AERODYNAMIC MODELING OF AN UNMANNED AERIAL ...

Post on 20-Jan-2023

0 views 0 download

transcript

AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A

COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillments

of the requirements for the degree

Master of Science

Isaac D. Rose

March 2009

© 2009 Isaac D. Rose. All Rights Reserved.

This thesis titled

AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A

COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE

by

ISAAC D. ROSE

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

_____________________________________________________________

Douglas A. Lawrence

Professor of Electrical Engineering and Computer Science

_____________________________________________________________

Dennis Irwin

Dean, Russ College of Engineering and Technology

Abstract

ROSE, ISAAC D., M.S., March 2009, Electrical Engineering

AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A

COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE (192 pp.)

Director of Thesis: Douglas A. Lawrence

The process of creating a six degree-of-freedom model for an aerospace

vehicle requires detailed knowledge of the aerodynamic characteristics. This thesis

presents an implementation of a Computational Fluid Dynamics (CFD) prediction

computer code to generate aerodynamic coefficients for the Brumby Mk. I Unmanned

Aerial Vehicle (UAV). The aerodynamic coefficients include both the force and

moment coefficients. These values are verified by creating a Matlab/Simulink six

degree-of-freedom model.

Approved: ______________________________________________________________

Douglas A. Lawrence

Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to thank GOD through whom all things are possible. I would like to

thank my wife and son for their understanding and encouragement. The hours spent

working on this thesis were hours spent away from them. I would also like to thank Dr.

Lawrence for the guidance and direction that he has given me over the years. The

research presented in this thesis is a tribute to his resolve in the autonomous control of the

Brumby Unmanned Arial Vehicle. Finally, I would like to thank the faculty of the

department of Electrical Engineering and Computer Science for their help throughout the

years.

Table of Contents

Abstract.................................................................................................................................3

Acknowledgments................................................................................................................4

Glossary of Variables..........................................................................................................14

Chapter 1: Introduction..................................................................................................19

1.1 Overview.............................................................................................................19

1.2 Motivation ..........................................................................................................20

1.3 Modeling Aerodynamic Forces and Moments....................................................21

1.4 Objectives............................................................................................................22

1.5 Thesis Organization.............................................................................................22

1.5.1 Missile DATCOM Input Parameters...........................................................22

1.5.2 Missile DATCOM Model of the Brumby UAV..........................................23

1.5.3 Equations of Motion....................................................................................23

1.5.4 Brumby UAV Model Simulation................................................................23

Chapter 2: Missile DATCOM Modeling Parameters Overview....................................24

2.1 Flight Conditions..................................................................................................26

2.2 Fuselage...............................................................................................................28

2.3 Primary Lifting Surface ......................................................................................29

2.4 Horizontal Stabilizer...........................................................................................33

2.5 Vertical Stabilizer................................................................................................35

2.6 Control Surfaces..................................................................................................36

2.7 Generating Additional Data................................................................................38

2.8 File Format and Content......................................................................................39

2.9 Missile DATCOM Example...............................................................................41

Chapter 3: Missile DATCOM Model of the Brumby Unmanned Aerial Vehicle .........72

3.1 Flight Conditions.................................................................................................72

3.2 Fuselage................................................................................................................75

3.3 Wing Planform....................................................................................................76

3.4 Vertical Stabilizer................................................................................................77

3.5 Control Surfaces .................................................................................................80

Chapter 4: Equations of Motion and Rigid Body Modeling .........................................86

4.1 Equations of Motion for A Rigid Body ..............................................................86

4.2 Aerodynamic Coefficients..................................................................................91

4.3 Six Degree-of-Freedom Aircraft Model............................................................101

Chapter 5: Simulation...................................................................................................103

5.1 Simulink Nonlinear Aircraft Model..................................................................103

5.2 Trimmed Aircraft Flight....................................................................................107

5.3 Linearized Aircraft Model.................................................................................108

5.4 Nonlinear Simulation Results...........................................................................112

5.4 Control Surface Doublet Simulation Results....................................................123

Chapter 6: Conclusions and Future Work....................................................................138

References........................................................................................................................140

Appendix A.1: for005.dat File.........................................................................................141

Appendix A.2 : Truncated for006.dat File.......................................................................145

Appendix A.3 : for003.dat File........................................................................................154

Appendix A.4 : for021.dat File........................................................................................155

Appendix B.1: Equations of Motion s-function...............................................................184

Appendix B.2: forces_moments.m..................................................................................189

Appendix B.3: datcomderive.m.......................................................................................192

List of Tables

Table 2.1: Missile DATCOM Control Cards.....................................................................26

Table 2.2: Missile DATCOM Namelist FLTCON ..........................................................27

Table 2.3: Missile DATCOM Namelist REFQ..................................................................28

Table 2.4: Missile DATCOM Namelist AXIBOD............................................................29

Table 2.5: Missile DATCOM Namelist FINSET..............................................................30

