VOLUME 2 HIGHWAY STRUCTURES: DESIGN (SUB · PDF fileaugust 2017 design manual for roads and...

Post on 06-Feb-2018

221 views 4 download

transcript

August 2017

DESIGN MANUAL FOR ROADS AND BRIDGES

VOLUME 2 HIGHWAY STRUCTURES: DESIGN (SUB-STRUCTURES AND SPECIAL STRUCTURES) MATERIALS

SECTION 2 SPECIAL STRUCTURES

PART 1

BD 94/17

DESIGN OF MINOR STRUCTURES

SUMMARY

This Standard covers the design of minor highway structures, including:

• lighting columns;

• cantilevermastsfortrafficsignalsand/orspeedcameras;

• CCTV masts;

• fixedverticalroadtrafficsigns.

ItincorporatestheprovisionsofBSEN40,BSEN12899,andsupersedesBD94/07.

INSTRUCTIONS FOR USE

1. RemoveBD94/07fromVolume2,Section2,Part1.

2. InsertBD94/17intoVolume2,Section2,Part1.

3. Pleasearchivethissheetasappropriate.

Note:AquarterlyindexwithafullsetofVolumeContentsPagesisavailableseparatelyfromTheStationeryOfficeLtd.

DESIGN MANUAL FOR ROADS AND BRIDGES

Summary: This Standard covers the design of minor highway structures, including:• lightingcolumns;• cantilevermastsfortrafficsignalsand/orspeedcameras;• CCTVmasts;• fixedverticalroadtrafficsigns.ItincorporatestheprovisionsofBSEN40,BSEN12899,andsupersedesBD94/07.

Design of Minor Structures

BD 94/17 Volume 2, Section 2, Part 1

HIGHWAYS ENGLAND

TRANSPORT SCOTLAND

LLYWODRAETH CYMRUWELSH GOVERNMENT

DEPARTMENT FOR INFRASTRUCTURE NORTHERN IRELAND

August 2017

Registration of AmendmentsVolume 2 Section 2Part 1 BD 94/17

Amend No Page No Signature & Date of incorporation of amendments

Amend No Page No Signature & Date of incorporation of amendments

REGISTRATION OF AMENDMENTS

August 2017

Registration of AmendmentsVolume 2 Section 2

Part 1 BD 94/17

Amend No Page No Signature & Date of incorporation of amendments

Amend No Page No Signature & Date of incorporation of amendments

REGISTRATION OF AMENDMENTS

August 2017

DESIGN MANUAL FOR ROADS AND BRIDGES

VOLUME 2 HIGHWAY STRUCTURES: DESIGN (SUB-STRUCTURES AND SPECIAL STRUCTURES), MATERIALS

SECTION 2 SPECIAL STRUCTURES

PART 1

BD 94/17

DESIGN OF MINOR STRUCTURES

Contents

Chapter

1. Introduction

2. GeneralPrinciples

3. DimensionalLimitations

4. UseofBritishStandardsandStandardsIssuedby Overseeing Organisations

5. Design

6. FibreReinforcedPolymerCompositeLightingColumns

7. DoorOpenings

8. WallMountedBrackets

9. Attachments

10. FlangePlateConnectionsBetweenStructureandFoundation

11. Foundations

12. References

13. Approval

AnnexALimitStatesforCantileverMasts

AnnexBFatigueChecksofSteelStructuresandGuidanceforWeldClassification

AnnexCDetailedDesignofFlangePlates

AnnexDDeterminationofShapeCoefficientsbyTesting

August 2017 1/1

Chapter 1Introduction

Volume 2 Section 2Part 1 BD 94/17

1. INTRODUCTIONGeneral

1.1 ThisStandardcoverstheuseoftherelevantparts(asdefinedherein)ofBSEN40forthestructuraldesignof:

• lightingcolumnsmadefromconcrete,steel,aluminium,andfibrereinforcedpolymercomposite(FRPCalsoknownasFRP);

• cantilevermastsfortrafficsignalsand/orsafetycameras(hereaftercalledcantilevermasts)madefrom steel;

• closedcircuittelevision(CCTV)mastsmadefromsteel;

• fixedverticalroadtrafficsign/signalposts;

• high masts;

• othermasttypestructures.

Notes:

(i) GuidanceandbackgroundinformationintheuseofBSEN40-3-1andBSEN40-3-3forthedesignoflightingcolumnsisgiveninPD6547:2004.

(ii) ThisStandardcoverstheuseofTheInstitutionofLightingProfessionalsProfessionalLightingGuide07,HighMastsforLightingandCCTV,2013Edition,Sections1and2(ILPPLG07)forthedesignofCCTVmasts.ThisGuidewasoriginallydevelopedforhighmastlightingandhasbeenrevisedtoincludeCCTVmastsastheyhavesimilarfeatures.

(iii) RequirementsforthedesignoffixedverticalroadsignsaregiveninBSEN12899:Part1.TheserequirementsaresupplementedbythisStandard.

ItsetsouttheOverseeingOrganisation’sparticularrequirementswheretheseaugment,orareadditionaltothosegivenintheBritishStandard.Inaddition,theStandardgivestherequirementsforlightingcolumnsmadeessentiallyfromglassfibrereinforcedplastic(FRPorFRPC).ThetechnicalbasisfortheclausesonFRPCislimitedanditmaybecomenecessaryinduecoursetoreviewtherequirements,onthebasisoftheirperformanceinservice.

Wherematerialsotherthanconcrete,steel,aluminiumorFRPCareusedforotherminorstructuresadeparturefromstandardsshallbesoughtfromtheTechnicalApprovalAuthority.

Scope

1.2 ThisStandardsetsoutthestructuraldesignrequirementsforthefollowingminorhighwaystructuresforuseontrunkroadsincludingmotorways:

• lightingcolumnsandwallmountedbracketsmadefromconcrete,steel,aluminium,concreteandFRPC,includinglightingcolumnsmountedonotherstructures,e.g.onbridges;

Chapter 1Introduction

1/2 August 2017

Chapter 1Introduction

Volume 2 Section 2Part 1 BD 94/17

• steelCCTVmastsmountedonfoundationsintheground.TherequirementsforCCTVmastsmountedonotherstructureseggantriesareoutsidethescopeofthisStandard;

• cantilevermastsmadefromsteelfortrafficsignalsand/orspeedcameras.ThisStandardexcludesthedesignrequirementsforpermanentandtemporarycantileversignandsignalgantriesforwhichBD51(DMRB2.2.4)shallbeused;

• fixedverticalroadtrafficsign/signalposts.ThisStandardexcludestheelectronicdesignrequirementsofcertaintrafficsigns,asdefinedinBSEN12899-Part1;

• high masts;

• othermasttypestructures.

Notes:

(i) ThestructuralrequirementsforlatticestructuresareoutsidethescopeofthisStandard;refertoBSEN1993-3-1:2006oranyotherrelevantstandard.

(ii) ThestructuralrequirementsforpassivelysafestructuresshouldcomplywiththisStandardbutthepassivesafetycharacteristicsofsuchstructuresaredealtwithinEN12767.

(iii) InNorthernIrelandthisStandardappliestominorstructuresonallclassesofroad.

Mutual Recognition

1.3 Wherethereisarequirementinthisdocumentforcompliancewithanypartofa“BritishStandard”orothertechnicalspecification,thatrequirementmaybemetbycompliancewith:

(a) astandardorcodeofpracticeofanationalstandardsbodyorequivalentbodyofanyEEAstateorTurkey;

(b) anyinternationalstandardrecognisedforuseasastandardorcodeofpracticebyanyEEAstateorTurkey;

(c) atechnicalspecificationrecognisedforuseasastandardbyapublicauthorityofanyEEAstateorTurkey;or

(d) aEuropeanTechnicalAssessmentissuedinaccordancewiththeproceduresetoutinregulation(EU)No305/2011;

providedthattherelevantstandardimposesanequivalentlevelofperformanceandsafetyprovidedforbythestatedStandardortechnicalspecification.

“EEAState”meansastatewhichisacontractingpartytotheEuropeanEconomicAreaAgreement.

“BritishStandard”meansanystandardpublishedbytheBritishStandardsInstitutionincludingadoptedEuropeanorotherinternationalstandards.

August 2017 1/3

Chapter 1Introduction

Volume 2 Section 2Part 1 BD 94/17

Implementation

1.4 ThisStandardshouldbeusedforthwithonallschemesfortheconstructionandimprovementoftrunkroads,includingmotorways,currentlybeingprepared,providedthat,intheopinionoftheOverseeingOrganisation,thiswouldnotresultinsignificantadditionalexpenseordelayprogress.DesignOrganisationsshouldconfirmitsapplicationtoparticularschemeswiththeOverseeingOrganisation.WheretheOverseeingOrganisation’scontractdocumentsarebasedontheSpecificationforHighwayWorks(MCHW1)useofthisStandardismandatory.InNorthernIrelandthisstandardshouldbeusedonallroads.WherethisStandardduplicatesorcoversrequirementsinexistingstandardsduringaperiodofco-existence,itshalltakeprecedenceunlessotherwiseagreedwiththeOverseeingOrganisation.

1/4 August 2017

Chapter 1Introduction

Volume 2 Section 2Part 1 BD 94/17

August 2017 2/1

Chapter 2General Principles

Volume 2 Section 2Part 1 BD 94/17

2. GENERAL PRINCIPLESSiting

2.1 ThesitingofminorstructuresshallaccordwiththeTDsandTAsasshowninTable1asrelevanttothestructureconsidered.Thisshallincludeconsiderationofvisibilitybytheapproachingtraffic.

TD9 TD18 TD19 TD23 TD33 TD34 TA74Lightingcolumns ü ü ü ü ü

Cantilever masts ü ü ü ü ü

CCTV masts ü ü

Roadtrafficsigns ü ü ü

Othermasttypestructures

ü * ü ü * ü ü

Table 1: TDs and TAs

Note:Wherepossiblecantilevermastsshouldnotbelocatedonunder-bridges.*thesemaybeapplicabledependingontypeofmast.

Layout

2.2 AllelementsofminorstructuresshallcomplywiththeclearancesspecifiedinTD27(DMRB6.1.2)afterallowingfordeflectionsduetodead,live,windandHighVehiclebuffetingloads.

2.3 Theclearnewconstructionheadroomforroutesotherthanhighloadroutesshallbe5,700mmminimum,asdefinedinTD27Table8(DMRB6.1.2)forFootbridgesandSign/SignalGantries.Wherecantilevermastsaresitedonhighloadroutes,theclearnewconstructionheadroomshallbe6,450mmminimum,asdefinedinTD27Table8(DMRB6.1.2).Inadditiontostructuraldeformations,considerationshallbegiventosettlementwhencalculatingheadroom.

2.4 RequirementsforthevehiclerestraintsystemshallbeagreedwiththeTechnicalApprovalAuthority.ThesetbackofthevehiclerestraintsystemtotheedgeofthecarriagewayshallbeinaccordancewiththerequirementsoftheOverseeingOrganisation.Wherepassivelysafesignposts,lightingcolumnsortrafficsignalpostsareprovided,inaccordancewithTD89/08,furthervehiclerestraintsystemsshallnotberequired,unlessrequiredbytheexistenceofotherhazards.

2.5 TheclearancefromthefrontofthevehiclerestraintsystemtothefaceoftheminorstructureshallbeselectedfromtheWorkingWidthgiveninBSEN1317,Part2,orotherrelevantstandards.

