofagriculturalDRresourcestoASmarketsand,moregenerally,gridoperationsinCalifornia.

4.5 Summary 

Table6summarizesthewaterandenergyimpactpotentialforanumberofhigh‐levelanalysesdiscussedearlierinSection4.Wedonotbelievethistobeanexhaustivelistoftheopportunitiesforadvancedwatermeteringtohaveassociatedenergybenefits,howeverinmanycasesdatadoesnotexisttomakeevenhigh‐levelestimatesofpotential.Werecognizethatotheropportunitiesexist,including:

EnablingincreasedDRparticipationfrommunicipalwaterutilitiesandagriculturalcustomersthroughimprovedwaterforecastingandmanagementandreducedrisk.

Leakdetectionandrepairintheagriculturalsector.

Improvedpressuremonitoringandmanagementinmunicipalwatersystems.

Table6:Summaryofestimatedwaterandenergyimpactpotentialforvariouswater‐relatedadvancedmeteringstrategiesinCalifornia.

AdvancedMeteringStrategyWaterSavingsPotential

EnergyImpactPotential

WaterAMIforMunicipalCustomer‐sideLeakDetection

290BG/year3.3TWhofembeddedenergysavings

WaterAMIforMunicipalUtility‐sideLeakDetection

230BG/year2.6TWhofembeddedenergysavings

On‐FarmWater‐EnergyMeteringforPumpOperationOptimization

N/A1TWhofenergyefficiencysavings

Energy‐CentricOperationofExistingWaterStorage

N/A 250MWofpeakDR

41

Concluding Remarks 

Thisreportisafirstattemptatcompilinganddocumentingthevariousopportunitiesforadvancedwatermeteringtechnologies,includingAMI,toprovideenergybenefits.Themarketforsuchtechnologiesisexpanding,andthesensingandnetworkcommunicationstechnologiesareimproving.OurbroadfindinginreviewingtheenergylandscapeforwaterAMIisthatthesetechnologicaladvancesarelargelyvaluedforpurposesofimprovedwatermanagementorconservation.Apartfromelectricitydemandresponseprograms,wefoundverylittlediscussionorconsiderationofthedirectbenefitstotheenergysectorfromwaterAMI.ThisisanimportantgapinmeasuringthebenefitsofwaterAMI,asanemergingtechnology,tomeettheelectricalneedsforpresentandfuturegridneeds.

Throughareviewoftheopenliteratureandinterviewswithnineexpertsfromthewaterandenergysectors,wedocumenthowdataprovidedbyadvancedwatermeteringsystemshasthepotentialtorealizeenergyefficienciesandprovideenergyservicestothegrid.Currently,stakeholdersconsistentlyagreethatthedearthofwaterandwater‐relatedenergy‐usedatahinderseffortsinthewater‐energynexus,andthatwaterAMIsystemscouldhavefar‐reachingco‐benefitswiththeenergysector,policy,programdesign,customereducation,andoverallresourceefficiency.

Thetwosectorsofmostinteresttouswerethemunicipalandagriculturalsectors.Inthemunicipalsector,opportunitiesincludemorerapidandaccurateleakdetectiononbothsidesofthemeter,improvedinfrastructuredesign,andmoreefficientsystemoperation.Intheagriculturalsector,opportunitiesincludeimprovedwaterandenergyefficientirrigation,cropriskquantification,andahighlyflexibledemandresponseresourceforbothpeakloadsheddingandancillaryservices.Wealsodiscusshowadvancedwatermeteringmayhelpovercomebarrierstoimprovedwater‐energypolicy,jointwater‐energyutilityprogramdesign,andmoreefficientresourceusebyconsumers.

Alimitationofthisreportisthelackofavailableinformationforquantifyingtherealizedenergyandenergy‐relatedmonetarybenefitsofwaterAMI.Asaresult,thefindingsdiscussedinthereportareoftenanecdotalowingtotheabsenceofthisinformation.Acontinuationofthisworkistoquantify,analyze,andprioritizethepotentialbenefitsofwaterAMIinindividualsectorsthroughdeeper,data‐drivenstudies.