Table 2.6: Missile DATCOM Namelist DEFLCT.............................................................38

Table 2.7: Missile DATCOM File Definitions..................................................................41

Table 3.1: Brumby UAV Flight Conditions (FLTCON) ..................................................73

Table 3.2: Brumby UAV Reference Values (REFQ)........................................................75

Table 3.3: Brumby UAV Body Definition (ASYM).........................................................76

Table 3.4: Brumby UAV Twin Vertical Tail Planform Definition (FINSET2)................79

Table 4.5: Brumby UAV Wing Planform Definition (FINSET1).....................................88

Table 5.1: Brumby UAV Mass Properties.......................................................................104

Table 5.2: S-function Functionality.................................................................................104

Table 5.3: DATCOMTableMex.dll Functionality...........................................................106

Table 5.4: Brumby UAV Control Input Trimmed Values (Case 1)................................107

Table 5.5: Brumby UAV State Variables Initial Condition Values (Case 1)..................108

Table 5.6: Brumby UAV Trimmed Aerodynamic Values (Case 1)................................108

Table 5.7: Brumby UAV Control Input Trimmed Values (Case 2)................................112

Table 5.8: Brumby UAV Control Effector Doublet Values............................................124

List of Figures

Figure 2.1: Missile DATCOM Axes Definition ...............................................................25

Figure 2.2: Missile DATCOM Body Variables.................................................................30

Figure 2.2: Missile DATCOM Finset................................................................................31

Figure 2.3: NACA Airfoil Number Decomposition..........................................................31

Figure 2.4: Missile DATCOM Fin Panel Location Definition..........................................33

Figure 2.5:Twin-Horizontal Stabilzer Fin Panel Location Definition...............................34

Figure 2.6:V-Tail Stabilzer Fin Panel Location Definition...............................................35

Figure 2.7:Twin-Vertical Stabilzer Fin Panel Location Definition...................................36

Figure 2.8: Missile DATCOM Control Surface Definition...............................................38

Figure 2.9: for005.dat File Example..................................................................................43

Figure 2.10: for006.dat File Example (Data Input)...........................................................44

Figure 2.11: for006.dat File Example (Error Checking)....................................................45

Figure 2.12: for006.dat File Example (Case 1 Output, Page 2).........................................46

Figure 2.13: for006.dat File Example (Case 1 Output, Page 3).........................................47

Figure 2.14: for006.dat File Example (Case 1 Output, Page 4).........................................48

Figure 2.15: for006.dat File Example (Case 1 Output, Page 5).........................................49

Figure 2.16: for006.dat File Example (Case 1 Output, Page 6).........................................50

Figure 2.17: for006.dat File Example (Case 1 Output, Page 7).........................................51

Figure 2.18: for006.dat File Example (Case 1 Output, Page 8).........................................52

Figure 2.19: for006.dat File Example (Case 1 Output, Page 9).........................................53

Figure 2.20: for006.dat File Example (Case 1 Output, Page 10).......................................54

Figure 2.21: for006.dat File Example (Case 1 Output, Page 11).......................................55

Figure 2.22: for006.dat File Example (Case 1 Output, Page 12).......................................56

Figure 2.23: for006.dat File Example (Case 1 Output, Page 13).......................................57

Figure 2.24: for006.dat File Example (Case 2 Output, Page 1 and 2)...............................58

Figure 2.25: for006.dat File Example (Case 2 Output, Page 3).........................................59

Figure 2.26: for006.dat File Example (Case 2 Output, Page 4).........................................60

Figure 2.27: for006.dat File Example (Case 2 Output, Page 5).........................................61

Figure 2.28: for006.dat File Example (Case 2 Output, Page 6).........................................62

Figure 2.29: for006.dat File Example (Case 2 Output, Page 7).........................................63

Figure 2.30: for006.dat File Example (Case 2 Output, Page 8).........................................64

Figure 2.31: for006.dat File Example (Case 2 Output, Page 9).........................................65

Figure 2.32: for006.dat File Example (Case 2 Output, Page 10).......................................66

Figure 2.33: for006.dat File Example (Case 2 Output, Page 11).......................................67

Figure 2.34: for006.dat File Example (Case 2 Output, Page 12).......................................68

Figure 2.35: for006.dat File Example (Case 2 Output, Page 13).......................................69

Figure 2.36: for003.dat File Example................................................................................70

Figure 2.37: for021.dat File Example................................................................................71

Figure 3.1: Brumby UAV Fuselage...................................................................................75

Figure 3.2: Brumby UAV Wing Planform........................................................................77

Figure 3.3: Brumby UAV Vertical Planform....................................................................79

Figure 3.4: Brumby UAV Vehicle Description Case for005.dat File................................82

Figure 3.5: Brumby UAV Wing Control Deflection Cases for005.dat File......................83

Figure 3.6: Brumby UAV Twin Vertical Tail Control Deflection Cases for005.dat File. 84