Protection for Road Users and Structure

2.6 CantilevermastsandCCTVmastsshallbelocatedeither:

(i) morethan4.5metresfromthe‘Pointfromwhichset-backismeasured’,asreferredtoinTD19(DMRB2.2.8);or

(ii) onaslopesuchthattheundersideoftheflangeplateismorethan2metresverticallyabovetheedgeofthecarriagewayclosesttothepost;or

2/2 August 2017

Chapter 2General Principles

Volume 2 Section 2Part 1 BD 94/17

(iii) behindasafetybarrierconformingtotherequirementsofTD19(DMRB2.2.8)andanappropriateworkingwidth.

PositioningofcantilevermastsandCCTVmastsinotherlocationsshallbesubjecttotheapprovaloftheTechnicalApprovalAuthority.

2.7 WherethepostofthecantilevermastorCCTVmastislocatedbehindavehiclerestraintsystemmeetingtherequirementsofBSEN1317:Part2,furthervehiclerestraintsystemsarenotrequired.

Equipment

2.8 Allluminaires,lanterns,brackets,signs,trafficsignals,speedcamerasandassociatedequipmentshallbesecurelyattachedtothestructureusingvibrationresistantfixingsstrongenoughtowithstanddesignloads.Thestructuraldesignshallmakeadequateprovisionfortheattachmentofequipmentandshallconsiderredundancy.(i.e.canthefailureofasingleitem,likeabolt,causethefailureoftheentiresystem?)AnysubsequentmodificationstostructuralmembersshallonlybecarriedoutwiththeapprovaloftheTechnicalApprovalAuthorityinaccordancewithBD2(DMRB1.1.1)(refertoChapter4).

In-Situ Connections

2.9 Insituconnectionsofmainstructuralmetalelementsshallbebymeansofbolts.Ifotherformsofin-situconnectionareproposedthentheirstaticandfatiguedesignstrengthshallbecalculatedfromfirstprinciplesandshallbeagreedwiththeTechnicalApprovalAuthority.Alternatively,thedesignstrengthmaybebasedontheresultsoffull-scaleloadtests,subjecttotheagreementoftheTechnicalApprovalAuthority.

Identification

2.10 InEnglandandWalesthestructuresiteidentificationmarkingshallbeinaccordancewithBD45(DMRB3.1.1).InScotland,TransportScotlandshallbeconsultedwhilstinNorthernIrelandtheRoadsServiceshallbeconsulted.

Wherenotreadilyidentifiablebythedesign,structuresthathavebeendesignedtobepassivelysafetoBSEN12767shallbemarkedtodifferentiatethemfromothertypesofstructures.Themarkingsystemwillincorporatethephrase“CrashFriendly”andbeplacedonthepostorcolumninapositionthatwillnotaffectthefunctionalityofanypartoftheassemblyortheidentificationmarksrequiredbyBD45(DMRB3.1.1).TheformofmarkingappropriateforindividualproductsshallbeagreedwiththeOverseeingOrganisation.

Use of Dissimilar Metals

2.11 Wheredissimilarmetalsaretobeused,theconnectionsshallbedesignedtoavoidtheriskofgalvaniccorrosion.Theelectricalbondingofallmetalcomponentsshallnonethelessbemaintained.

Protection Against Corrosion

2.12 SurfacepreparationandpaintprotectionofsteelshallcomplywiththerelevantclausesoftheSeries1900intheSpecificationforHighwayWorks(MCHW1).

2.13 Formaterialsotherthansteelitshallbedemonstratedthattheywillhavealifeexpectancygreaterthantheservicelife.(e.g.galvaniccorrosionofaluminiumduetolocalgroundconditionsandUVdegradationofFRPCcolumns).

August 2017 3/1

Chapter 3Dimensional Limitations

Volume 2 Section 2Part 1 BD 94/17

3. DIMENSIONAL LIMITATIONSLighting Columns

3.1 ThedimensionalrequirementsforlightingcolumnsaregiveninBSEN40-2.Theoveralldimensionallimitations for the lighting columns covered by this Standard shall be:

Forsteel,aluminium,FRPCandconcretecolumns:

(i) posttopcolumns <20mnominalheight

(ii) columnswithbrackets <18mnominalheight

(iii) bracketprojections -notexceedingthelesserof0.25xnominalheightor3metres.

Note:NominalheightsandbracketprojectionsaredefinedinBSEN40-2:2004.

CCTV Masts

3.2 ThenominalheightofsteelCCTVmastscoveredbythisStandardshallbelessthanorequalto25m.Thenominalheightistakenastheverticaldistancebetweentheundersideoftheflangeplateandthetopofthemast.

Note:Thenominalheightexcludestheheightofcamera,mountingetc(refertoFigure1).

3.3 ThedesignheightofaCCTVmastshallbetakenastheverticaldistancebetweentheundersideoftheflangeplateandthetopoftheCCTVmastorcamerainitsoperatingposition,orotherattachments,whicheverisgreater.

Note:The“designheight”isdifferenttothe“nominalheight”andisrequiredforwindloadingcalculations(refertoFigure1).

Notes:ThedefinitionsgiveninILPPLG07,Section1.4shouldbeinterpretedasfollows:

(i) HIGHMASTshallalsorefertoCCTVmasts,meaningthesupportintendedtoholdoneormoreCCTVcameraswiththeirmountingsandhousings.

(ii) ThetermLUMINAIREshallbetakenasincludingCCTVcameras,theirmountingsandhousings.

(iii) ILPPLG07maybeusedinthedesignofCCTVmastslessthan10minheight.

Cantilever Masts

3.4 Forcantilevermasts,asshowninFigure1:

(i) NominalHeight<8.5m

Wherenominalheightistakenasthedistancebetweentheundersideoftheflangeplateandthehighestpointonthemast.(SeeFigure1.)

3/2 August 2017

Chapter 3Dimensional Limitations

Volume 2 Section 2Part 1 BD 94/17

(ii) CantileverProjection<8.5m.

(iii) Thehorizontalprojectedareaofanysigns,trafficsignals,speedcamerasandassociatedequipment,suspendedabovethecarriagewayshallnotexceed1.2m2andtheverticalprojectedareashallnotexceed0.3m2.

Traffic Sign/Signal Posts

3.5 Thenominalheightoftrafficsign/signalpostsshallbe<9m.

Note:Abovethisheightdynamicfactorsandfatigueshallbeconsidered.

Other mast type structures

3.6 ThenominalheightofothermasttypestructuresshallbeagreedwiththeOverseeingOrganisationbasedontherequiredenduseusingtheabovelimitationsasguidance.

August 2017 3/3

Chapter 3Dimensional Limitations

Volume 2 Section 2Part 1 BD 94/17

Figure 1 General Arrangement of Cantilever Mast and CCTV Mast and Structural Deformations

of Cantilever Masts (see Table A2)

3/4 August 2017

Chapter 3Dimensional Limitations

Volume 2 Section 2Part 1 BD 94/17

August 2017 4/1

Chapter 4Use of British Standards and Standards Issued by the Overseeing Organisations

Volume 2 Section 2Part 1 BD 94/17

4. USE OF BRITISH STANDARDS AND STANDARDS ISSUED BY THE OVERSEEING ORGANISATIONS

4.1 Thedesignofminorstructuresshallcomplywiththefollowing:

• Lightingcolumnsandcantileversignalmasts–therelevantpartsofBSEN40.

• CCTVmasts–ILPPLG07.

• Roadtrafficsignposts–BSEN12899-1.

AllasimplementedbythisStandardandbytheSpecificationforHighwayWorks(MCHW1),hereinafterreferredtoas“thespecification”.

4.2 Themanufactureandinstallationofminorstructuresshallcomplywiththerelevantrequirementsoftheharmonisedstandards.Whereproductsarebeingmanufacturedfollowingtheprincipleofastandardbutareforproducts,orapplications,notfullycoveredbythatstandard,orwheretheproductisnotcoveredbyaharmonisedstandardthentherequirementssetoutwithintheSpecificationforHighwayWorksmustbefollowed.Proposalstousematerials,methodsorproceduresnotcoveredbythisshouldbeagreed.

4.3 ThespecificOverseeingOrganisation’sproceduresfortheTechnicalApprovalofminorstructuresforuseonmotorwaysandothertrunkroadsaregiveninBD2(DMRB1.1.1).

Note:InNorthernIrelandtheproceduresapplytominorstructuresonallclassesofroad.

4.4 MinorstructuresinveryexposedareasshallbeclassifiedasCategory1inaccordancewithBD2(DMRB1.1.1).

4.5 WithintheUnitedKingdom,veryexposedsitesaredefinedas:

(a) sitesathighaltitude,above250m;

(b) siteswithin5kmfromthecoast;and

(c) sitessubjecttosignificantlocalfunnelling.

4/2 August 2017

Chapter 4Use of British Standards and Standards Issued by the Overseeing Organisations

Volume 2 Section 2Part 1 BD 94/17

August 2017 5/1

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

5. DESIGNGeneral Requirements

5.1 Minorstructuresshallbedesignedinaccordancewiththerelevantrequirementsofthestandardslistedinparagraph4.1,asimplementedbytheSpecificationforHighwayWorks(MCHW1)andbythisStandard.

Structural Criteria

5.2 Thedesignlifeshallbe25years,unlessotherwiserequiredbytheTechnicalApprovalAuthority.

Limit States

5.3 Minorstructuresshallbedesignedtosatisfytherelevantultimatelimitstatesandtheserviceabilitylimitstate,including,forsteelstructures,meetingfatiguecriteria.

Lighting Columns:

5.4 ForlightingcolumnsthepartialsafetyfactorsandcriteriaforserviceabilityandultimatelimitstatesshallbetakenasClassBasgiveninBSEN40-3-3.

Thehorizontaldeflectionsofeachlanternconnectionshallconformtoclass2asspecifiedinBSEN403-3Table3.

CCTV Masts:

5.5 ForCCTVmaststhepartialsafetyfactorsandcriteriaforserviceabilityandultimatelimitstatesshallbeasgiveninILPPLG07,Clauses2.4and2.5.

ILPPLG07Clause2.3.2.3setsoutsomedeflection/rotationlimitsthataregreaterthanthoseusedpreviously.Thelimitsbelowshouldbeused.

ForCCTVapplicationsthemaststiffnessshallbesuchthatwithloadsarisingfromagustwindprofile,withawindspeedof22m/secat10mabovegroundlevel,thetorsionalrotationatthetopofthemastshallnotexceed25minutesofarc(0.0073radians)andthelineardeflectionatthetopofthepoleshallnotexceed150mm.

ThedesignershallconfirmthattheoperationaluseoftheCCTVcameraswillnotbeaffectedbytheproposedlimits.

Note:Fortheserviceabilitylimitstate:

(i) AddattheendofILPPLG07Section2.3.2.3:“ThiscalculationshalltakefullaccountoftheactualweightsoftheCCTVmast,cameras,mountings,housingsandanyotherattachments.TheOverseeingOrganisationmaydefinemorestringentrotationanddeflectioncriteriaifrequired”.

(ii) Vehiclecollisionloadsdonotneedtobeconsideredbecauseoftherequirementsimposedbyclause2.6.

Cantilever masts for traffic signals and/or speed cameras:

5.6 Cantilevermastsfortrafficsignalsand/orspeedcamerasshallmeetthecriteriaof5.6.1to5.6.3.

5/2 August 2017

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

5.6.1 ThreelimitstatesarespecifiedinTableA1ofAnnexAofthisStandardwithvaluesofthepartialfactorγF given;thesecoverstrength,fatigueanddeflection.WhereanypermanentloadhasarelievingeffectγF shall betakenas1.0inboththeultimatelimitstateandserviceabilitylimitstate.