42

Future Work 

Throughourreviewoftheopenliteratureandinterviewswithwater‐energyexperts,weconfirmedthatthereisverylittledataabouttheinterconnectionofwaterandenergysystems.Thislackofdatamakesassessingtheenergybenefitsofadvancedwatermeteringdifficult,andthereforeimpairstheirprioritizationcomparedtootheremergingenergytechnologies.ThisreportdocumentstheanecdotalevidencethatwaterAMIhasthepotentialtoaddressfuturegridneedsandimprovetheenergyefficiencyofthewatersystem.However,theanecdotalevidence,andlimitedquantitativeinformation,isinsufficienttodevelopactionablepolicies,technologyadoptiongoals,incentiveprograms,orgridintegrationstrategies.Werecommendandsupportfurtherdatagatheringefforts.Asfollow‐onworktothisscopingstudy,weseetheneedfordatagatheringanddeeperanalysisoftheopportunitiespresentedinthisreport.Inadditiontodatagatheringefforts,futureresearchinthisareashouldfocusonthefollowingkeyissues:

WhataretheperformancerequirementsofwaterAMItomeetspecificgridneeds?Forexample,describethetechnologiesandinfrastructurerequirementsnecessarytosupportautomatedDRforancillaryservicesintheagriculturalsector.

WhatdataandassociatedanalyticaltechniquesarenecessarytoconfirmandanalyzethebenefitsofwaterAMIprojects?Themeasurementandverificationofbenefitsiscrucialforutilities,theDOE,andotherstojustifysupportinginvestmentsinthem.

WhatcharacteristicsofwaterAMIsystemsarecrucialtorealizingtheenergy

benefitsidentifiedinthisreport?Forexample:o Howimportantiswaterflowmeterprecision,andwhatlevelofprecisionis

sufficienttostillbecost‐effective?o Whatsensors,analytics,andcontrolsarenecessarytosufficientlyquantify

andforecastcroprisksthatcouldattractgreaterfarmerparticipationin

ADR?

AcostsurveyofwaterAMIprojectsdetailingthecostsandcapabilitiesofAMI

systemsaswellasexploringhowcostsscalewithutilityserviceterritoryand/or

numberofcustomers,andhowtheydifferacrosssectors.

Casestudiesofcurrentandpastadvancedmeteringprojectsthatidentifyvalue

pathwaysforwatermeterdatatorealizeenergybenefitsandhavemadeeffortstomonetizethem.

WhatregulatoryopportunitiesexistforpolicymakerstoencouragewaterAMI,

especiallytorealizeenergybenefits?

43

WhatarethebestpracticesforimplementingandoperatingwaterAMIsystems,and

howdotheydifferifenergyservices(suchasDR)areincorporated?

Theabovemattersareperhapsbestexploredthroughcasestudiesacrossdifferentregionsandsectors,inordertodeveloporder‐of‐magnitudeestimatesofmarketbenefits.

Wealsosuggestthedevelopmentanddesignofapublicly‐availabletoolforpolicymakers,utilities,businesses,homeowners,andresearcherstoestimatetheembeddedenergyintheirwaterbasedonparameters,includingbutnotlimitedto,enduse,location,timeofday,season,andelevation.TheCaliforniaPublicUtilitiesCommissionrecentlyproducedaversionofsuchatoolforCalifornia,withthegoalofincreasingvaluecaptureforwaterandenergyutilities,aswellasincentivizingprogramcooperation(CPUC2016).SuchatoolwouldbeusefulforotherregionsoftheU.S.,particularlythosethatfacewaterscarcityandwatervaluationchallenges.Avaluabledatagatheringandanalysistaskthatremainsisanationwidestudyoftheembeddedenergyofwateracrosstheagriculturalandurbansectors.Nationalleveldatabasessuchasthiswouldbepowerfulassetsforimprovingregionalresourcemanagementandfurtheringresearchinthewater‐energynexus.

Finally,demonstrationprojectsfocusedonthefeasibilityandcostofintegratingwaterAMIsystemsexplicitlyforenergybenefitsareneeded.ThesecouldincludeprojectstodemonstratehowwaterAMIdataenableselectricDRparticipation,howin‐homedisplayscanbebestimplementedtorealizejointwater‐energybenefits,orwhatthecost‐optimaldistributionofflowmeters,aswellaslevelofprecision,isfordetectingbefore‐the‐meterleaks.