Figure 3.7: Brumby UAV Side-Slip Angle and Altitude Cases for005.dat File................85

Figure 4.1: Aerodynamic Angles.......................................................................................88

Figure 4.2: Lift Coefficient (a) and Drag Coefficient (b)..................................................94

Figure 4.3: Force(a, b, c) and Moment Coefficients(d, e, f)..............................................95

Figure 4.4: Brumby UAV Moment Definition..................................................................98

Figure 4.5: Axial and Normal Forces..............................................................................100

Figure 4.6: Lift and Drag Forces......................................................................................100

Figure 5.1: Simulink Nonlinear Aircraft Model..............................................................103

Figure 5.2: Navigation Position Output (SLF)................................................................113

Figure 5.3: Euler Angles Output (SLF)...........................................................................113

Figure 5.4: Translational Velocities Output (SLF)..........................................................114

Figure 5.5: Angular Velocities Output (SLF)..................................................................114

Figure 5.6: Velocity Magnitude Output (SLF)................................................................115

Figure 5.7: Aerodynamic Angles Output (SLF)..............................................................115

Figure 5.8: Flight-Path Angle Output (SLF)....................................................................116

Figure 5.9: Rate-of-Climb Output (SLF).........................................................................116

Figure 5.10: Navigation Position Ground Track Output (SLF).......................................117

Figure 5.11: Navigation Position 3-Dimensional Output (SLF)......................................117

Figure 5.12: Navigation Position Output (CTROC)........................................................118

Figure 5.13: Euler Angles Output (CTROC)...................................................................118

Figure 5.14: Translational Velocities Output (CTROC)..................................................119

Figure 5.15: Angular Velocities Output (CTROC)..........................................................119

Figure 5.16: Velocity Magnitude Output (CTROC)........................................................120

Figure 5.17: Aerodynamic Angles Output (CTROC)......................................................120

Figure 5.18: Flight-Path Angle Output (CTROC)...........................................................121

Figure 5.19: Rate-of-Climb Output (CTROC).................................................................121

Figure 5.20: Navigation Position Ground Track Output (CTROC)................................122

Figure 5.21: Navigation Position 3-Dimensional Output (CTROC)...............................122

Figure 5.22: Doublet Response Navigation Position Output (SLF)................................125

Figure 5.23: Doublet Response Euler Angles Output(SLF)............................................125

Figure 5.24: Doublet Response Translational Velocities Output(SLF)...........................126

Figure 5.25: Doublet Response Angular Velocities Output (SLF)..................................126

Figure 5.26: Doublet Response Velocity Magnitude Output (SLF)................................127

Figure 5.27: Doublet Response Aerodynamic Angles Output (SLF)..............................127

Figure 5.28: Flight-Path Angle Output (SLF)..................................................................128

Figure 5.29: Rate-of-Climb Output (SLF).......................................................................128

Figure 5.30: Doublet Response Navigation Ground Track Output (SLF).......................129

Figure 5.31: Doublet Response Navigation 3-Dimensional Output (SLF)......................129

Figure 5.32: Control Surface Deflection Input Angles (SLF).........................................130

Figure 5.33: Aerodynamic Control Surface Deflection Input Angles (SLF)...................130

Figure 5.34: Doublet Response Navigation Position Output (CTROC)..........................131

Figure 5.35: Doublet Response Euler Angles Output (CTROC).....................................131

Figure 5.36: Doublet Response Translational Velocities Output (CTROC)...................132

Figure 5.37: Doublet Response Angular Velocities Output (CTROC)...........................132

Figure 5.38: Doublet Response Velocity Magnitude Output (CTROC)..........................133

Figure 5.39: Doublet Response Aerodynamic Angles Output (CTROC)........................133

Figure 5.40: Flight-Path Angle Output (CTROC)...........................................................134

Figure 5.41: Rate-of-Climb Output (CTROC).................................................................134

Figure 5.42: Doublet Response Navigation Ground Track Output (CTROC)................135

Figure 5.43: Doublet Response Navigation 3-Dimensional Output (CTROC)...............135

Figure 5.44: Control Surface Deflection Input Angles (CTROC)...................................136

Figure 5.45: Aerodynamic Control Surface Deflection Input Angles (CTROC)............136

Glossary of Variables

D Drag Force

Y Side Force

L Lift Force

A Axial Force

N Normal Force

C A Axial Force Coefficient

CY Side Force Coefficient

C N Normal Force Coefficient

C L Lift Force Coefficient

C D Drag Force Coefficient

C l Rolling Moment Coefficient (Body axis)

Cm Pitching Moment Coefficient(Body axis)

Cn Yawing Moment Coefficient (Body axis)

Cn Normal Force Coefficient derivative with respect to angle-of-attack

Cm Pitching Moment Coefficient derivative with respect to angle-of-attack

C y Side Force Coefficient derivative with respect to side-slip angle

Cn Yawing Moment Coefficient derivative with respect to side-slip angle (Body

axis)