Note:Vehiclecollisionloadsshallnotbeconsidered.

5.6.2 Intheserviceabilitylimitstateunderloadingcombination1,thedeflectionsandrotationsduetowindloading onlyshallbelimitedsuchthatthedeformationsdonotexceedthevaluesgiveninTableA2ofAnnexA*.

*Morestringentdeflectionlimitsshallbenecessarywhentheperformancerequirementsoftheequipmenttobemountedsorequirethem.

5.6.3 Thedeformationattheextremitiesofthestructuralsupportshallbederivedfromthesumofthecomponentsoftheeffectsoftheloadinthesupportposts,cantileverandsignsupports,[seeFigure1].

Road Traffic Sign Posts:

5.7 ForroadtrafficsignpoststhepartialsafetyfactorsandcriteriaforserviceabilityandultimatelimitstatesaregiveninBSEN12899-1andtheUK’sNationalAnnex.

Minimum Thickness of Steel Sections for Cantilever Masts

5.8 Theminimumthicknessofstructuralsteelsectionsusedincantilevermastsshallbeasfollows:

(i) platesandsectionsotherthanhollowsections: 6mm

(ii) hollowsectionseffectivelysealedbywelding,otherthanasmall drainholewithadiameterofbetween10mmand15mm: 5mm

Closed Hollow Sections for Cantilever Masts

5.9 Steelhollowsectionsusedincantilevermastsshallbedesignedtoresisttheingressandretentionofwaterormoisturebygravityflow,capillaryactionorcondensation.Theplatesusedtoclosetheopenendsofhollowsectionsshallbeofthicknessnotlessthanthelesserofthefollowing:

(i) thethicknessofthewallsofthehollowsection;

(ii) 8mm.

TheendplatesshallbejoinedbycontinuousstructuralqualityweldingtoBSEN1011:Parts1and2.Shouldtherebeapossibilityofwaterenteringandsubsequentlyfreezing,thendrainholesshallbeprovided.Thesizeoftheholeshallbeappropriatetothevoidbeingdrained,butshallnotbelessthan10mmorgreaterthan15mmdiameter.Hollowsectionsinnon-corrosiveorgalvanisedsteelshallbeprovidedwithsuchdrainholesatalllowpoints.

Fatigue Criteria for Steel Structures

5.10 Therulessetoutin5.10to5.16shallbeusedforsteellightingcolumns9mandaboveinheightandtoallsteelcantilevermasts.Theserulesmaynotbeapplicabletoveryexposedsites;insuchcasesthedesignshallbesubjectedtoTechnicalApprovalproceduresassetoutin4.3.Structuresinmaterialsotherthansteel are not covered by the fatigue rules in this Standard and in such cases the design shall be subjected to TechnicalApprovalproceduresassetoutin4.2.

August 2017 5/3

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

Inallcasestheprocedurestobeusedforfatigueassessmentshallbeagreedbetweenthedesigner,theclientandtheOverseeingOrganisation,see4.2above.

5.11 ThestringentdeflectionrequirementsforthedesignofCCTVmastsmeanthatstressrangesinducedbydynamicresponsetowindloadingarelikelytobelow.Thusfatigueisunlikelytobeacriticaldesignconditionprovidedsuitabledetailsareused.HoweverforCCTVmastssitedinveryexposedlocations,asdefinedin4.4fatigueshallbeconsidered.

5.12 Fatiguedamageismostlikelytooccuratoradjacenttoweldsornearsharpcornerscreatingstressconcentrations;particularlyvulnerablepositionsare:

(i) flangeplates:

• attheweldthroatbetweenthecolumnandflange;

• intheparentmetaladjacenttotheweld;

(ii) dooropenings:

• at welded attachments;

• atpoorlyfinishedcutedges;

(iii) atanystiffeningbetweenthecolumnandtheflange;

(iv) shoulderjoints:

• at the weld throat;

• intheparentmetaladjacenttotheweld.

Atsuchpositions,fatiguepronedetailsshouldbeavoided.

5.13 Fatigueiscriticallydependentongeometricalconfigurationsandfabrication.StiffenedandunstiffeneddooropeningsshouldcomplywiththeconstraintsshowninFigure2.Inadditionthefollowingfabricationconstraints should be met:

(i) sharpirregularitiesatfreeedgesduetotheflamecuttingprocessshouldbegroundout;

(ii) noweldingshouldbecloserthan10mmfromtheedgeoftheunstiffeneddooropening;

(iii) longitudinaledgestiffenersshouldbecontinuousovertheirfullextent.

(ix) Whereshoulderjointsareused,theyshouldhaveanangleofinclinationtotheaxisofthecolumnofbetween12°and35°.(SeeFigure3whichshowsatypicalshoulderjoint).

5.14 Generally,whenundertakingfatiguechecksnominalstressesshouldbeusedbasedonnominalsectionproperties.Thestressconcentrationsinherentinthemake-upofaweldedjoint(arising,forexample,fromthegeneraljointgeometryandtheweldshape)aregenerallytakenintoaccountintheclassificationofthedetails.Otherwisethenominalstressesshouldbemultipliedbystressconcentrationfactorsderivedfromstressanalysisofthejointorfrompublisheddata.

5/4 August 2017

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

5.15 Inordertoundertakeafatiguecheckitisnecessarytodeterminealoadingspectrafromwinddataappropriatetothesite.Intheabsenceofsuchdata,thefatigueloadingprovisionsgiveninAnnexBmaybeadopted.

5.16 Classificationmaybederivedbyfatiguetestingofasampleoftypicalfull-scaledetailsinanindependenttestinglaboratoryandcoveringanappropriatestressrangetoenableafatiguelifecurvetobederived.Sufficienttestsshouldbeundertakentoprovideadesigncurverepresentingmeanminus2standarddeviations.

5.17 Intheabsenceofdataonfatiguelifecurvesandloadingspectra,theproceduresetoutinAnnexBshallbefollowed.

Determination of Shape Coefficients

5.18 Wherewindtunneltestsarenecessaryforthedeterminationofshapecoefficientsforcolumns,bracketsandlanterns,thetestingshallbecarriedoutinaccordancewithAnnexDofthisStandard.

August 2017 5/5

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

Figure 2 Door Openings

No

t le

ss

than

30

0mm

As

per

stan

dard

Gre

ater

of

P1

or

P2

(min

imum

)A

s pe

r st

anda

rd10

0mm

min

imum

radius r ≥ 20mm

5/6 August 2017

Chapter 5Design

Volume 2 Section 2Part 1 BD 94/17

Figure 3 Typical Shoulder Joint

August 2017 6/1

Chapter 6Fibre Reinforced Polymer Composite Lighting Columns

Volume 2 Section 2Part 1 BD 94/17

6. FIBRE REINFORCED POLYMER COMPOSITE LIGHTING COLUMNS

Design

6.1 Loading.DesignloadsandmomentsshallbedeterminedinaccordancewithBSEN40-3-1andBSEN40-7asimplementedbythisStandard.

6.2 ThefactorβforthedynamicbehaviouroftheFRPCcolumnshallbedeterminedbyreferencetoBSEN40-7:AnnexB:FigureB.1.

Verification of Structural DesignGeneral

6.3 ThestructuraldesignofFRPCcolumnsshallbeverifiedeitherbycalculationsorbytesting.Thetestresultstakeprecedenceinallcases.

Calculations

6.4 DesigncalculationsforFRPCcolumnsshallbeinaccordancewiththerequirementsBSEN40-7.

6.5 ThemechanicalpropertiesoftheFRPmaterialtobeusedinthestructuraldesigncalculationsshallbedeterminedfromtestsusingflatsheetsamplesmanufacturedinthesamemannerasthatproposedfortheproductioncolumn.FlexuralstrengthandthemoduliinbothlongitudinalandtransversedirectionsshallbedeterminedtogetherwiththeshearmodulusandthePoisson’sratio,δ12.Astatisticalassessmentshallbemadeoftheresultstodetermine95%confidencelimitsofthevaluestobeused.

Use of Other Materials

6.6 AllothermaterialsincorporatedintheFRPcolumnsshallcomplywiththeSpecificationandtherelevantpartsofBSEN40.

6/2 August 2017

Chapter 6Fibre Reinforced Polymer Composite Lighting Columns

Volume 2 Section 2Part 1 BD 94/17

August 2017 7/1

Chapter 7Door Openings

Volume 2 Section 2Part 1 BD 94/17

7. DOOR OPENINGS7.1 Wheredooropeningsarerequired,thesizesgiveninTable2shouldbespecifiedwhenproviding

informationforAppendix13/1oftheSpecification.

7.2 AlternativedooropeningsselectedfromthesizesgiveninBSEN40-2maybeused,providedtheyareshowntobeadequateforthesizeofequipmenttobehousedandmaintained,inthecolumn.

7.3 Columnsmountedonstructuresorinsituationswherethereisariskthatadetacheddoorcouldcauseanaccidentifitfellontheareabelowshallhavetheirdoorshingedorheldcaptivebyanapprovedmetalchainorstrapwhichshallbesufficientlyrobust,tosupportthedoorinseveregaleconditions.

7.4 Wherethesectioncontainingthedooropeningissteeloraluminiumandcircularorpolygonalwitheightormoresides,designstrengthsshallbecalculatedinaccordancewithBSEN40-3-3.Inallothercasesthedesignstrengthshallbecalculatedfromfirstprinciples.Alternatively,thedesignshallbebasedontheresultsoffull-scaleloadtests.Inallsuchcasestheprocedurestobeusedshallbeagreedbetweenthedesigner,theclientandtheOverseeingOrganisationsee4.2above.

Nominal column height (h) in meters

Type of door Door opening for metal columns

(height x width) (mm)

Door openings for concrete columns (height x width)

(mm)5 and 6 single door 500x100 680x95

8,10and12 single door 600x115 680x130

8,10and12 extendedsingledoor – 900x130

8,10and12 double doors 500x120 or600x115each

Table 2 Door Opening Sizes

7/2 August 2017

Chapter 7Door Openings

Volume 2 Section 2Part 1 BD 94/17

August 2017 8/1

Chapter 8Wall Mounted Brackets

Volume 2 Section 2Part 1 BD 94/17

8. WALL MOUNTED BRACKETS8.1 Wallmountedbracketsshallbedesigned,inaccordancewiththerelevantrequirementsforcolumn

brackets.Thebracketshallbefixedtoitssupportbymeansofaflangeplateandanchoragewhichshallbedesignedinaccordancewithparagraph10.9.

8.2 Thewallonwhichthewallmountedbracketsarefixedshallbecapableofcarryingtheadditionalloadsandotherforcesthatmaybetransmittedbythebracket.Thedesignerofthebracketshallprovidethenecessaryloadsforotherstoassesstheadequacyofthewall.

8/2 August 2017

Chapter 8Wall Mounted Brackets

Volume 2 Section 2Part 1 BD 94/17

August 2017 9/1

Chapter 9Attachments

Volume 2 Section 2Part 1 BD 94/17

9. ATTACHMENTSGeneral Requirements

9.1 Minorstructures,otherthanCCTVmasts(see9.6to9.8below)andfixedtrafficsign/signalposts(seeEN12899-1)shallbedesignedfortheattachmentgiveninparagraph9.2.Attachmentsshallnotbeallowedoncantilevermasts.

9.2 Theattachmentshallbetakenasasign,detailsofwhichshallbe:

(i) Thesignshallbetakenasrectangularinelevation,withasurfaceareaof0.3m2.

(ii) Theeccentricityfromthecentrelineofthecolumntothecentreofareaofthesignshallbetakenas300mm.

