Variance vs Entropy Base Sensitivity Indices Julius Harry Sumihar.

Post on 22-Dec-2015

214 views 0 download

transcript

Variance vs Entropy BaseSensitivity Indices

Julius Harry Sumihar

Outline

• Background

• Variance-based Sensitivity Index

• Entropy-based Sensitivity Index

• Estimates from Samples

• Results

• Conclusions

Background

• Applications of computational models to complex real situations are often subject to uncertainty

• The aim of sensitivity analysis is to quantitatively express the degree of impact of the uncertainty from the specific sources on the resulting uncertainty of final model output

Variance Base Sensitivity Index

• Result from the principle of “expected reduction in variance”

• This principle leads to the expression:

• Interpreted as “the amount of variance of output Y that is expected to be removed if the true value of parameter Xi will become known”

varY – E[var(Y|Xi)]

• Main characteristic: it considers the variance of a probability distribution as an overall scalar measure of the uncertainty represented by this distribution

• Intuitively, over a bounded interval, the highest possible degree of uncertainty is expressed by the uniform distribution

• A scalar measure of uncertainty should attain its maximum value for uniform distribution

• Inconsistency: This is not the case for variance

p=1/3 p=1/3

p=1/6 p=1/6

0 1/3 2/3 1

p=1/4 p=1/4p=1/4 p=1/4

0 1/3 2/3 1

Var(X) = 19/108 Var(X) = 15/108

H(X) = 1.32966 H(X) = 1.38629

• Entropy: an overall scalar uncertainty measure maximized by the uniform distribution

• ‘a measure of the total uncertainty of Y coming from all parameters’

dyyfyfYH ))(ln()()(

Entropy Base Sensitivity Index*

*Bernard Krzykacz-Hausmann,”Epistemic Sensitivity Analysis Based On The Concept Of Entropy”

• ‘a measure of uncertainty of Y coming from the other parameters if the value of parameter X is known to be x’:

• ‘expected uncertainty of Y if the true value of parameter X will become known’:

dyxyfxyfxXYH ))|(ln()|()|(

dydxxfxyfxyfXYH )())|(ln()|()|(

• ‘the amount of entropy of output Y that is expected to be removed if the true value of parameter X will become known’:

• By some manipulations:

)|()( XYHYH

dxdyyfxf

yxfyxfXYHYH

)()(

),(ln),()|()(

b1 b2 b3 bjmaxbj-1 bj

a1

a2

ai-1

ai

aimax

Y

X

Estimates From Samples

i

aa xi

ai

ani

nxf

ii)(1

1

1

..

.)( ),[ 1

j

bb yj

bj

bnj

nyf

jj)(1

1

1

..

.)( ),[ 1

ji

bbaa yxj

bj

bi

ai

anij

nyxf

jjii

,

),[),[ )(1)(11

1

1

1

..),(

11

ji ji

ij

ij

nn

nn

nn

n

nXYHYH

,

..

.

..

.

..

..

]))((

ln[)|()(

2

..

.

2

...

11X)]|E[var(Y– varY

j

jj

i j

ijj

i n

nyny

nn

Entropy Base:

Variance Base:

Results• Model:

o Y = U1 + U2

o Y = U1 + 2U2

o Y = N1 + N2

o Y = N1 + 2N2

U1,U2 ~ U[0,1], N1,N2 ~ N(0.5, 0.3)

• Number of samples: 1,000 and 10,000 (@10 times)

• Grid Size: 0.025, 0.05, 0.1, 0.2

Model: Y = U1 + 2U2

0

0,02

0,04

0,06

0,08

0,1

0,12

0.025 0.05 0.1 0.2

Grid Size

var(

E[Y

|U1]

)