C l Rolling Moment Coefficient derivative with respect to side-slip angle (Body

axis)

X cp Center of Pressure in calibers from the moment reference center

l Rolling Moment

m Pitching Moment

n Yawing Moment

l Rolling Moment

m Pitching Moment

n Yawing Moment

l Rolling Moment

m Pitching Moment

n Yawing Moment

C l p Rolling Moment derivative with respect to Roll Rate

Cmq Pitching Moment derivative with respect to Pitch Rate

Cnr Yawing Moment derivative with respect to Yaw Rate

C l r Rolling Moment derivative with respect to Yaw Rate

Cn p Yawing Moment derivative with respect to Roll Rate

C Lr Lift Force derivative with respect to Pitch Rate

CY P Side Force derivative with respect to Roll Rate

CY r Side Force derivative with respect to Yaw Rate

Cq ele Pitching Moment derivative with respect to Elevator Deflection Angle

C L ele Lift Force derivative with respect to Elevator Deflection Angle

C l ail Rolling Moment derivative with respect to Aileron Deflection Angle

Cn ail Yawing Moment derivative with respect to Aileron Deflection Angle

C l rud

Rolling Moment derivative with respect to Rudder Deflection Angle

Cn rud Yawing Moment derivative with respect to Rudder Deflection Angle

∇C Dynamic Derivative

q Dynamic Pressure

b Wing Span

c Mean Aerodynamic Chord

S Wing Span

Mass Density

V T Free Stream Velocity

k Dimensionless Rate Scale Factor

rate Angular Rotation Rate Corresponding to Aerodynamic Force

Coefficient Derivative

Angle-of-Attack

Side-Slip Angle

Flight-Path Angle

U Body-Frame Translational Velocity X-Axis Component

V Body-Frame Translational Velocity Y-Axis Component

W Body-Frame Translational Velocity Z-Axis Component

p Body-Frame Rotational Velocity X-Axis Component

q Body-Frame Rotational Velocity Y-Axis Component

r Body-Frame Rotational Velocity Z-Axis Component

Roll Attitude Euler Angle

Pitch Attitude Euler Angle

Yaw Attitude Euler Angle

N Inertial Navigation Position X-Axis Component

E Inertial Navigation Position Y-Axis Component

D Inertial Navigation Position Z-Axis Component

Cb /n Direction Cosine Matrix of the Body Frame with respect to the Navigation

Frame

pne Position Vector of Navigation Frame Derivative taken with respect to the Earth

Fixed Frame

vCM / eb Velocity Vector in the body frame of the Center-of-Mass with respect to the

Fixed Earth

Rotational Rate Vector

Rotational Rate Derivative Vector

b /eb Rotational Rate Vector expressed in the Body Frame of the Body with respect

to the Fixed Earth

vCM / ebb Velocity Vector Body Derivatives in the Body Frame of the Center-of-Mass

with respect to the Fixed Earth

m Mass of Vehicle

F A ,Tb Aerodynamic and Thrust Force Vector expressed in the Body Frame

gn Gravity Vector in the Navigation Frame

b/ eb Cross Product Matrix of Rotational Rates in the Body Frame of the Body with

respect to the Fixed Earth

b / ebb Rotational Rate Vector Body Derivative in the Body Frame of the Body with

respect to the Fixed Earth

M A ,Tb Aerodynamic and Thrust Moment Vector expressed in the Body Frame

J b Mass Moment of Inertia Tensor in the Body Frame

pne Navigation Position Vector expressed in the Earth Fixed Frame

19

Chapter 1: Introduction

The first step in developing a compensation scheme for a dynamic system is to

create a mathematical model of the dynamic system or plant. For an aerospace vehicle,

developing a mathematical model requires knowledge of the physical characteristics such

as weight, mass properties and aerodynamic parameters. Until the 1970's most

aerodynamic coefficients were obtained from wind tunnel data or through system

identification techniques.[1] Today's computers make it possible to use Computational

Fluid Dynamics (CFD) modeling to generate the aerodynamic coefficients of an

aerospace vehicle.

One method to compute the aerodynamic coefficients of the aircraft is to use the

United States Air Force Data Compendium (DATCOM)[2]. DATCOM was introduced

in the 1970's as a handbook containing tabular aerodynamic coefficients for different

vehicle geometries. The user builds the aerodynamic model from the characteristics of its

components, such as the Aspect Ratio of the wing planform, geometry and location of the

stabilizing and control surfaces, as well as the shape of the fuselage. The DATCOM

handbook was implemented as a computer code, entitled Digital DATCOM, written in

the Fortran language.[3]

Digital DATCOM is a set of computer codes that creates a composite

aerodynamic model based on the user input geometry. The latest version of the United

States Air Force Data Compendium, Missile DATCOM, allows the user to model more

abstract vehicle geometries, as well as expanding the environmental envelope.[4]

1.1 Overview

20

The Avionics Research Center at Ohio University purchased an unmanned aerial

vehicle for control and navigation research after the recent expansion in the use of

unmanned aerial vehicles for data collection and deployment in hazardous environments.