(iii) Theheightabovegroundlevelatthecolumntothecentreofareaofthesignshallbetakenas2500mm.

(iv) Theorientationofthesignshallbeselectedtoproducethemostadverseeffectsforthedesignconditionbeingconsidered.

9.3 TheforcesduetodeadandwindloadsonthesignandbracketprojectingfromthecolumnshallbedeterminedinaccordancewithBSEN40-3-1.Theshapecoefficientofthesignshallbetakenas1.8unlessderivedfromBSEN1991-1-4forthespecificshapeandaspectratioofthesign.

9.4 Wherelargersigns,wastepapercontainers,flowerbasketsetc,aretobeattached,thecolumnshallbedesignedtoresisttheadditionalloadings.Whereappropriatetheadditionalloadingsshallbecalculatedinaccordancewithparagraph9.3.

9.5 Minorstructuresdesignedtocarryattachmentsgreaterthanthosedefinedin9.2shallhaveidentifyingmanufacturer’sfeaturesormarkstoenablethemtobeclearlyandunambiguouslyidentifiedthroughouttheirservicelife.TheuniqueidentifyingmarkshallbelistedasrequiredbyBD62(DMRB3.2.1).AllotherrequirementsfortheidentifyingmarkshallbeasrequiredintheSpecification.(See4.1).

Attachments to CCTV Masts

9.6 CCTVmastsshallnotbedesignedforattachmentsotherthanCCTVcamerasandtheirassociatedequipmentunlessotherwisespecified.WhereattachmentsarespecifiedtheyshallbeincorporatedintothedesignoftheCCTVmastsinaccordancewiththefollowingprovisions:

9.7 Whereattachmentsaretobeused,themastshallbedesignedtoresisttheadditionalloading,whichshallbedescribedinAppendix13oftheNotesforGuidanceontheSpecification(MCHW2).WhereappropriatetheadditionaldeadandwindloadsshallbecalculatedinaccordancewithILPPLG07.

9.8 WhereattachmentsarerequiredtheCCTVpoleandtheattachmentsshallbedesignedsuchthattheoperationoftheCCTVcameraisnotimpeded.Similarly,accessforinstallation,inspectionormaintenanceofanattachmentshallnotinterferewiththeoperationoftheCCTVcamera.Whereattachmentsarelocatedbelowtheoperatingpositionofthecamera,theyshallbedesignedasdemountabletoallowtheCCTVmountingtoberaisedandlowered.

9/2 August 2017

Chapter 9Attachments

Volume 2 Section 2Part 1 BD 94/17

August 2017 10/1

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

10. FLANGE PLATE CONNECTION BETWEEN STEEL STRUCTURE AND FOUNDATION

General

10.1 Wherefoundationsconsistofreinforcedconcrete,theconnectionbetweenthestructureanditssubstructureshallbedesignedinaccordancewithclauses10.2to10.24asappropriate.

10.2 Astructurewithaflangeplateshallbefixedtothefoundationorbridgedeckbyanattachmentsystemandanchoragewhichshallbecapableofprovidingtherequiredrestraint.Thiswillusuallytaketheformofholdingdownboltswhichconnectwithananchorage.AnchoragesofexpandingtypeshallnotbeusedunlesstheirlongterminsituperformanceunderfatigueloadingcanbedemonstratedtothesatisfactionoftheTechnicalApprovalAuthorityandtheOverseeingOrganisation.Theattachmentsystemshallallowthestructuretobedemounted,or,forlightingcolumns,besuchthatremovalandreplacementofdamagedlightingcolumnsmaybereadilyachieved.

Note1:Theproceduregivenin10.4to10.21isbasedontheflangeplateanditsconnectionsbeingdesignedtoresistvehicleimpact.Forminorstructuresthatsatisfytherequirementsofclauses2.6(i),2.6(ii)or2.6(iii)designagainstvehicleimpactisnotrequired.Insuchcasestheflangeplateanditsconnectionsshallbedesignedfordeadloadandwindloadsonly.ThisshallbeachievedbytakingMR in the formulae following asthebendingmomentatthebaseofthestructurederivedfromtheultimatefactoreddeadload(permanentactions)andwindloads(variableactions).

Note2:Wherecantilevermastsarelocatedwithin4.5metresofthe‘Pointfromwhichset-backismeasured’,asreferredtoinTD19(DMRB2.2.8)orwithinthecentralreserve,thedesignofattachmentsystemsandanchoragesshallbesuchthatremovalandreplacementofdamagedcantilevermastsmaybereadilyachieved.Thisshallbeachievedbyprovidinganinternallythreadedcomponentintheanchoragetoreceivetheholdingdownbolts.

10.3 TypicalarrangementsareshowninFigure5whichapplytobothplatessupportedonbeddingmaterialandplatessupportedonlevellingnutsonly,withouteffectivebedding.

10.4 Whentheweightofthestructureistobecarriedbynutsbeneaththeflangeplate,theholdingdownboltsshallbedesignedtoresistalladditionalstressesarisingfromthisconstructiondetail,andprotectedagainstcorrosion.Whentheweightofthestructureissupporteddirectlythroughtheflangeplatetothesubstructure,thespaceshouldbepackedwithasuitablebeddingmortar.

10.5 Thediameterofcircularflangeplatesshallnotbelessthanthepitchcirclediameteroftheholdingdownboltsplus2.5timesthediameterofthebolts.

10.6 Inthefollowingprocedureitisassumedthatbendingaboutthev-vaxiswillbecritical,whichisthecaseforcolumnsonsquareflangeplateswithfourholdingdownboltsasshowninFigure5.ThemoregeneralcaseiscoveredinAnnexC.

10.7 Theflangeplateshallbecapableofdevelopingamomentofresistanceabouteachaxis,takenattheundersideoftheflangeplate,atleast1.2timesthetheoreticalultimatemomentcapacity,MR(=Mup)oftheactualstructurecalculatedatbaselevelinaccordancewithBSEN40-3-3:Clause5.6.2.

10/2 August 2017

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

10.8 Thebendingmomentintheflangeplateshallthusbetakenas:

⎭⎬⎫

⎩⎨⎧

−=4a

20.63D5.0 1.2MM R

( )3

M

y2f

p x10γf

x 4

x t0.63Dc 2M −=

(in N.m)

(in N.m)

(inN.m)

whereD=2RandRisthemeanradiusasdefinedinBSEN40-3-3:Figure3;andaistheboltspacingasshowninFigure5.

10.9 Themaximumbendingintheflangeplate,M,shallnotexceedtheplasticmomentcapacityoftheflangeplate,Mp.Forasquareflangeplatewithacentrallylocatedholenotexceeding0.3Dindiameter(refertoFigure5,detailB),Mp is given by:

⎭⎬⎫

⎩⎨⎧

−=4a

20.63D5.0 1.2MM R

( )3

M

y2f

p x10γf

x 4

x t0.63Dc 2M −=

(in N.m)

(in N.m) (inN.m)

where:

γM=1.15;c=thewidthoftheflangeplate(inmm);tf=thethicknessoftheflangeplate(inmm);

fy=theyieldstressintheflangeplate(inN/mm2);andDisasdefinedin10.8.

Wherethecentrallylocatedholeandthecolumnbasearethesamediameter(refertoFigure5,DetailA),MpshallbecalculatedinaccordancewiththeproceduregiveninAnnexC.

10.10 Shearandbearingshouldnotgovernthedesignoftheflangeplate,providededgedistancesoftheholdingdownboltscomplywiththefollowingrequirements.Theminimumdistancefromthecentreoftheboltholetotheedgeoftheplateshallnotbelessthan1.5dwheredisthediameterofthehole.

Inaddition,forslottedholestheminimumdistancefromtheaxisoftheslottedholetotheadjacentedgeoftheplateshallnotbelessthan1.5dandtheminimumdistancefromthecentreoftheendradiusofaslottedholetotheadjacentedgeoftheplateshallnotbelessthan1.5d.

Design of Welds

10.11 Theconnectionbetweenthecolumnandtheflangeplateshallbecapableofdevelopingthetheoreticalultimatemomentofresistanceoftheactualcolumnandtheequivalentultimateshearforce,bothasderivedin10.7above.

10.12 Weldsshallbedeemedtomeettheserequirementsprovidedthethroatthicknessofthetopweldisnotlessthankxtwhere:k=avaluebetween1.0and1.5dependingonthetypeofwelduse.

Forexample:

k=1.5forthefilletweldsofdetailBinFigure5,andfortheouterfilletweldofdetailAinFigure5,

k=1.0forafullpenetrationbuttweld.

t=thewallthicknessofthecolumnattheflangeplate.

AmoreaccurateprocedureforthedesignofweldsisgiveninAnnexC.

August 2017 10/3

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

Design of Holding Down Bolts

10.13 TheholdingdownboltsshallbecapableofdevelopingthetheoreticalultimatemomentcapacityoftheactualcolumnMR(=Mup)calculatedatthebaselevelinaccordancewithBSEN40-3-3:Clause5.6.2andanequivalentultimateshearforce,FR(=2MR).

10.14 Thetensilestress(σ)inholdingdownboltsmaybetakenas:

( )2

et

3R N/mm

A a 210 x M 1.2

( )2

eqb

R N/mm A nF 1.2

Mq γ≤

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛ τ+⎟⎟

⎞⎜⎜⎝

⎛ σ 1f

2f

2/122

t

where:

Aet=thetensilestressareasinthethreadoftheboltobtainedfromtheappropriatestandard;

a=theboltspacingasshowninFigure5.

10.15 Theshearstress(τ)intheboltsmaybetakenas:

( )2

et

3R N/mm

A a 210 x M 1.2

( )2

eqb

R N/mm A nF 1.2

Mq γ≤

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛ τ+⎟⎟

⎞⎜⎜⎝

⎛ σ 1f

2f

2/122

t

where:

Aeq=thesectionalareaoftheunthreadedshankoftheboltiftheshearplanepassesthroughtheunthreadedpartbuttakenasAetiftheshearplanepassesthroughthethreadedpart;

nb=totalnumberofboltsfixingtheflangeplate.Whereslottedholesareusednb shall not include bolts in holeswheretheslotalignswiththedirectionoftheappliedshearforce.

10.16 Boltsintensionandshearshallcomplywith:

( )2

et

3R N/mm

A a 210 x M 1.2

( )2

eqb

R N/mm A nF 1.2

Mq γ≤

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛ τ+⎟⎟

⎞⎜⎜⎝

⎛ σ 1f

2f

2/122

t

where:

γmistakenas1.30;ft is the lesser of:

(i) 0.7xminimumultimatetensilestress;or

(ii) eithertheyieldstressorthestressatpermanentsetof0.2%,asappropriate;

fq=yieldstressofbolts(factoredby0.85inthecaseofblackbolts).

10/4 August 2017

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

10.17 Dueconsiderationofthecapacityofthecompleteanchoragetoresisttheforcesinvolved(1.5MR and 1.5FR)shouldalsobemadewithregardtoembedmentandpulloutbasedona90°conerecommendedin“HoldingdownboltdesigntoEurocode2”,ConcreteSociety,2010.

Bearing Stresses Under Flange Plates

10.18 Thebearingstressonthefoundationmediumshouldbederivedonabasiscompatiblewiththeassumedbendingmodev-v,oneitheraplasticorelasticbasisasrequired.Onaplasticbasis,themaximumbearingstressforbendingaboutv-vmaybetakenas:

)/(0.7R)0.5c(aR) - c (0.7 0.7

10 x M 3 22

3R mmN

++

whereMR,c,aandRareallasdefinedabove.