Analytical

1,000 samples

10,000 samples

Model: Y = U1 + 2U2

00,20,40,60,8

11,21,41,61,8

0.025 0.05 0.1 0.2

Grid Size

H(Y

)-H

(Y|U

1)

analytical

1,000 samples

10,000 samples

• 10,000 samples is better than 1,000 samples

• use 10,000 samples from now on

Effect of Sample Number

Model Xi 0.025 0.05 0.1 0.2 Analytical

Y = U1 + U2

U1 0,5629084 0,4847560 0,4381850 0,3740526 0,5

U2 0,5618695 0,4838189 0,4378267 0,3759858 0,5

Y = U1 + 2U2

U1 0,4104407 0,2723420 0,2263539 0,1890477 0.25

U2 0,9948456 0,9062422 0,83651837 0,7288735 0.943147

Y = N1 + N2

N1 0,5493945 0,4147645 0,35574700 0,3236304 0,346573

N2 0,5524757 0,4150046 0,35787368 0,3255338 0,346573

Y = N1 + 2N2

N1 0,5112249 0,2500562 0,15475538 0,1155110 0.111572

N2 0,9992094 0,8611518 0,79986998 0,7280601 0.804719

H(Y)-H(Y|Xi)

Effect of Grid Size

Model Xi 0.025 0.05 0.1 0.2 Analytical

Y = U1 + U2

U10,08324767 0,0829774 0,0822966 0,0796876 0,083333

U20,08371050 0,0833495 0,0825837 0,0802683 0,083333

Y = U1 + 2U2

U10,08395208 0,0832341 0,0823905 0,0794308 0,083333

U20,33438259 0,3335535 0,3309643 0,3212748 0,333333

Y = N1 + N2

N10,08959163 0,0892577 0,0884411 0,0856991 0,09

N20,08977242 0,0894751 0,0887430 0,0860685 0,09

Y = N1 + 2N2

N10,09116694 0,0901768 0,0886759 0,0859255 0,09

N20,35729517 0,3565734 0,3537290 0,3437929 0,36

Var(Y)-E[Var(Y|Xi)]

Model: Y = U1 + U2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,025 0,05 0,1 0,2

Grid Size

H(Y

)-H

(Y|X

i)

Analytical

Numerical U1

Numerical U2

Model: Y = N1 + N2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,025 0,05 0,1 0,2

Grid Size

H(Y

)-H

(Y|X

i)

Analytical

Numerical N1

Numerical N2

Model: Y = U1 + U2

0,01

0,03

0,05

0,07

0,09

0,025 0,05 0,1 0,2

Grid Size

var(

E[Y

|Xi]

)

Analytical

Numerical U1

Numerical U2

Model: Y = N1 + N2

0,01

0,03

0,05

0,07

0,09

0,025 0,05 0,1 0,2

Grid Sizeva

r(E

[Y|X

i])

Analytical

Numerical N1

Numerical N2

• Entropy base is very sensitive to grid size

• No rule exist for choosing grid size

Model XiH(Y)-H(Y|Xi) Analytical var(E[Y|Xi]) Analytical

Y = U1 + U2

U1 0.484756 0.5 0.083248 0.083333

U2 0.483819 0.5 0.083350 0.083333

Y = U1 + 2U2

U1 0.272342 0.25 0.083234 0.083333

U2 0.906242 0.943147 0.333553 0.333333

Y = N1 + N2

N1 0.355747 0.346573 0.089591 0.09

N2 0.357874 0.346573 0.089772 0.09

Y = N1 + 2N2

N1 0.115511 0.111572 0.090177 0.09

N2 0.799870 0.804719 0.357295 0.36

Best Estimates

Model: Y = U1 + U2

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|Xi]

)

U1

Average U1

U2

Average U2

Analytical

Model Y = U1 + U2

0,45

0,46

0,47

0,48

0,49

0,5

0,51

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|X

i)

U1

U2

Average U1

Average U2

Analytical

Model: Y = U1 + 2U2

0,23

0,24

0,25

0,26

0,27

0,28

0,29

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|U

1)

U1

Average

Analytical

Model: Y = U1 + 2U2

0,04

0,05

0,06

0,07

0,08

0,09

0,1

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|U1]

)