44

References 

Aclara.“STAR®NetworkDCUII.”Availableonlineat:http://www.aclara.com/wp‐content/uploads/2014/11/STAR_DCUII.pdf[AccessedMay15,2016]

Alstone,P. J.Potter,M.A.Piette,P.Schwartz,M.A.Berger,L.N.Dunn,S.J.Smith,M.D.Sohn,A.Aghajanzadeh,S.Stensson,J.Szinai.“InterimReportonPhase1Results‐2015CaliforniaDemandResponsePotentialStudy:ChartingCalifornia’sDemandResponseFuture.”April1,2016.

AmericanWaterWorksAssociationWaterLossControlCommittee.“CommitteeReport:ApplyingworldwideBMPsinwaterlosscontrol.”JournalAWWA,Vol.95,No.8,pp.65‐79.August2003.

BadgerMeter.“Recordall®CompoundSeriesMeters.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/compound‐series‐meters/

BadgerMeter.“Recordall®DiscSeriesMeters.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/recordall‐disc‐series‐meters/

BadgerMeter.“ORION®CellularEndpoint.”Availableonlineat:https://www.badgermeter.com/business‐lines/utility/orion‐cellular‐endpoint/

BadgerMeter.“Recordall®TransmitterRegister.”Availableonlineat:https://www.badgermeter.com/business‐lines/flow‐instrumentation/transmitter‐register‐rtr/

Bariss,U.,I.Laicane,D.Blumberga.“AnalysisoffactorsinfluencingenergyefficiencyinaSmartMeteringPilot.”Energetika,T.60.No.2.pp.125–135.2014.

Beal,C.D.,J.Flynn.“Towardthedigitalwaterage:SurveyandcasestudiesofAustralianwaterutilitysmart‐meteringprograms.”UtilitiesPolicy,Vol.32,pp.29‐37.March2015.

Borisova,T.,S.Asci,B.Unel,C.Rawls.“ConservationPricingforResidentialWaterSupply.”UniversityofFloridaInstituteofFoodandAgriculturalScience.ReportNumberFE756.April2014.

Birrell,B.,V.Rapson,F.Smith.“Impactofdemographicchangeandurbanconsolidationondomesticwateruse.”WaterServicesAssociationofAustralia.2005.

45

Britton,T.,R.A.Stewart,K.O’Halloran.“Smartmetering:enablerforrapidandeffectivepostmeterleakageidentificationandwaterlossmanagement.”JournalofCleanerProduction,Vol.54,pp.166‐176.2013.

Burt,C.,D.Howes,G.Wilson.“CaliforniaAgriculturalWaterElectricalEnergyRequirements.”ITRCR03‐006.December2003.

CaliforniaDepartmentofWaterResources.“Chapter3:UrbanWaterUseEfficiency.”CaliforniaWaterPlan,Update2013.Vol3.2013.

CaliforniaEnergyCommission.“California'sElectricInvestorOwnedUtilities(IOUs).”UpdatedMarch2,2015.Availableonlineat:http://www.energy.ca.gov/maps/serviceareas/CA_Electric_Investor_Owned_Utilities_IOUs.html[AccessedDecember12,2015]

CaliforniaEnergyCommission.“California’sWater‐EnergyRelationship.”CaliforniaEnergyCommissionReport#700‐2005‐011‐SF.November2005.

CaliforniaPublicUtilitiesCommission.“WaterEnergyCostEffectivenessCalculator.”Availableonlineat:http://www.cpuc.ca.gov/General.aspx?id=4139[AccessedonFebruary,2,2016]

CaliforniaStateAssembly.“AssemblyBillNo.2572.”September29,2004.

CaliforniaStateSenate.“SenateBillNo.555.”October9,2015.

CaliforniaWaterAssociation.“RegulatedWaterUtilitiesinCalifornia.”Availableonlineat:http://www.calwaterassn.com/about‐cwa/regulated‐water‐utilities‐in‐california/[AccessedDecember2,2015]

Cherchi,C.,M.Badruzzaman,J.Oppenheimer,C.M.Bros,J.G.Jacangelo.“Energyandwaterqualitymanagementsystemsforwaterutility'soperations:Areview.”JournalofEnvironmentalManagement,Vol.153,pp.108‐120.2015.