10.19 Thebearingstressesinanybeddingmortarundertheflangeplatesshallnotexceed20N/mm2.ThemaximumbearingstressesontheconcreteunderaflangeplateshallbeinaccordancewiththerequirementsofBSEN1992.

10.20 TherequirementsforfoundationsonmasonryshallbeagreedwiththeOverseeingOrganisation.

10.21 Forbasesfoundedonsteelbridgedecksamorethoroughanalysisisrequiredandisoutsidethescopeofthisstandard.

Design of Anchorages to Bolts

10.22 Thisisdependentonthemediuminwhichtheanchoragesaremade.Theanchoragesshallbedesignedtocaterforamaximumtensileforce,TA,andassociatedshear,FA, as follows:

TA=1.25σAet(inN);and FA=1.25τAeq(inN).

whereσ,τ,AetandAeqareallasderivedabove.

ThecapacityoftheanchorageshallbederivedinaccordancewithSection11(andtherelevantpartsofEN1997).

10.23 Thesupportingstructureshallbedesignedtoresisttheaboveanchorageloadswithoutdamage.Thetensilestrengthoftheconcreteshouldbeignoredinthecalculations.Theconcreteinthefoundationorbridgecomponenttowhichacolumnisfixedshallbereinforcedagainstburstingassociatedwiththeaboveinternalforcesgeneratedbytheholdingdownbolts/anchoragesystem.

Use of Levelling Nuts and Slotted Holes

10.24 Wherelevellingnuts(orothersystemofpermanentpackers)arebeingusedwithouteffectivebeddingitshallbeassumedthatallthebearingstressesaretransferredtothelevellingnuts.Thenutsandwashersonbothsidesoftheflangeplatethusneedtobesufficientlyoversizedtopreventanylocalisedplatefailureduetoconcentrationofstresses.ThismaybeachievedbyusingwasherscomplyingwithBSENISO7093,providedtheholeorwidthoftheslottedholedoesnotexceeddo+4mmwheredo is the diameter of the holdingdownbolts.

August 2017 10/5

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

10.25 Forslottedholes,whichprovideflangeplaterotationsofupto±5°asshowninFigure6,washersofadequatethicknessshallbeprovidedonbothsidesoftheflangeplatetotransferloadintotheholdingdownbolts.WasherscomplyingwithBSENISO7093maybeusedprovidedthewidthoftheslottedholesdoesnotexceeddo+6mm.

10.26 Whereholeorslottedclearancesaregreaterthantheabovevalues,considerationshouldbegiventotheuseofspecialplatewashers.Wherelevellingnutsareusedthenutandwashersizeshallbethesameaboveandbelowtheflangeplate.

Figure 5 Typical Arrangement of Flange Plate

Note: 1. DetailsAandBaretypicalonlyandmaybeusedwithcircularoroctagonalcolumnsifrequired.

2. R=meanradiusasdefinedinBSEN40-3-3(Figure3).

3. ‘*’:Radiusofcentrallylocatedholeshallnotexceed0.3R.

10/6 August 2017

Chapter 10Flange Plate Connection Between Steel Structure and Foundation

Volume 2 Section 2Part 1 BD 94/17

Figure 6 Slotted Holes Arrangement

August 2017 11/1

Chapter 11Foundations

Volume 2 Section 2Part 1 BD 94/17

11. FOUNDATIONSFoundations – General

11.1 Foundationsshalleitherconsistof:

(i) reinforcedconcrete,designedinaccordancewithparagraphs11.10to11.16asappropriate;or

(ii) plantedcolumnsandposts,designedinaccordancewithparagraphs11.3to11.9asappropriate;

(iii) plantedprefabricatedconcreteormetalcolumnsdesignedinaccordancewith11.3to11.17asappropriate.

Note: Thedesignrulesgiveninparagraphs11.3to11.12donotapplytofoundationsonslopes,wherestabilityofthegroundneedstobetakenintoaccount.Insuchinstances,specialistgeotechnicaladviceshallbesought.GuidancecanbefoundinChapter5oftheInstituteofHighwayEngineersSignStructuresGuide,3rdEdition(2010).

Note: PlantedcolumnsshallnotbeusedforCCTVmasts.

11.2 AlternativeformsoffoundationmaybeusedsubjecttotheapprovaloftheOverseeingOrganisation.

Foundations for Planted Columns, Posts and Prefabricated FoundationsPlanting Depth:

11.3 Whereaminorstructureistobeplanteddirectlyintheground,theplantingdepthshallbeselectedfromTable7ofBSEN40-2relatedtotheoverallheightofthestructure.Inthecaseofprefabricatedfoundationstheplantingdepthandeffectivediametershallbeselectedtoensurecompliancewiththecalculationmethodprovidedbelow.

Note: Fortrafficsign/signalposts,thevaluesappropriatetothecentralcolumnofthistablemaybeused.Wheretheheightislessthan2madepthof600mmmaybeadopted,providedtherequirementsofparagraph11.6aresatisfied.

Tochecktheadequacyoftheselectedplantingdepth,takingaccountofthegroundconditionsatthesite,thecalculationproceduregivenbelowshallbeadopted.

11.4 Thegreatestdestabilisingmoment,MDS,arisingfromapplicationoftheun-factoreddesignloads(e.g.windloadordynamicloadfromsnowclearance)totheminorstructureanditssupportsshouldeitherbecalculatedorobtainedfromthedesigner.Thedestabilisingmomentshallbecalculatedaboutafulcrumpointlocatedat1/√2oftheplantingdepthbelowground.

Thedestabilisingmomentshallbemultipliedbyamodelfactorγs;dof1.25.

11.5 ThegroundresistancemomentMg, should be calculated using the following formula:

10P x DG x M

3

g =

11/2 August 2017

Chapter 11Foundations

Volume 2 Section 2Part 1 BD 94/17

Where:

G isafactordependentonthegroundinwhichthecolumnisplanted(inkN/m2perm).RefertoTable3fortypicalvaluesofG.

D istheminimumdiameter(orminimumdistanceacrossflatsformulti-sidedsections)ofthetrafficsignintheground(inm).

P istheplantingdepth.

11.6 TheplantingdepthissatisfactoryifMg>γs;dxMDS.

11.7 Ifthiscriterionisnotsatisfiedthentheplantingdepthshallbeincreasedand/ortheeffectivediameteroftheminorstructureshallbeincreased.Thelattercanbeachievedbybackfillingtheexcavationholewithmassconcreteoranacceptablefillmaterial(referto‘Back-filling’below);theeffectivediameterofthetrafficsign/signalpostmaythenbetakenastheminimumdiameteroftheexcavationhole.

Quality of soil G (kN/m2 per m)

Soil Impact Factor

ksi

Good:Compact,well-gradedsandandgravel,hardclay,well-gradedfineandcoarsesand,decomposedgraniterockandsoil. Goodsoilsdrainwell.

630 0.2

Average:Compactfinesand,mediumclay,compactwelldrainedsandyloam,loosecoarsesandandgravels. Averagesoilsdrainsufficientlywellthatwaterdoesnotstandonthesurface.

390 0.3

Poor:Softclay,clayloam,poorlycompactedsand,clayscontainingalargeamountofsiltandvegetablematter,andmade-upground. WheretheQualityisunknown,itshallbetakenasPoor.

230 0.5

WheretheQualityisunknown,itshalltakenasPoor.

Table 3 Ground Factor G and soil impact factor ksi

Back-filling:

11.8 ThecalculationofgroundresistancemomentMg,isbasedontheexcavatedholeintowhichtheminorstructureisplantedbeingback-filledwiththeexcavatedmaterialormaterialofbetterquality.

Thefollowingshallbespecifiedtotheinstaller:

(a) allback-fillingmaterialshallbeplacedin150mmthicklayersandwellcompacted;wherethemanufacturerproposestouseprecastfoundations,thebackfillingmaterialandprocedureshallbedescribed;

(b) duringcompaction,careshallbetakentoensurethatthecorrosionprotectionsystemfortheminorstructure is not damaged;

August 2017 11/3

Volume 2 Section 2Part 1 BD 94/17

Annex 11Foundations

(c) wheretheexcavatedholeisback-filledwithconcrete,theconcreteshallextendfromthebaseofthe minor structure to ground level; and

(d) wherepavingorbituminoussurfacingistobeappliedaroundtheminorstructure,thetopleveloftheconcretemaybereducedbythethicknessofthesurfacing.

11.9 Plantedcolumnsshallincorporateamechanismwhichpreventsrotationofthecolumnorpostinthegroundunderwindloadingwheresignificanttorsionalloadingcanarise.Thedesignofplantedcolumnsshalltakeaccountofsettlementanditseffectonclearancesifrelevant.

Foundation for Columns with Flange Plates

11.10 ThedesignprinciplesoffoundationsshallbebasedonthedesignmethodsgiveninBSEN1997-1.ThefoundationshallbedesignedtoresistthefoundationdesignmomentMfd and foundation design shear force Ffdderivedasfollows.

MfdshallbethegreateroftheimpactmomentMiandthemomentobtainedfromBSEN40-3-1,BSEN12899-1orILPPLG07asappropriate,factoredbytheappropriatepartialfactoronload,γF (refertoBSEN1997),forthefailuremodeunderconsideration.

FfdshallbethegreateroftheimpactshearforceFiandthehorizontalforceobtainedfromBSEN40-3-1, BSEN12899-1orILPPLG07asappropriate,factoredbytheappropriatepartialfactoronload,γF (refertoBSEN1997),forthefailuremodeunderconsideration.

Fordestabilizingactions(e.g.overturningmoment)γF;dstshallbetakenasatleast1.5.

Forstabilizingactions(e.g.gravityresistancetooverturning)γG;stbshallbetakenas0.9orless.

MiandFi are derived as follows:

Mi=ksiMR

Fi=ksiFR

wheretheultimatemomentofresistanceoftheactualcolumnatthebaselevel,MR, is calculated in accordancewithBSEN40-3-3:clause5.6.2togetherwithanequivalentultimateshearforce,FR.

Anupperboundtotheequivalentultimateshearforcemaybetakenas:

RefertoBSEN40-3-3forthecalculationofMp.

Thisassumesthatthepointofimpactis0.5mabovethetopofthefoundation.

Thesoilimpactfactor,ksiisgiveninTable3basedonthethreetypesofsoillistedtherein.

Foundations for Cantilever Masts with Flange Plates

11.11 Whencantilevermastsarepositionedinlocationsasgiveninparagraph2.6thefollowingproceduremaybeused.

up

upR 2M

0.5M

F ==

11/4 August 2017

Chapter 11Foundations

Volume 2 Section 2Part 1 BD 94/17

11.12 Foundationsshallconsistofreinforcedconcreteblocks.ThestructuralconcreteshallbedesignedinaccordancewithBSEN1992.

11.13 ThedesignloadsforthefoundationshallbethenominalloadsandnominalwindloadingappliedbythecantilevermastwhendesignedinaccordancewiththisStandard,factoredbytheappropriatepartialfactorsonload,γF(refertoBSEN1997).

11.14 ThedesignofthefoundationshallbebasedonthedesignmethodsgiveninBSEN1997,usingthepartialfactorsonactionsgivenin11.10above.

11.15 Becauseofthedifferenceinthebehaviourofthecantilevermastanditsfoundation,intheabsenceofmoreaccurate information, the following may be assumed:

Thebasicwindloadtransferredfromthecantilevermasttothesubstructureatthetopofthesubstructurereducesto1/βofthisvalueatthebottomofthesubstructureandfoundation.βisthefactorfordynamicbehaviourgiveninBSEN40-3-1:Clause3.2.4.