U1

Average

Analytical

Model: Y = U1 + 2U2

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|U

2)

U2

Average

Analytical

Model: Y = U1 + 2U2

0,31

0,32

0,33

0,34

0,35

0,36

0,37

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|U2]

)

U2

Average

Analytical

H(Y)-H(Y|Xi) Var(Y)-E[Var(Y|Xi)]

Model: Y = N1 + N2

0,3

0,32

0,34

0,36

0,38

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|X

i)

U1

U2

Average U1

Average U2

Analytical

Model: Y = N1 + N2

0,05

0,06

0,07

0,08

0,09

0,1

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|Xi]

)

N1

Average N1

N2

Average N2

Analytical

Model: Y = N1 + 2N2

0,08

0,09

0,1

0,11

0,12

0,13

0,14

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|N

1)

N1

Average

Analytical

Model: Y = N1 + 2N2

0,06

0,07

0,08

0,09

0,1

0,11

0,12

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|N1]

)

N1

Average

Analytical

Model: Y = N1 + 2N2

0,75

0,77

0,79

0,81

0,83

0,85

1 2 3 4 5 6 7 8 9 10

Sample

H(Y

)-H

(Y|N

2)

N2

Average

Analytical

Model: Y = N1 + 2N2

0,3

0,32

0,34

0,36

0,38

0,4

1 2 3 4 5 6 7 8 9 10

Sample

var(

E[Y

|N2]

)

N2

Average

Analytical

Var(Y)-E[Var(Y|Xi)]H(Y)-H(Y|Xi)

Conclusions

• Entropy-based sensitivity index is difficult to estimate

• Variance-based sensitivity index is better than the Entropy-based one

dxxyfxfyf

UXXXXY

xxy )()()(

]1,0[~,

21

2121

otherwise

xyxxyf

otherwise

xxf

x

x

,0

1,1)(

,0

10,1)(

2

1

otherwise

yydxxyfxf

yydxxyfxf

yfy

xx

y

xx

y

,0

21,2)()(

10,)()(

)(

1

1

0

21

21

Model: Y = U1 + U2

otherwise

xyxyf

xxUxXY

UXXXXY

xy ,0

1,1)(

]1,[~|

]1,0[~,

|

1

2121

01)1ln(1)|(

1

0

1

1 x

x

dydxXYH

2

1)2ln()2()ln()(

1

0

2

1 dyyydyyyYH

2

1)|()( 1 XYHYH

Model: Y = U1 + U2

)())|((

))|(()]|([)(22 YEXYEE

XYEVarXYVarEYVar

1

0

2

1

2 1)2()()( dyyydyydyyyfYE

xdyydyyfyxXYE

x

x

xy

2

11)()|(

1

|

12

1)]|([)( XYVarEYVar

12

131)

2

1()()|())|((

1

0

222 dxxdxxfxXYEXYEE x

Model: Y = U1 + U2

]2,0[~]1,0[~,2 3213121 UXUXXXXXXY

dxxyfxfyf xxy )()()(31

otherwise

yxyxyf

otherwise

xxf

x

x

,0

2,2

1)(

,0

10,1)(

3

1

Model: Y = U1 + 2U2

otherwise

yydxxyfxf

ydxxyfxf

yydxxyfxf

yf

y

xx

xx

y

xx

y

,0

32,2

1

2

3)()(

21,2

1)()(

10,2

1)()(

)(1

2

1

0

0

31

31

31

Model: Y = U1 + 2U2

otherwise

xyxyf

xxUxXY

UXXXXY

xy

,0

2,2

1)(

]2,[~|

]1,0[~,2

1|

1

2121

)2ln(1)2

1ln(

2

1)|(

1

0

2

1 x

x

dydxXYH

9431471807.0

)22

3ln()

22

3()

2

1ln(

2

1)

2ln(

2)(

1

0

2

1

3

2

dyyy

dydyyy

YH

25.0)|()( 1 XYHYH

Model: Y = U1 + 2U2

1

0

2

1

3

2

22

2

3)