The unmanned aerial vehicle purchased from the University of Sydney during the 1990's

is a Brumby MK I.[1] The Brumby Unmanned Ariel Vehicle (UAV) provides an ideal

platform for aircraft control and navigation research. The Brumby UAV has a delta wing

planform with twin vertical stabilizers, the contour of the fuselage is that of a cylinder

with a blunted ogive nose. This makes creating a Missile DATCOM model a relatively

straight forward task. The delta wing also contains the Ailevons (aileron and elevator

control on one control surface). The change in deflection angles create changes in the lift,

drag, roll, and pitch coefficients of the main lifting planform. This causes the angle-of-

attack and side-slip angle to be coupled with the deflection angles of the ailevons. This

creates a nonlinear aircraft model, that is an ideal system for a non-linear control research

platform.

1.2 Motivation

There are many methods available to obtain an aerodynamic model of an aerospace

vehicle. Methods such as system identification require data to be taken while the vehicle

is operating over a predefined envelope. This method requires that a physical model be

constructed and operated in the environment for which the aerodynamic model is desired.

This can be costly and very time consuming. It may not be possible to fly the model over

all the desired flight envelopes. Other options such as wind tunnel data also require that a

model be built and tested. Traditionally, full sized aircraft must be scaled down to meet

21

the size constraints of the wind tunnel. Some unmanned UAV's are small enough to fit

inside the wind tunnel at full scale. Since the model is full sized and full functioning,

forces and moments as well as derivatives for control surface deflection angles may be

measured. All of these methods require that a new model be constructed, and retested for

changes in vehicle geometry.

By using a computational fluid dynamics prediction code it is possible to obtain

aerodynamic coefficients for various vehicle geometries over a wide range of

environmental conditions without the cost or inconvenience associated with wind tunnel

testing. CFD prediction codes can generate aerodynamic coefficients in a shorter time

period and at a lower monetary cost. While computational fluid dynamic prediction codes

may not capture all the nonlinearities of the aerodynamics, the model is still valid and

useful.

1.3 Modeling Aerodynamic Forces and Moments

The processing power of todays computers make it possible to model the

aerodynamic forces and moments using computational fluid dynamics prediction codes.

These codes allow the user to create software models of the aircraft and generate the

forces and moments using only a computer. These mathematical models can then be used

to analyze the dynamic behavior of the aircraft. These models allow the control system

engineer to create compensation schemes that will cause the aircraft to have more

desirable dynamics. For example the aircraft may not respond to inputs fast enough, there

may be an undesirable steady-state error to a control input, or the systems response to

disturbance inputs may need to be analyzed, e.g. wind gusts.

22

1.4 Objectives

The reader of this thesis will be able to generate aerodynamic force and moment

coefficient data using USAF Missile DATCOM. The reader will be exposed to the basic

definitions and terminology of USAF Missile DATCOM. This data will then be

integrated into a six degree-of-freedom Simulink simulation where the model will be

analyzed for static as well as dynamic stability. The reader should have an understanding

of the basic concepts required for modeling and simulation of an aircraft using

computational fluid dynamic modeling.

1.5 Thesis Organization

The control system engineer must create an accurate model of a mechanical system

before a control system can be designed. Modeling the aerodynamic behavior of an

aircraft typically requires a scale model of the aircraft be built and placed in a wind

tunnel where forces are measured. It may be difficult for researchers in aircraft control

system design to gain access to a wind tunnel or be able to fund the building of a scale

model. Computational fluid dynamics allows the researcher the ability to model the

aircraft without the trouble or expense of creating scale models or obtaining testing time

in a wind tunnel. This thesis will cover the topic of creating an aerodynamic model using

a computational fluid dynamics prediction code.

1.5.1 Missile DATCOM Input Parameters

In order to use the CFD prediction code the user must understand the dimensions and

variables that are needed to create the model using USAF Missile DATCOM. The

physical dimensions of the aircraft are required, such as the lengths of the planforms, the

23

dimensions of the control surfaces, the location of the center-of-mass to name a few. This

will be illustrated through use of an example in Chapter 2.

1.5.2 Missile DATCOM Model of the Brumby UAV

The Ohio University Avionics Center conducts research using a Brumby UAV

aircraft. This aircraft model is used to perform guidance and navigation research. The

Brumby UAV will be modeled using Missile DATCOM in Chapter 3.

1.5.3 Equations of Motion

The equations of motion for a moving body in 3-dimensions will be presented in

Chapter 4. These equations describe the effect of the forces and moments on the aircraft.

The equations of motion will be used to create a six degree-of-freedom simulation.