11.16 UnlessotherwiseagreedwiththeTechnicalApprovalAuthority,thecriteriagivenin11.10shallapplywhencantilevermastsarepositionedinlocationsotherthanthosegiveninparagraph2.6.

August 2017 12/1

Chapter 12References

Volume 2 Section 2Part 1 BD 94/17

12. REFERENCES12.1 British Standards Institution

BSEN40:LightingColumns:

Part1:Definitionsandterms

Part2:Generalrequirementsanddimensions

Part3-1:Designandverification–Specificationforcharacteristicloads

Part3-2:Designandverification–Verificationbytesting

Part3-3:Designandverification–Verificationbycalculation

Part4:Requirementsforreinforcedandprestressedconcretelightingcolumns

Part5:Requirementsforsteellightingcolumns

Part6:Requirementsforaluminiumlightingcolumns

Part7:Requirementsforfibrereinforcedpolymercompositelightingcolumns

BSEN1011-1:Welding.Recommendationsforweldingofmetallicmaterials.Generalguidanceforarcwelding

BSEN1011-2:Welding.Recommendationsforweldingofmetallicmaterials.Generalguidanceforarcwelding

BSEN1090-1:Executionofsteelstructuresandaluminiumstructures:Requirementsforconformityassessmentofstructuralcomponents

BSEN1317-2:Roadrestraintsystems.Performanceclasses,impacttestacceptancecriteriaandtestmethodsforsafetybarriersincludingvehicleparapets.

BSEN1991-1-4:Actionsonstructures.Part1.4WindActions

BSEN1992-1:Eurocode2DesignofConcreteStructures

BSEN1993-1-9:Eurocode3:DesignofSteelStructures:Part1.9:Fatigue

BSEN1993-3-1:Eurocode3:DesignofSteelStructures:Part3.1:Towers,mastsandchimneys–Towersandmasts

BSEN1997-1-1:Eurocode7:GeotechnicalDesign.Generalrules

BSEN12767:Passivesafetyofsupportstructuresforroadequipment.Requirements,classificationandtestmethods

BSEN12899-1:Fixed,verticalroadtrafficsigns–Part1:Fixedsigns

BSENISO7093–Plainwashers–Largeseries–ProductgradesAandC

PD6547:GuidanceontheuseofBSEN40-3-1andBSEN40-3-3,BSI

12/2 August 2017

Chapter 12References

Volume 2 Section 2Part 1 BD 94/17

12.2 Design Manual for Roads and Bridges

Volume1:Section1ApprovalProcedures

Volume1:Section3GeneralDesign

12.3 Manual of Contract Documents for Highway Works. (MCHW)

Volume1:SpecificationforHighwayWorks(MCHW1)

Volume2:NotesforGuidanceontheSpecificationforHighwayWorks(MCHW2)

12.4 Other Publications

HoldingdownboltdesigntoEurocode2–PublishedbyTheConcreteSociety–November2010

TheInstitutionofLightingProfessionals,ProfessionalLightingGuideNumber7,HighMastsforLightingandCCTV,2013Edition,sections1and2(ILPPLG07)

InstituteofHighwayEngineersSignStructuresGuide3rdEdition(2010)

August 2017 13/1

Chapter 13Approval

Volume 2 Section 2Part 1 BD 94/17

13. APPROVALApprovalofthisdocumentforpublicationisgivenby:

DepartmentforInfrastructureClarence Court10-18AdelaideStreetBelfast PBDOHERTY BT28GB DirectorofEngineering

WelshGovernmentTransport SHAGUECardiff DeputyDirectorCF103NQ NetworkManagementDivision

TransportScotland8thFloor,BuchananHouse58PortDundasRoadGlasgow RBRANNENG40HF ChiefExecutive

HighwaysEnglandTempleQuayHouseTheSquareTempleQuayBristol MWILSONBS16HA ChiefHighwayEngineer

AlltechnicalenquiriesorcommentsonthisDocumentshouldbesentto DMRB_Enquiries@highwaysengland.co.uk

13/2 August 2017

Chapter 13Approval

Volume 2 Section 2Part 1 BD 94/17

August 2017 A/1

Volume 2 Section 2Part 1 BD 94/17

Annex ALimit States for Cantilever Masts

ANNEX A LIMIT STATES FOR CANTILEVER MASTS

Limit State Description

Partial Factor on Load γF

Limit State Type

Dead Load Superimposed Dead Load

Wind Load Buffeting from High Vehicles

Strength(STR) ULS 1.20 1.20 1.20 –

Fatigue SLS 1.00 1.00 1.00 1.00

Deflection SLS 1.00 1.20 1.00 0.50*

Table A1 Limit States and Partial Factors

Element and Position Direction of Deformation LimitingTopofPost HorizontalΔx1 or Δy 1/100ofheightofpost

TipofCantilever HorizontalΔx2 1/100ofoutreachplusheightofpost

TipofCantilever Vertical Δz 1/100ofoutreachplusheightofpost

Table A2 Limiting Structural Deformations of Cantilever Masts [See Figure 1]

*Itshouldbenotedthatthepartialloadfactor,γFL,giveninTableA1is0.5.Thisisbecausethedesignpressuresforbuffetingduetohigh-sidedvehiclesgiveninsectionB.11havebeensettocalculatethetotalstressrangeexperience.Thatis,theresponsefrompeakpositivepressuretopeaknegativepressure.Allthatisrequiredforcalculationofheadroomisthedeflectionduetopeaknegativepressurefromthestaticequilibriumposition.Thisisapproximatelyhalfthepeak-to-peakresponse,hencethepartialloadfactor,γFL,of0.5.

A/2 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex ALimit States for Cantilever Masts

August 2017 B/1

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

ANNEX B FATIGUE CHECKS OF STEEL STRUCTURES AND GUIDANCE FOR WELD CLASSIFICATION

B.1 Whenundertakingfatiguechecksinaccordancewiththefollowingrules,nominalstressesshallbeusedbasedonnominalsectionproperties.Thestressconcentrationsinherentinthemake-upofaweldedjoint(arising,forexample,fromthegeneraljointgeometryandtheweldshape)havebeentakenintoaccountintheclassificationofthedetails.

Whereindicated,however,thenominalstressesshallbemultipliedbystressconcentrationfactors,indicativevaluesofwhichareprovidedintherelevantclause.

B.2 Forreinforcementatdooropeningsthegeometricconstraintssetoutin5.13andB.8shallbemet,andstressrangesarounddooropeningsneednotbecalculated.HoweveriftheseconstraintsarenotmetthentherequirementsofB.3orB.4shallbefollowed,asappropriate.

B.3 Forminorstructuresotherthancantilevermastsfortrafficsignalsand/orspeedcamerasthatprojectoverthecarriageway,onlyfatigueduetowindgustloadingshallbeconsideredandtherequirementsofB5toB10shallbesatisfied.

B.4 Forcantilevermastsfortrafficsignalsand/orspeedcamerasthatprojectoverthecarriagewaythefatigueeffectsfromwindgustloadingandhighvehiclebuffetingshallbecombinedandtherequirementsofB11toB13shallbesatisfied.

Fatigue Due to Gust Wind Loading

B.5 Acheckonfatigueatandadjacenttoeachweldedsection,includingtheendsofreinforcementatdooropeningswhererelevant,shallbeundertakenusingastressrangeσr, given by:

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−=

stat

vssr c

cβ110.25σσ

where:

σs isthestresscalculatedatthispositionforthedesignforcesandmomentsspecifiedinSection4ofBSEN40-3-1;

β isthedynamicresponsefactor(Clause3.2.4ofBSEN40-3-1);

cstat istheaverageshapecoefficientforthetophalfofthecolumnasusedforthestaticanalysisandgiveninFigure3ofBSEN40-3-1;

cvs is1.2forcircularsections;

is1.3foroctagonalsectionswithr/D>0.075;

is1.45foroctagonalsectionswithr/D<0.075;

r is the radius of the corner;

D isthedistanceacrosstheflats.

B/2 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

B.6 ThisstressrangeshallbelessthanthatobtainedfromB.7,appropriatetotheclassofdetailbeingconsidered and for a number of cycles n1 given by:

n1=106NfL

where:

Nf isthefrequencyofvibrationofthecolumn(Hz);

L isthedesignlifeofthestructure(years).

B.7 Foradesignlifeof25years,themaximumallowablestressrangeisgiveninFigureB1.1(a)orFigureB1.1(b)appropriatetotheclassofdetailunderconsiderationanddependentonthefrequencyNf(Hz).Thesecurvesarefordesignandincorporateapartialfactoronfatiguestrength.ThemethodofdefiningtheS-NcurvesgiveninFigureB1.1(a)andFigureB1.1(b)isbytwonumbersjoinedbyahyphen.Thefirstnumberisthereferencestrengthat2x106cyclesandthesecondisthemvaluewhichisaconstantapplicabletovaluesofn1upto5x106cycles.ThisistheprocedureadoptedfordefiningfatiguestrengthinBSEN1993-1-9.ThebasisofthecurvesinFiguresB1.1(a)andB1.1(b)isgiveninB.8.

Note: ForadesignlifeofLyearsFigureB1.1maybeusedbyadoptinganeffectivefrequencyNfe as the horizontalscalegivenby:

25L x N N ffe =

B.8 Fatigueiscriticallydependentongeometricalconfigurationsandfabrication.

Thefollowinggeometricandfabricationconstraintsoncrosssectionsofsteellightingcolumnsshallbesatisfied,inordertousetheclassesofdetailsasprovidedinB.9.

Flange Plates

(a) Thecolumn/flangeplateweld1A,2/1and2/2showninFiguresB.2,B.3andB.4shallhaveathroatsizeKtimesgreaterthanthethicknessoftheadjacentshaftmaterial,whereKisgivenby:

Weld K

1A 1.10

2/1 1.25

2/2 1.25*

*Orusefullpenetrationbuttweld

(b) Thethicknessofthebasematerialtbshallbenotlessthanthethicknessoftheadjacentshaftmaterial,ts.

Shoulder Joints

(c) WeldedShoulderjointsasshowninFiguresB.5,B.6andB.7shallhaveanangleofinclinationtotheaxisofthecolumns,α,betweenthefollowinglimits:

12°<α<35°

August 2017 B/3

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

(d) TheshoulderjointweldAasshowninfiguresB5,B6andB7shallhaveathroatsize10%greaterthanthethicknessoftheadjacentshaftmaterial,ts.

(e) Toensurethatwelddetail6(seeFigureB.8)behavesasintendedthelappedlengthshallbeatleast1.5timesthediameterofthelappedshaft.Eachsectionshallbegalvanisedtoavoidtheriskofprematurefailureduetorusting.

Door Openings

(f) StiffenedandunstiffeneddooropeningsshallcomplywiththeconstraintsshowninFigureB.9.Inadditionthe following fabrication constraints shall be met:

i. sharpirregularitiesatfreeedgesduetotheflamecuttingprocessshallbegroundout;

ii. noweldingshallbecloserthan10mmfromtheedgeofthedoorunstiffenedopening.

Longitudinaledgestiffenersshallbecontinuousovertheirfullextent.