2

1

2

3(

2

1

2

1)()( dyyyydydyydyyyfYE

xdyydyyfyxXYE

x

x

xy

12

1)()|(

2

|1 1

12

1

2

3

3

7)]|([)(

2

1

XYVarEYVar

3

71)1()()|())|((

1

0

21

21

2

1 dxxdxxfxXYEXYEE x

Model: Y = U1 + 2U2

otherwise

xyxyf

xxUxXY

UXXXXY

xy ,0

1,1)(

]1,[~|

]1,0[~,2

2|

2

2121

02

1)1ln(1)|(

2

0

1

2 x

x

dydxXYH

9431471807.0)|()( 2 XYHYH

9431471807.0

)22

3ln()

22

3()

2

1ln(

2

1)

2ln(

2)(

1

0

2

1

3

2

dyyy

dydyyy

YH

Model: Y = U1 + 2U2

1

0

2

1

3

2

22

2

3)

2

1

2

3(

2

1

2

1)()( dyyyydydyydyyyfYE

xdyydyyfyxXYE

x

x

xy

2

11)()|(

1

|2 2

3333.02

3

12

31)]|([)(

2

2

XYVarEYVar

12

31

2

1)

2

1()()|())|((

1

0

22

22

2

2 dxxdxxfxXYEXYEE x

Model: Y = U1 + 2U2

Model: Y = a1N1+a2N2+a3N3+…

),(~,...,,... 212211 NXXXXaXaXaY nnn

Bernard Krzykacz-Hausmann:

22)]|([)( iii aXYVarEYVar

22

22

1ln2

1)|()(

kk

iii

a

aXYHYH

dyyfyfYH ))(ln()()(

)(

),()|(| xf

yxfxyf xy

dxyxfyf ),()(

dxdyyfyxf ))(ln(),(

dxdyxfxyfxyf

dxxfxYHXYH

)())|(ln()|(

)()|()|(

dxdyxf

yxfyxf )

)(

),(ln(),(

dxdyyfxf

yxfyxfXYHYH )

)()(

),(ln(),()|()(

;

;

Derivation of H(Y)-H(Y|X)

dxdyyfxf

yxfyxfXYHYH )

)()(

),(ln(),()|()(

1

1

1

1

1

1

..

.

1

1

..

.

1

1

1

1

..ln

1

1

1

1

..

ia

ia

jb

jb

jb

jbn

jn

ia

ian

in

jb

jb

ia

ian

ijn

jb

jb

ia

ian

ijn

j i

i

aa xi

ai

ani

nxf

ii)(1

1

1

..

.)( ),[ 1

j

bb yj

bj

bnj

nyf

jj)(1

1

1

..

.)( ),[ 1

ji

bbaa yxj

bj

bi

ai

anij

nyxf

jjii

,

),[),[ )(1)(11

1

1

1

..),(

11

j i

nj

n

ni

n

nij

n

nij

n

..

.

..

.

..ln..

Estimate of H(Y)-H(Y|X)

))|(())|(()( XYEVarXYVarEYVar

))|(())|(( 22 XYEEXYEE

)())|(( 22 YEXYEE

j j

ijjjj

jj

ijjy n

nybb

bbn

nydyyfyYE

..

1

1..

1)()(

dyxf

yxfydyxyfyxXYE xy )(

),()|()|( |

j

iiaa

ii

i

iiii

ijj

bbx

aan

nbbaan

ny

ii 1),[

1..

.

11.. )(11

11

1

j

aa

i

ijj x

n

ny

ii)(1 ),[

.1

Estimate of Var(Y)-E(Var(Y|X))

2

.....

.

2

.

11

i j

ijj

i

i

i j i

ijj ny

nnn

n

n

ny

dxxfxXYEXYEE )()|())|(( 22

2

..

.

2

...

11

j

jj

i j

ijj

i n

nyny

nn))|(()( XYVarEYVar

Estimate of Var(Y)-E(Var(Y|X))