Christian‐Smith,J.,K.Abhold.“MeasuringWhatMatters:SettingMeasurableObjectivestoAchieveSustainableGroundwaterManagementinCalifornia.”UnionofConcernedScientists.September2015.

Colombo,A.F.,P.Lee,B.W.Karney.“Aselectiveliteraturereviewoftransient‐basedleakdetectionmethods.”JournalofHydro‐environmentResearch,Vol.2,No.4,pp.212‐227.April2009

Cooley,H.,K.Donnelly.“Water‐EnergySynergies:CoordinatingEfficiencyProgramsinCalifornia.”PacificInstitute.September2013

46

Corominas,J.“Aguayenergíaenelriego,enlaépocadelasostenibilidad.”Ingenieríadelagua,17(3),pp.219–233.2010.(InSpanish).

Dinar,A.,J.Mody.“IrrigationWaterManagementPolicies:AllocationandPricingPrinciplesandImplementationExperiences.”NaturalResourcesForum.June2004.

deMonsabert,S.,A.Bakhshi,C.Maas,B.Liner.“IncorporatingEnergyImpactsintoWaterSupplyandWastewaterManagement.”AmericanCouncilforanEnergy‐EfficiencyEconomySummerStudyonEnergyEfficiencyinIndustry,No.6,pp.13‐21.2009

DeOreo,W.B.,P.Mayer,B.Dziegielewski,J.Kiefer.“ResidentialEndUsesofWater,Version2:ExecutiveReport.”WaterResearchFoundation.April2016.

DeOreo,W.B.,P.W.Mayer,L.Martien,M.Hayden,A.Funk,M.Kramer‐Duffield,R.Davis,J.Henderson,B.Raucher,P.Gleick,M.Heberger.“CaliforniaSingle‐FamilyWaterUseEfficiencyStudy.”July20,2011.

EastBayMunicipalUtilityDistrict.“AdvancedMeteringInfrastructure(AMI)PilotStudiesUpdate.”November25,2014

EastBayMunicipalUtilityDistrict.“RequestforInformation:AdvancedMeteringInfrastructureTechnology.”September2015.

ECONorthwest.“EmbeddedEnergyinWaterPilotProgramsImpactEvaluation.”CaliforniaPublicUtilitiesCommission,EnergyDivision.March2011.

Ehrhardt‐Martinez,K.,K.A.Donnelly,J.A.Laitner.“AdvancedMeteringInitiativesandResidentialFeedbackPrograms:AMeta‐ReviewforHouseholdElectricity‐SavingOpportunities.”AmericanCouncilforanEnergy‐EfficiencyEconomyResearchReportE105.June26,2010

Faruqui,A.,S.Sergici,A.Sharif.“Theimpactofinformationalfeedbackonenergyconsumption‐Asurveyoftheexperimentalevidence.”Energy,Vol.35,pp.1598‐1608.2010.

Fielding,K.S.,A.Spinks,S.Russell,R.McCrea,R.Stewart,J.Gardner.“Anexperimentaltestofvoluntarystrategiestopromoteurbanwaterdemandmanagement.”JournalofEnvironmentalManagement,Vol.114,pp.343–351.January2013.

Fujita,K.S.,G.Fitts,L.Dale.“PeakElectricityImpactsofResidentialWaterUse.”LawrenceBerkeleyNationalLaboratoryReport#5736E.July2012.

47

GEIConsultants,NavigantConsulting.“EmbeddedEnergyinWaterStudiesStudy2:WaterAgencyandFunctionComponentStudyandEmbeddedEnergy‐WaterLoadProfiles.”August2010.

Goulet,J.A.,S.Coutu,I.F.C.Smith.“Modelfalsificationdiagnosisandsensorplacementforleakdetectioninpressurizedpipenetworks.”AdvancedEngineeringInformatics,Vol.27,No.2,pp.261–269.April2013

Granderson,J.,M.A.Piette,B.Rosenblum,L.Hu,D.Harris,P.Mathew,P.Price,G.Bell,S.Katipamula,M.Brambley.“EnergyInformationHandbook:Applicationsforenergy‐efficientbuildingoperations.LawrenceBerkeleyNationalLaboratory.ReportNumber5272E.2011.