B.9 Guidanceonclassesoftypicalwelddetailsincorporatingstressconcentrationfactors,Kf,whichcomplywiththeconstraintsofB.6aregiveninFiguresB.2toB.9forweldsmadeusingnormalcommercialpractice,e.g.manualweldswithoutNDTorothertesting.ThisguidancewasbasedonfatiguetestsofarepresentativenumberofdetailsprovidedbyarangeofUKlightingcolumnmanufacturers.Howeverclassificationiscriticallydependentonweldingqualityandfabricationmethods,andhencetheinformationprovidedisforguidanceonly.Closercontroloftheweldingandfabricationprocessand/orpost-weldtreatmentmayimprovetheweldclassification.ForotherweldeddetailsspecialistadviceshouldbesoughtandreferencemadetoBSEN1993-1-9.

B.10 FiguresB1.1(a)and(b),thefatiguelifecurves,arebasedon:

(a) No.ofcyclestofailureN=2x106

where σo =detailscategory(50,…120…)

m =slopeofcurve(3forFigureB1.1(a)and4forFigureB1.1(b))

σR =stressrange

(b) ThenumberofcyclesrelatetothefrequencybytheequationinB.4:

N=106NfL

(c) ThusforadesignlifeofLof25years:

N=25x106Nf

m

⎟⎟⎠

⎞⎜⎜⎝

r

o

σσ

B/4 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

(d) Thus,therelationshipbetweenσRandNf(theplotsofFiguresB1.1(a)andB1.1(b))is:

i.e.

e.g.forclassdetail120:4

σo=120

m=4

σR 100 90 80 70 60 50

Nf 0.166 0.253 0.405 0.691 1.280 2.650

Fatigue from High Vehicle Buffeting

B.11 Thestressrangeσr2iinanypartofthestructureforfatigueduetohighvehiclebuffetingshallbecalculatedbyapplying:

(i) apressureofPdtotheportionofthecantileverarmandanyattachmentsabovethecarriagewayvertically downwards; and

(ii) apressureofPdtotheportionofthecantileverarmandanyattachmentsabovethecarriagewayhorizontallyagainstthedirectionofthetraffic.

ThepressurePd shall be calculated as:

Pd=600h-0.25–400(inN/m2)

Wherehiseither:

(i) Thedistancefromthetopofthehighsidedvehicletotheundersideofanyhorizontalsurface;or

(ii) Thedistancefromthetopofthehighsidedvehicletothecentreofpressureofanyverticalsurface.

Atypicalhighsidedvehicleheightof4.2metresshallbeused.(seenote3,clauseB.12).TheformulaforPdappliesforavalueofuptoh=5m.

Appliedloadsshallbecalculatedastheproductoftheappropriatepressureandprojectedarea.PartialloadfactorγfLshallbetakenas1.0.

f6

m

R

o6 N 10 x 25σσ

10 x 2 =⎟⎟⎠

⎞⎜⎜⎝

m

Rσoσ

1008Nf ⎟

⎜⎜

⎛=

4

Rf σ

120100

8N ⎟⎟⎠

⎞⎜⎜⎝

⎛=

f6

m

R

o6 N 10 x 25σσ

10 x 2 =⎟⎟⎠

⎞⎜⎜⎝

m

Rσoσ

1008Nf ⎟

⎜⎜

⎛=

4

Rf σ

120100

8N ⎟⎟⎠

⎞⎜⎜⎝

⎛=

f6

m

R

o6 N 10 x 25σσ

10 x 2 =⎟⎟⎠

⎞⎜⎜⎝

m

Rσoσ

1008Nf ⎟

⎜⎜

⎛=

4

Rf σ

120100

8N ⎟⎟⎠

⎞⎜⎜⎝

⎛=

August 2017 B/5

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Fatigue Damage Assessment

B.12 Fatiguedamageshallbeassessedasfollows:

(i) Forfatigueduetogustwindloading

The number of cycles, n1,shallbecalculatedfromB.6

Thecorrespondingnumberofcyclestofailure,N1 shall be given by:

m

r1

o61 σ

σ10 x 2N ⎟⎟

⎞⎜⎜⎝

⎛=

m

r2i

o62i σ

σ10 x 2N ⎟⎟

⎞⎜⎜⎝

⎛=

(ii) Forfatigueduetohighvehiclebuffeting:

The number of cycles for each lane in a carriageway, n2i, shall be given by:

n2i=1.6x107.L.Fi

Thecorrespondingnumberofcyclestofailure,N2i, is given by:

m

r1

o61 σ

σ10 x 2N ⎟⎟

⎞⎜⎜⎝

⎛=

m

r2i

o62i σ

σ10 x 2N ⎟⎟

⎞⎜⎜⎝

⎛=

Where:

L isthedesignlifeofthestructure(years)

σo isthedetailscategory(50,…120…), (seeparagraph5.15and,forrelevantdetails,fromB.8);

Fi isthelaneallocationfactor(seeTableB1);and

m istheslopeofcurve(seeparagraphB.7).

Type of carriageway

Lane Allocation Factors, Fi

Lane 1 Lane 2 Lane 3 Lane 4D2M 0.7 0.3 – –

D3M 0.6 0.4 0.0 –

D4M 0.4 0.4 0.2 0.0

Table B1 Lane Allocation Factors

(iii) Thefatigueeffectsfromwindgustloadingandhighvehiclebuffetingshallbecombinedandshallsatisfy the following criterion:

1

2

2

1

1 ≤+∑T

i i

i

Nn

Nn

whereTisthenumberoflanesdirectlybeneaththecantileverarm.

B/6 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Notes:

The number of cycles for high vehicle buffeting is based on:

1. Thepassageof7,000suchvehiclesperdayoneachcarriageway.Whereflowsarelessthanthisaverage, then the values of n2ishouldbereducedinproportion.Flowsofhighsidedvehiclesshallbedeterminedbytrafficsurvey.Thetotalnumberofhighsidedvehiclesshallnotbereducedbelowavalueof1,000fordesignpurposes.

2. Atotallogarithmicdecrementofdampingof0.03;wheredampingislessthanthisvaluethenspecialistadviceshouldbesought.

Furthermore:

1. Ahighsidedvehicleheightof4.2metreshasbeenadoptedforcalculatingthepressurePd, as a representativeheightofsuchvehiclescurrentlyinuseonUKhighways;whereaparticularsitehasasignificantlyhigheraveragevehicleheightthenthisshouldbeusedinstead.

2. Thedesignpressure,Pd,assumesthatthemaximumspeedofthehighsidedvehicleislimitedto60mph.Whereregulationspermithighermaximumspeedsthenspecialistadviceshouldbesought.

B.13 Checksonfatigueshallbeundertakenatthefollowingpositions:

(i) atandadjacenttoeachweldedsection;and

(ii) theendofthereinforcementatdooropenings.

August 2017 B/7

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Note:ForbasisofcurvesseeB.9

Figure B1.1(a) Fatigue of Column Stress Range Limit for Class of Weld Detail Based on a 25 Year Design Life Requirement (m=3)

B/8 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Note:ForbasisofcurvesseeB.9

Figure B1.1(b) Fatigue of Column Stress Range Limit for Class of Weld Detail Based on a 25 Year Design Life Requirement (m=4)

August 2017 B/9

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checked Class of Parent Metal Kf = Kt Kb Kh

1A 1B A-A 30Kf-4(1)

(1) Providedweld1Aisdesignedfortransferofthetotalloadandweld1Bisforsealingonly.Otherwiseadetailedstressanalysisshallbeundertakenandtheresultingstressconcentrationfactorsused.

(2) NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparentmetalshallstillbechecked.

Figure B.2 Weld Detail Type 1

B/10 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checked Class of Parent Metal Kf = Kt Kb Kh

2/1 A-A 30Kf-4

Note:NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparentmetalshallstillbechecked.

Figure B.3 Weld Detail Type 2/1

August 2017 B/11

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checked Class of Parent Metal Kf = Kt Kb Kh

2/2 A-A 30Kf-4

Note:NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparentmetalshallstillbechecked.

Figure B.4 Weld Detail Type 2/2

B/12 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checkedClass

Parent Metal Weld Throat

3A A-A 90–4 (1) See (2)

3B NochecknecessaryifcriteriaofB/8aremet90–4 (1) See (2)

3C C-C

(1) Incorporatesstressconcentrationfactor,takeKf=1.0. (2) NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparent metalshallstillbechecked.

Figure B.5 Weld Detail Type 3

Note:Jointdetailnotrecommendedforotherthanlightlyloadedshortcolumns

Weld Section to be checkedClass

Parent Metal Weld Throat4 A/A 71–4 (1) See (2)

(1) Incorporatesstressconcentrationfactor,takeKf=1.0. (2) NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparent metalshallstillbechecked.

Figure B.6 Weld Detail Type 4

August 2017 B/13

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checkedClass

Parent Metal Weld Throat

5A A/A 90–4 (1) See (2)

5B NochecknecessaryifcriteriaofB/8aremet 120–4 See (2)

5CC-C.Plugsnotgroundsmooth 90–4 –

C-C.Plugsgroundsmooth 120–4 –

(1) Incorporatesstressconcentrationfactor.TakeKf=1.0. (2) NofatiguecheckneedbeundertakenontheweldthroatprovidedthecriteriaofB.8aremet.Theparent metalshallstillbechecked.

Figure B.7 Weld Detail Type 5

B/14 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld Section to be checkedClass

Upper Tube Parent Metal

Lower Tube Parent Metal Weld Throat

6 A/A N/A (1) 71–4 See (2)

(1) Assumestightfitbetweentubesforloadtransferbyshear. (2) Nofatiguecheckneedbeundertakenontheweldthroat.Theparentmetalshallstillbechecked. (3) RefertoB.8(e)regardingthedetailingofthisjoint.

Figure B.8 Weld Detail Type 6

August 2017 B/15

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

Weld/Detail Section to be checked Class

7 Intermediate weld 80–3

8 Intermediate weld 71–3

9 Endweld 50–3

10 Flamecutedge 112–4

(1) Nofatiguestresscalculationsneedbeundertakenprovidedthegeometricandfabricationconstraintsof B.8havebeenmet.Otherwisetheaboveclassificationshouldbeadoptedinconjunctionwithadetailed stressanalysisincorporatingappropriatestressconcentrationfactors.

Figure B.9 Weld Detail Type 7 to 10

Welded stiffener adjacent to openingparallel to column

Welded stiffener adjacent to openingtransverse to column

B/16 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex BFatigue Checks of Steel Structures and Guidance for Weld Classification

August 2017 C/1

ANNEX C DETAILED DESIGN OF FLANGE PLATESC.1 General

C.1.1 TheproceduregiveninChapter10forthedesignofflangeplatesassumescircularoroctagonalcolumnsconnectedtosquareflangeplateswithacentrallylocatedholenotexceeding0.30Dindiameterandsupportedbyfourholdingdownboltssymmetricallydisposed.Thefollowinggeneralproceduremaybeusedforsquareplateswithcentrallylocatedholeseithernotexceeding0.30Dindiameter,orofdiameterequaltothatofthecolumn(seeFigureC.1).Thisprocedureprovidesdesigncriteriaforthewelds,theplate,theholdingdownboltsandthebearingstresses.

C.1.2 Inadditionaconservativeassumptionhasbeenmadeforthepositionoftheaxisofbending.Theproceduregivenhereinprovidesamoreaccuratederivationofthemaximumbendingmomentontheplatetobeusedindesign.

C.1.3 ForflangeplatesnotcomplyingwiththeconstraintsofC.1.1othersuitabledesignmethods,orfullscaleloadtestsmaybeadopted,subjecttotheapprovaloftheOverseeingOrganisation.

C.2 Derivation of Weld Stresses

C.2.1 Theconnectionbetweenthecolumnandflangeplateshallbecapableofdevelopingtheultimatemomentofresistance,MR,asderivedfromBSEN40-3-3andtheequivalentshearforce,FR.Theconnectionmaybe achieved by welds of leg length, twasshowninFigure5,detailAorB.