1.5.4 Brumby UAV Model Simulation

The Missile DATCOM model of the Brumby UAV will be simulated, analyzed, and

subjected to perturbations from equilibrium in Chapter 5. The model will first be trimmed

for straight wings level flight. Wings level flight is typical of an aircraft that is traversing

between way points. The eigenvalues of the straight wings level flight trim condition will

be evaluated as well as an explanation of the dynamics of the aircraft. The model will

then be trimmed for a coordinated turn with a constant rate of climb. Finally, the Brumby

UAV model will be subjected to input perturbations and the aircraft dynamics will be

observed.

24

Chapter 2: Missile DATCOM Modeling Parameters

Overview

In this chapter a description of Missile DATCOM terminology and variables will

be presented. Due to the large number of possible geometric configurations, only

terminology and variables needed to create a model of the Brumby Unmanned Aerial

Vehicle (UAV) in Chapter 3 will be discussed. The reader is directed to Reference [4]

for more information on other geometric possibilities or for an expanded list of options

for the discussed variables.

User vehicle geometric configuration and flight condition specifications are input

to Missile DATCOM using a text file. Missile DATCOM parses the input file looking for

predefined “Namelists” that it associates to internal variables. Missile DATCOM requires

only a minimal number of Namelists be used to define the vehicle geometry. Over-

specification of the geometry can generate numerical instability of some calculations in

Missile DATCOM.[4] Missile DATCOM allows the user to set the units that will be

used for the calculations, as well as managing additional output data that can be

calculated through the use of control cards. Control cards are valid only in the case in

which they appear unless the user saves the current case using the SAVE control card.

This allows the user to use different control cards for different cases. A list of control

cards used when creating the model in Chapter 3 is given in Table 2.1. Missile DATCOM

will generate output data based on the commands in the input file that is used. The output

file will contain aerodynamic coefficients, and may also contain dynamic damping

derivative coefficients if the DAMP control card was used.

25

It is important to understand the coordinate system that will be used in describing

the geometry of the vehicle in question. Let the center of gravity lie inside the vehicle and

let it be at the intersection of the longitudinal plane of symmetry and the lateral plane of

symmetry if it exists. Then Missile DATCOM designates the positive x-axis as being

positive increasing aft from the tip of the nose, the positive y-axis as increasing along the

starboard wing, and the positive z-axis as increasing in a manner that it obeys the right

hand rule. This coordinate system is shown in Figure 2.1. Missile DATCOM allows the

user to place the origin of the coordinate system a specified distance from the tip of the

nose along the x-axis by assigning X0 a non-zero value. If no value is assigned to X0

then Missile DATCOM will use the default value of 0.0 units of distance.

Figure 2.1: Missile DATCOM Axes Definition

26

2.1 Flight Conditions

Missile DATCOM allows the user to specify the flight conditions in namelist

FLTCON, for which the aerodynamic data will be calculated. The user places the angles-

of-attack values in the ALPHA array, and the Mach values in the MACH array. The size

Table 2.1: Missile DATCOM Control Cards

Control Cards Description Values

DIM Sets the system of length dimension Units (L) M,CM,FT,IN

DERIV Sets the output derivative Units DEG,RAD

INCRMT Calculates correction factors for coefficients on the first run, based on experimental data given in EXPR.

N/A

NOGO Allows program to cycle through input cases without computing configuration Aerodynamics

N/A

NO LAT Inhibits computation of lateral-directional derivatives, if DAMP is selected

N/A

PLOT Creates data file for003.dat, containing aerodynamic data for plotting.

N/A

BUILD Prints results of a configuration build-up N/A

CASEID User supplied title output for that case Brumby Flaps

DAMP Computes dynamic damping derivatives. N/A

DELETE name Ignore namelist saved from previous case Namelist value

NAMELIST Prints all Namelist data N/A

NEXT CASE Indicates termination of the case input. N/A

PART Prints partial aerodynamic output. N/A

PRINT AERO name Prints the incremental aerodynamics for name.For more options see reference Page 23.

BODY,FIN1,etc.

PRINT GEOM name Prints the geometric characteristics of component name.For more options see reference Page 23.

BODY,FIN1,etc.

SAVE Saves namelist values from previous case.

TRIM Calculates fin deflection angles for longitudinal trim condition.

N/A

NACA Allows use of predefined NACA airfoil types to be used as airfoil geometries

2412

27

of the MACH array is stored in NMACH and the size of the ALPHA array is stored in

NALHPA. For each vehicle scenario that Missile DATCOM executes, aerodynamic

coefficients will be computed for all combinations of defined Mach and angle-of-attack.

A matrix will be created for each aerodynamic coefficient with NMACH columns and

NALPHA rows. Only one side-slip angle can be run for each case and is stored in the

BETA variable. In order to simplify data input, only a core set of flight condition data

needs to be input by the user. For the model that will be generated in Chapter 3, only

values for Mach and altitude are required. From these values Missile DATCOM will

calculate the internal variable values needed to perform the aerodynamic calculations. A

list of variables from namelist FLTCON that are used are given in Table 2.2.