Granderson,J.,P.N.Price,D.Jump,N.Addy,M.D.Sohn.“Automatedmeasurementandverification:Performanceofpublicdomainwhole‐buildingelectricbaselinemodels.”AppliedEnergy,Vol.144,pp.106–113.2015.

Hering,J.G.,T.D.Waite,R.G.Luthy,J.E.Drewes,D.L.Sedlak.“AChangingFrameworkforUrbanWaterSystems.”EnvironmentalScience&Technology,47,10721−10726,May2013.

House,L.“WaterSupply‐RelatedElectricityDemandInCalifornia.”CaliforniaEnergyCommissionReport#500‐2007‐114.November2007.

House,L.“TimeofUseWaterMeterImpactsonCustomerWaterUse.”CaliforniaEnergyCommissionReport#500‐2013‐146.October2010.

InstituteforElectricInnovation.“Utility‐ScaleSmartMeterDeployments:BuildingBlockoftheEvolvingPowerGrid.”September2014.

IrrigationTrainingandResearchCenter.“CECAgriculturalPeakLoadReductionProgram–WaterAgencies.”IrrigationTrainingandResearchCenterReport#R05‐003.February2005.

Jackson,T.“Energyanalysisofcropirrigation:roleofwaterreclamationandwaterexportation.”DissertationinSchoolofEnvironmentalSciences,CharlesSturtUniversity.March2009.

Janković‐Nišić,B.,Č.Maksimović,D.Butler,N.Graham.“UseofFlowMetersforManagingWaterSupplyNetworks.”JournalofWaterResourcesPlanningandManagement,Vol.130,No.2,pp.171‐179.March2004

48

Jarred,M.W.“DeliveringonthePromiseofCalifornia’sDemandResponsePrograms:AnOpportunityfortheStatetoMaximizetheFlexibilityandEfficiencyofItsElectricalGrid.”CaliforniaSenateOfficeofResearch,PolicyMatters.June2014.

Jayaweera,T.,H.Haeri,C.Kurnik.TheUniformMethodsProject:MethodsforDeterminingEnergyEfficiencySavingsforSpecificMeasures.NationalRenewableEnergyLaboratory.NRELReport#NREL/SR‐7A30‐53827.April2013

Jentgen,L.A.,H.Kidder,R.Hill,S.Conrad,A.Papalexopoulos.“WaterConsumptionForecastingtoImproveEnergyEfficiencyofPumpingOperations.”AWWAResearchFoundationandCaliforniaEnergyCommission.2007

Kingdom,B.,R.Liemberger,P.Marin.“TheChallengeofReducingNon‐RevenueWater(NRW)inDevelopingCountriesHowthePrivateSectorCanHelp:ALookatPerformance‐BasedServiceContracting.”TheWorldBank.ReportNumber39505.December2006.

Koo,D.,K.Piratla,J.Matthews.“TowardsSustainableWaterSupply:SchematicDevelopmentofBigDataCollectionUsingInternetofThings(IoT).”ProcediaEngineering,Vol.118,pp.489‐497.2015.

Kummer,J.,O.Nix,K.Drees.“MeasurementandVerificationofEnergySavings.”InstituteforBuildingEfficiency.November2011.

Laughlin,J.“SurveyRevealsTrendsinWaterIndustryConstruction.”WaterWorld,Vol.19.No.12.December2003.

Marks,G.,E.Wilcox,D.Olsen,S.Goli.“OpportunitiesforDemandResponseinCaliforniaAgriculturalIrrigation:AScopingStudy.”LawrenceBerkeleyNationalLaboratory.ReportNumber6108E.January2013.

Maupin,M.A.,J.F.Kenny,S.S.Hutson,J.K.Lovelace,N.L.Barber,K.S.Linsey.“EstimatedUseofWaterintheUnitedStatesin2010.”UnitedStatesGeologicalSurvey.Circular1405.2014.

Moreno,M.A.,P.A.Carrión,P.Planells,J.F.Ortega,J.M.Tarjuelo.“Measurementandimprovementoftheenergyefficiencyatpumpingstations.BiosystemsEngineering,Vol.98,No.4,pp.479‐486.December2007.