Note: InthecaseofdetailBinparticular,thelengthoffilletweld,tw,requiredmayneedtobeconsiderablyinexcessofthewallthickness,t,inordertosatisfytheserequirements.Alternatively,afullpenetrationbuttweldmaybeusedwhichwillautomaticallysatisfytheserequirements.

C.2.2 ThestressinthefilletweldsduetomomentofresistanceMRmaybetakenas:

TheshearstressinthefilletweldsduetotheequivalentshearforceFRmaybetakenas:

τRtheresultantweldstressshallbetakenas:

where R=meanradiusofcrosssection(inmm); tw=filletweldleglength(inmm).

C.3 Capacity of Welds

C.3.1 Thestressinthefilletwelds,τR,shallnotexceedtheweldcapacityτD given by:

( )( )2

w2

3R

1 N/mmin t0.7πR

10Mτ

⋅=

( ) ( ) ( )2

w

R

w

R2 N/mmin

0.7tπRM

0.7tR2πF

τ ==

( ) ( ) )(N/mm 1R

10000.7tπR

Mτττ 22

w

R1/222

21R +⎟

⎠⎞

⎜⎝⎛=+=

( )( )2

w2

3R

1 N/mmin t0.7πR

10Mτ

⋅=

( ) ( ) ( )2

w

R

w

R2 N/mmin

0.7tπRM

0.7tR2πF

τ ==

( ) ( ) )(N/mm 1R

10000.7tπR

Mτττ 22

w

R1/222

21R +⎟

⎠⎞

⎜⎝⎛=+=

( )( )2

w2

3R

1 N/mmin t0.7πR

10Mτ

⋅=

( ) ( ) ( )2

w

R

w

R2 N/mmin

0.7tπRM

0.7tR2πF

τ ==

( ) ( ) )(N/mm 1R

10000.7tπR

Mτττ 22

w

R1/222

21R +⎟

⎠⎞

⎜⎝⎛=+=

( ) ( )2

m

yD N/mmin

32γ455fk

τ+

=

( )inN.ma

2Rα1M 0.6M Ruu ⎥⎦⎤

⎢⎣⎡ −=−

( )inN.m2a

2Rα1M 0.6M Rvv ⎥⎦

⎤⎢⎣

⎡−=−

Annex CDetailed Design of Flange Plates

Volume 2 Section 2Part 1 BD 94/17

C/2 August 2017

where fy istheyieldstressofthecolumnsection(fs)ortheflangeplate(ff)whicheveristhelesser;

γm istakenas1.20;

k =0.9forsidefilletswheretheweldissubjecttolongitudinalshear; or1.4forendfilletsinendconnectionswheretheweldissubjecttotransverseshear; or1.0forallotherwelds.

(Whereinnerfilletsandouterfilletsareusedtogetherkmaybeaggregated,e.g.k=2.8fordetailAinFigure5sincebothareeffectivelyendfilletsforanendconnection.)

C.4 Design of Flange Plates

C.4.1 Derivation of Bending Moments in Flange Plates

C.4.1.1Theflangeplateshallbedesignedtoresistatleasttheeffectof1.2MRatthebaseofthecolumnwhereMR isasderivedfromBSEN40-3-3,andshallbecheckedaboutbendingparalleltooneside(axisu-u)andonthediagonal(axisv-v)seeFigureC.1.

C.4.1.2Themaximumbendingmomentontheflangeplateaxesu-uandv-vforplateswitheffectivebeddingorsupportedonlevellingnutsonlymaybetakenas:

where R=meanradiusofthecolumncrosssection(inmm); a=spacingofthebolts(inmm);

andαrelatestothepositionconsideredformaximumbendingintheplate.Inlieuofmorethoroughanalysisαmaybebasedonthecentroidoftheweldsonthetensileside,i.e.αmaybetakenas0.63.

C.4.2 Bending Capacity of Flange Plate

C.4.2.1Themaximummomentintheflangeplate,M,shallnotexceedtheplasticmomentcapacityoftheflangeplate,Mp.Forasquareflangeplatewherethecentrallylocatedholeisthesamediameterasthecolumnbase(refertoFigureC.1,detailA)Mp is given by:

and

where γm istakenas1.15; c =thewidthoftheflangeplate(inmm); tf =thethicknessoftheflangeplate(inmm); ff =theyieldstressoftheflangeplate(inN/mm2).

( ) ( )2

m

yD N/mmin

32γ455fk

τ+

=

( )inN.ma

2Rα1M 0.6M Ruu ⎥⎦⎤

⎢⎣⎡ −=−

( )inN.m2a

2Rα1M 0.6M Rvv ⎥⎦

⎤⎢⎣

⎡−=−

( ) ( )2

m

yD N/mmin

32γ455fk

τ+

=

( )inN.ma

2Rα1M 0.6M Ruu ⎥⎦⎤

⎢⎣⎡ −=−

( )inN.m2a

2Rα1M 0.6M Rvv ⎥⎦

⎤⎢⎣

⎡−=−

( ) ( ) axis;u -ufor N.min 10γ

f4t

α12RcM3

m

f2f2

p −−=

( ) ( ) axis; v-for v N.min 10γ

f4t

)-1(2R2cM3

m

f2f2

p α+α−=

( ) ( ) axis;u -ufor N.min 10γ

f4t

α12RcM3

m

f2f2

p −−=

( ) ( ) axis; v-for v N.min 10γ

f4t

)-1(2R2cM3

m

f2f2

p α+α−=

Volume 2 Section 2Part 1 BD 94/17

Annex CDetailed Design of Flange Plates

August 2017 C/3

C.5 Design of Holding Down Bolts

C.5.1 Derivation of Stresses in Bolts

C.5.1.1Thetensilestressintheholdingdownboltsmaybetakenas:

where ntisrelatedtothenumberofboltsresistingtensionandtheassumedaxisofbendingandmaybetakenas:

0.5nbforbendingaboutaxisu-u;seeFigureC.1;or 0.25nbforbendingaboutaxisv-v;seeFigureC.1;

Aet =thetensilestressareainthethreadoftheboltobtainedfromtheappropriatestandard; a =theboltspacing; nb =totalnumberofboltsfixingtheflangeplate.

Note: Ingeneral(ntxa)shouldnotbetakenasgreaterthan(a+αR+0.5c)foraxisu-u,norgreaterthan 0.7(a+0.7αR+0.5c)foraxisv-vtoensurecompatibilitywiththeassumedmodeofbendingin5above.

Theshearstressintheboltsmaybetakentobethatderivedin10.14,combinedshearandtensionin10.15andcapacityoftheanchoragefrom10.16.

C.6 Check on Bearing Stress Below the Flange Plate

C.6.1 Thebearingstressgivenin10.17assumesbendingaboutthev-vaxis.Ingeneralitwillbenecessarytoderivethebearingstressonthefoundationmediumforboththeassumedbendingmodesu-uandvv,oneitheraplasticorelasticbasisasrequired.Themaximumcalculatedbearingstressshallnotexceedthevaluedeterminedinaccordancewith10.18.

C.6.2 Onaplasticbasis,themaximumbearingstressforbendingaboutu-umaybetakenas:

C.6.3 Onaplasticbasis,themaximumbearingstressforbendingaboutv-vmaybetakenas:

whereMR,c,a,RandαareallasdefinedinC.4.1above.

)(N/mmA a n10x1.2M

σ 2

ett

3R=

)(N/mmc) 0.5 R α 0.5 a R)(0.75 α - c c(0.5

10xM 3 23

R

++

)(N/mmR) α 0.7 0.5c (aR) α - c 0.7(0.7

10xM 3 22

3R

++

Annex CDetailed Design of Flange Plates

Volume 2 Section 2Part 1 BD 94/17

C/4 August 2017

Figure C.1 Typical Arrangement of Flange Plate

Note: 1. DetailsAandBaretypicalonlyandmaybeusedwithcircularoroctagonalcolumnsifrequired. 2. R=meanradiusasdefinedinBSEN40-3-3(Figure3). 3. ‘*’:Radiusofcentrallylocatedholeshallnotexceed0.3R.

Volume 2 Section 2Part 1 BD 94/17

Annex CDetailed Design of Flange Plates

August 2017 D/1

ANNEX D DETERMINATION OF SHAPE COEFFICIENTS BY TESTING

D.1 Shape Coefficients for Columns

General

D.1.1 ProperlyconductedwindtunneltestsoncolumnsandbracketsshallonlybeundertakenwhenshapecoefficientsarenotavailablefromBSEN40-3-1orfromrecognisedInternationalStandards.AdoptionofvaluesfromthesestandardsorfromwindtunneltestsshallbeagreedwiththeTechnicalApprovalAuthority.Particularcareshouldbetakentoensurethatthevaluesofshapecoefficientsrelatetocross-sectionsofmembersofinfinitelength.

D.1.2 Windtunnelteststoestablishshapecoefficientsshouldbecarriedoutusingfullscalespecimenswhichaccuratelyrepresentthefinalproposedcolumn.Theforcesonthespecimenshallbemeasuredinthedirectionoftheairflowandthedirectionnormaltotheairflow.

D.1.3 Previouswindtunneltestshaveindicatedthatsmallangularrotationsofspecimenscancauseconsiderabledifferencesinshapecoefficients.Thespecimensshallthereforebeturnedinthewindtunnelandmeasurementstakenatangularincrements.Intheregionofeachshapecoefficientthemeasurementsshallbereducedtoapproximately1°ofrotation.ComparisonsshallbemadewiththevaluesofsimilarsectionsgiveninrecognizedInternationalStandardsaspartoftheadoptionandagreementprocedurewiththeTechnicalApprovalAuthoritysetoutin4.

D.2 Shape Coefficients for Lanterns, Cameras, Signs and Brackets

D.2.1 Theshapeandliftcoefficientsforlanterns,camerasandsignsmaybedeterminedfromwindtunneltestsasrequiredbyBSEN40-3-1.Thesetestsshallbecarriedoutonafullscaleshapeoftheelementinatunnelsufficientlylargetoreducesideeffectstoaninsignificantlevel.Thesurfaceconditionofthespecimenshallaccuratelyrepresentthatoftheproductionversion.Whereoptionalattachmentswillbemadetotheelement,eg.photo-electriccontrolunits,gearcomponentextensionsetc,theseshallbeincludedinthetestspecimen.

D.2.2 Whencarryingoutwindtunneltest,forcesbothinthedirectionoftheairflowandinthedirectionnormaltotheairflowshallbemeasured,asshapeandliftcoefficientsarerequiredforallthedirectionsrequiredinD.2.3.Allshapecoefficientsshallbebasedontheprojectedareaoftheelementnormaltotheairflow.

D.2.3 Forcesonanelementshallbemeasuredatincrementsofrotationofapproximately1°betweenthelimitof±10°tothehorizontal.BSEN40-3-1requiresthemaximumvaluebetween±5°tothehorizontalbutamoreconservativevalueshallbeadoptedwherelargeincreasesofcoefficientsareobtainedbetween5°and10°tothehorizontal.Duringtestingtheeffectsofsmallplanrotationsaboutthepointoffixingshallalsobetakenintoaccount.Whereanincreaseinshapecoefficientobtainedwitharotationwithinthelimitsof ±10°thenthisvalueshallbeadopted.

Annex D Determination of Shape Coefficients by Testing

Volume 2 Section 2Part 1 BD 94/17

D/2 August 2017

Volume 2 Section 2Part 1 BD 94/17

Annex D Determination of Shape Coefficients by Testing