Missile DATCOM also requires that parameter values be specified by the user for

referencing and scaling purposes. Missile DATCOM will generate aerodynamic

coefficients that have been non-dimensionalized with respect to the reference values. The

reference variables used for the model in Chapter 3 are listed in Table 2.3. Typically, the

Table 2.2: Missile DATCOM Namelist FLTCON

Variable Name Array Size Description Units Default Value

NALPHA - Number of angles of attack - -

ALPHA 20 angle-of-attack Deg -

BETA - side-slip angle Deg 0.0

PHI - Aerodynamic roll angle Deg 0.0

NMACH - Number of Mach values - -

MACH 20 Mach Values - -

ALT 20 Altitude values L 0.0

28

values used for SREF, LREF, and LATREF on a traditional aircraft are wing planform

area, mean wing chord length, and wing span length respectively.

2.2 Fuselage

Missile DATCOM allows for axially symmetric or elliptical body shapes. These

body shapes can either be input using body diameter and length if the body has a

continuous radius along the body, and trailing nozzle sections, or the body geometry can

be input at different longitudinal stations. These options provide a great deal of

flexibility. The variables used in creating the axial body model in Chapter 3 are listed in

Table 2.4.

Table 2.3: Missile DATCOM Namelist REFQ

Variable Name Description Units Default Value

SREF Reference Area L*L Maximum body cross-sectional area

LREF Longitudinal Reference Length L Maximum body diameter

LATREF Lateral reference length L LREF

XCG Longitudinal position of Center of Gravity (+aft) L 0.0

ZCG Vertical Position of Center of Gravity (+up) L 0.0

29

2.3 Primary Lifting Surface

Traditional aircraft typically have a geometry that consists of: a body, a wing,

vertical and horizontal stabilizing and control surfaces. Missile DATCOM describes

each planform surface as a finset that is located at a defined position on the body. Missile

DATCOM allows for four finsets, each finset can contain a total of eight panels. Using

this method, the fin geometry must only be defined once. Then the position of each fin on

the body must be specified. Missile DATCOM will not check to see if Finset1 is fore or

aft of Finset2 when it performs an error analysis. Placing Finset2 fore of Finset1 will

cause errors in the interference flow calculations from one fin to the next. Finset1 will be

the foremost finset, which on a traditional aircraft without canards will be the wing

planform. We will start out by describing the planform geometry and then describe the

position of each panel around the body. A basic set of variables are listed in Table 2.5.

Table 2.4: Missile DATCOM Namelist AXIBOD

Variable Name Description Units Default Value

XO Longitudinal coordinate of nose tip. L 0.0

TNOSE Type of nose shape. - OGIVE

LNOSE Nose length L -

DNOSE Nose diameter at base L 1.0

BNOSE Bluntness radius L 0.0

LCENTR Center body length L 0.0

DCENTR Center body diameter at base L DNOSE

30

It is important to note that when a fin panel PHIF value is greater than 180

degrees, see Figure 2.4, and has a SECTYPE of NACA (National Advisory Committee

for Aeronautics), the airfoil of the fin will also be rotated. This rotation will cause a

positive angle-of-attack to be seen by both the port and starboard panels. The NACA

control card uses the form NACA 1-4-2412, where the first number designates the finset,

in this case FINSET1. The second number designates the NACA series of airfoil, for this

example this is a NACA 4 series. The last number is the NACA airfoil section

designation. For a NACA 4 series the first number is the camber in percent of the chord

Figure 2.2: Missile DATCOM Body Variables

Table 2.5: Missile DATCOM Namelist FINSET

Variable Name Array Size Description Units Default Value

XLE 10 Distance from nose to chord leading edge

L 0.0

CHORD 10 Panel chord at each semi-span station

L -

SSPAN 10 Semi-span locations L -

CFOC 10 Flap chord to Fin chord ratio - 1.0

NPANEL 8 Number of panels in fin set (1-8) - 4.0

PHIF 8 Roll angle of fin about body, Clockwise is positive angle.

Deg Even spacing around body.

GAM 8 Dihedral angle of each fin, Positive angle when PHIF is increased

Deg 0.0

SECTYPE - Type of airfoil section. - HEX

STA 10 Sweep back angle at each span station.