NiagraMeters.“NutatingDisc.”Availableonlineat:http://www.semrad.com.au/pdf/flow_measurement/Niagara_Meters_Nutating_Disc_Flow_Meter.pdf[AccessedonMay15,2016]

49

Olsen,D.,A.Aghajanzadeh,A.McKane.“OpportunitiesforAutomatedDemandResponseinCaliforniaAgriculturalIrrigation.”LawrenceBerkeleyNationalLaboratory.ReportNumber1003786.August2015.

Olsen,D.J.,N.Matson,M.D.Sohn,C.Rose,J.Dudley,S.Goli,S.Kiliccote,M.Hummon,D.Palchak,P.Denholm,J.Jorgenson,O.Ma.“GridIntegrationofAggregatedDemandResponse,PartI:LoadAvailabilityProfilesandConstraintsfortheWesternInterconnection.”LawrenceBerkeleyNationalLaboratory.ReportNumber6417E.September2013.

PacificInstitute.“NeedToKnow:MeteringInCalifornia.”September2014.

Pulwarty,R.S.“U.S.SenateCommitteeonEnergyandNaturalResources:OnDroughtandTheEffectonEnergyandWaterManagementDecisions.”April25,2013

Quilumba,F.L.,W.J.Lee,H.Huang,D.Y.Wang,R.L.Szabados.“UsingSmartMeterDatatoImprovetheAccuracyofIntradayLoadForecastingConsideringCustomerBehaviorSimilarities.”IEEETransactionsonSmartGrid,Vol.6,No.2,pp.911‐918.March2015

RG3Meters.“Multi‐Jet–BottomLoad–Meters.”Availableonlineat:https://rg3meter.com/wp‐content/uploads/2015/03/MJB‐Spec.pdf

Ritchie,E.“AMISuccessStories:Leveragingtechnologyforsavingsandefficiency.”WaterEfficiency,Vol.10,No.4,pp.13‐21.June2015.

Rivers,M.,N.Coles,H.Zia,N.R.Harris,R.Yates.“Howcouldsensornetworkshelpwithagriculturalwatermanagementissues?Optimizingirrigationschedulingthroughnetworkedsoil‐moisturesensors.”SensorsApplicationsSymposium(SAS),2015IEEE,pp.1‐6.April2015.

Rocamora,C.,J.Vera,R.Abadía.“StrategyforEfficientEnergyManagementtosolveenergyproblemsinmodernizedirrigation:analysisoftheSpanishcase.”IrrigationScience,Vol.31,No.5,pp.1139‐1158.September2013.

Roche,J,“AMRvsAMI.”POWERGRIDInternational,Vol.13,No.10.October2008.Availableonlineat:http://www.elp.com/articles/powergrid_international/print/volume‐13/issue‐10/features/amr‐vs‐ami.html

Sensus.“accuMAGTMMetersSpecifications.”Availableonlineat:https://distributor.sensus.com/documents/10157/31640/SP‐W‐ACM‐00‐00‐0611[AccessedMay15,2016]

50

Sensus.“accuSTREAMTMMetersSpecifications.”Availableonlineat:http://pacificpipeline.com/wp‐content/uploads/2015/04/Accustream‐Water‐Meter.pdf[AccessedMay15,2016]

Sensus.“Permalog+AcousticMonitoringSensor.”Availableonlineat:http://sensus.com/products/permalog‐plus/[AccessedonMay17,2016]

Sensus.“SmartWaterNetwork.”Availableonlineat:http://sensus.com/smart‐water‐network/[AccessedDecember15,2015]

Sensus.“StandardFlexNet®BaseStations.”Availableonlineat:http://sensus.com/products/standard‐flexnet‐base‐stations/

Shukla,S.,N.Holt.“UsingMulti‐SensorSoilMoistureProbestoDecideWhenandHowLongtoRunDripIrrigation.”UniversityofFloridaInstituteofFoodandAgriculturalScience.ReportNumberAE505.July2014.

Stambouli,T.,J.M.Faci,N.Zapata.“Waterandenergymanagementinanautomatedirrigationdistrict.”AgriculturalWaterManagement,Vol.142,pp.66‐76.2014.

StateofCalifornia.“SustainableGroundwaterManagementAct.”Availableonlineat:http://groundwater.ca.gov/[Accessed1/15/16]

Stewart,R.A.,R.Willis,D.Giurco,K.Panuwatwanich,G.Capati.“Web‐basedknowledgemanagementsystem:linkingsmartmeteringtothefutureofurbanwaterplanning.”AustralianPlanner,Vol.47,No.2,pp.66‐74.June2010.

Stewart,R.,D.Giurco,C.Beal.“Ageofintelligentmeteringandbigdata:Hydroinformaticschallengesandopportunities.”HydroLink,Vol.4,No.4,pp.107‐110.March2013.

Stokes,J.R.,A.Horvath.“EnergyandAirEmissionEffectsofWaterSupply.”EnvironmentalScience&Technology,Vol.43,pp.2680–2687.April2009.

Tarroja,B.,S.Jenkins,M.A.Berger,L.Chiang.“CapturingtheBenefitsofIntegratedResourceManagementforWater&ElectricityUtilitiesandtheirPartners.”UnitedStatesDepartmentofEnergyandtheUniversityofCaliforniaIrvine.May2016.

TheAspenInstitute,NicholasInstituteforEnvironmentalPolicySolutions.“DataIntelligencefor21stCenturyWaterManagement:AReportfromthe2015Aspen‐NicholasWaterForum.”2015.

Turner,J.“IndustryTrendsDriveNeedforIncreasedAutomation,InformationTechnology.”WaterWorld,Vol.21,No.12.December2005.

51

UnitedStatesArmyCorpsofEngineers,ConsensusBuildingInstitute.“WaterintheU.S.AmericanWest150YearsofAdaptiveStrategies.”PolicyReportforthe6thWorldWaterForum.March2012.

UnitedStatesDepartmentofAgriculture.“FarmandRanchIrrigationSurvey2013.”2013.Availableonlineat:www.agcensus.usda.gov/Publications/2012/Online_Resources/Farm_and_Ranch_Irrigation_Survey/

UnitedStatesDepartmentofEnergy.“M&VGuidelines:MeasurementandVerificationforPerformance‐BasedContractsVersion4.0”November,2015.

UnitedStatesDepartmentofEnergy.“SmartMeterInvestmentsYieldPositiveResultsinMaine.”January2014.

UnitedStatesDepartmentofEnergy.“TheWater‐EnergyNexus:ChallengesandOpportunities.”June2014.

UnitedStatesEnergyInformationAdministration.“HowmuchelectricitydoesanAmericanhomeuse?”Availableonlineat:https://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3[AccessedonApril25,2016]

UnitedStatesEnergyInformationAdministration.“TodayinEnergy:Smartmeterdeploymentscontinuetorise.”Availableonlineat:https://www.eia.gov/todayinenergy/detail.cfm?id=8590#[PublishedonNovember1,2012]

Walski,T.M.“Ahistoryofwaterdistribution.”JournalAWWA,Vol.98,No.3,pp.110‐121.March2006.

WaterSystemsOptimization,Inc.“SecondaryResearchforWaterLeakDetectionProgramandWaterSystemLossControlStudy.”SouthernCaliforniaEdison.FinalReport.December2009.

Xu,Q.,Q.Chen,J.Ma,K.Blanckaert,Z.Wan.“WaterSavingandEnergyReductionthroughPressureManagementinUrbanWaterDistributionNetworks.”WaterResourcesManagement,Vol.28,pp.3715–3726.2014.

Young,R.,E.Mackres.“TacklingtheNexus:ExemplaryProgramsthatSaveBothEnergyandWater.”AmericanCouncilforanEnergy‐EfficiencyEconomyReport#E131.January2013.

52

Zan,T.T.T,H.B.Lim,K.J.Wong,A.J.Whittle,B.S.Lee.“EventDetectionandLocalizationinUrbanWaterDistributionNetwork.”IEEESensorsJournal,Vol.14,No.12,pp.4134‐4142.December2014.

ZennerPerformance.“CompoundMeters.”Availableonlineat:http://www.zennerusa.com/tl_files/content/ZENNER_USA/Downloads/ZPM_Compound_Water‐Meters.pdf

Zunino,K.“AdvancedMeteringInfrastructure:Feasibility&BusinessCase.”CaliforniaUrbanWaterConservationCouncilAMISymposium.February26,2015.