Deg. 0.0

SWEEP 10 Chord station used in measuring sweep:STA=0.0 is leading edgeSTA=1.0 is trailing edge

- 1.0

31

length, the second is the location of maximum camber aft from the leading edge in tens of

percent of the chord length, and the last two digits are the maximum chord thickness

locate at the point of maximum camber. Figure 2.4 is an example of an airfoil that has 2%

camber, with 12% thickness located at 4% aft of the leading edge.[5]

Figure 2.2: Missile DATCOM Finset

Figure 2.3: NACA Airfoil Number Decomposition

32

If the wing has a continuous sweep along its leading edge it is possible to only

define XLE for the root chord of the wing. Missile DATCOM only requires that XLE(1)

be defined if the user inputs the sweep back angle for each span station using the SWEEP

namelist. Missile DATCOM will determine that the planform has continuous sweep

between semi-span stations and will calculate the XLE values from one semi-span station

to the next. In order to place the fin panels directly on the body mold line, start the semi-

span at 0.0 and allow each additional element in the SSPAN array to be the distance from

the body mold line to that semi-span station. By setting the first semi-span location at

zero Missile DATCOM will place the panel directly on the body. Care must be taken in

defining SSPAN(1) to be a distance other than the body mold line, SSPAN(1) = 0.0. The

user must ensure that the panel is attached to the body, otherwise there may be a gap

between the body and the root chord of the panel. Missile DATCOM will not check to

see if the panel is attached to the body. Missile DATCOM will not allow cracked panels

or the airfoil shape to change over the panel. In Section 2.6 the method for placing

control surfaces on a planform will be discussed.

33

2.4 Horizontal Stabilizer

It is possible to define a horizontal stabilizing surface using the same method

described in Section 2.3. For this reason the reader is referred to Section 2.3 for details on

creating horizontal stabilizing planforms. In this section horizontal stabilizers that do not

lie in the same horizontal plane as the wing planform will be defined. It is possible to

create a horizontal stabilizer that is positioned on top of a vertical stabilizer. Because

error analysis used in Missile DATCOM does not check to see if a finset is actually

located on the body, it is possible to create what is known as a T-tail configuration. This

is accomplished by using two panels and setting the two PHIF values to 0.0 degrees.

Then set the SSPAN(1) value to be the distance from the center of the body to the root

chord of the horizontal stabilizer. This value would be 0.0 in most cases so that the root

chord would be located on the x-z plane. However, if the SSPAN(1) value is 0.0 Missile

Figure 2.4: Missile DATCOM Fin Panel Location Definition

34

DATCOM will place the root chord on the body. This means that the SSPAN(1) value

must be arbitrarily small so that it will reside as near as possible to the x-z plane. The

starboard fin will have a GAM value of 90.0 degrees and the port fin will have a GAM

value of -90.0 degrees. Figure 2.6 contains an illustration of the variables associated with

defining a a twin-vertical stabilizer.

It is also possible to create what is typically known as a V-tail configuration. This

can be accomplished in a manner similar to the method discussed in Section 2.3, with the

exception that the fin planforms are located symmetrically about the x-z plane, and

dihedral angle is zero.

Figure 2.5:Twin-Horizontal Stabilzer Fin Panel Location Definition

35

2.5 Vertical Stabilizer

It is also possible to create a single vertical stabilizer or twin vertical stabilizers.

In the case of a single vertical stabilizer NPANEL would have a value of 1.0 and both

PHIF and GAM would be 0.0 degrees. This situation would indicate that the fin planform

is aligned with the z-axis and that the dihedral angle is zero. These twin vertical

stabilizers can also be placed off of the body and onto another panel, using a similar

method as described in the previous section. The first element in the SSPAN array is the

distance from the centerline of the body to the location of the root chord of the stabilizer.

To place the stabilizers on another planform the PHIF angles must be the same, e.g. the

PHIF starboard wing is equal to the PHIF angle of the starboard stabilizer. This ensures

that the root chord is placed on the existing panel. The roll angle PHIF would contain

values of 90.0 degrees for the starboard fin and -90.0 degrees for the port fin. The

dihedral values GAM would be used to roll the fins into vertical positions. This would be

accomplished by setting the starboard GAM value to be -90.0 degrees and the port GAM

value to be 90.0 degrees.

Figure 2.6:V-Tail Stabilzer Fin Panel Location Definition

36

2.6 Control Surfaces

It is often useful and at times necessary to know the contribution of the deflection

angles of the control surfaces to the aerodynamic coefficients. To determine the size of

each control surface on the fin panel, care must be given in defining the fin. First, the

semi-span stations should be defined for all control surface demarcation points along the

planform. It is necessary to define semi-span, chord, and flap chord to fin chord ratio

laterally for each control surface. For a fin planform having a single flap located between

the root and tip chord, it is necessary to define four semi-station points, four chord values

at those station points, and four flap chord to fin chord ratio values. In this particular

example, shown in Figure 2.6, the break between the flap and the chord does not lie on

either the root or the tip chord. Because the length of the flap at the root and tip of the

Figure 2.7:Twin-Vertical Stabilzer Fin Panel Location Definition

37

wing is zero, both the first and last values of the CFOC array will contain zeros. The

entire stabilizer can be made a movable control surface by setting the values of CFOC to

1.0. This indicates to Missile DATCOM that the flap chord is the total length of the fin

chord, and therefore the entire panel is movable.

In order to set the control surface deflection, Missile DATCOM uses the DEFLCT

namelist that can been seen in Table 2.6. Only the control surfaces that have been defined

should have their deflection values set, any control surface not defined by the user will

have its respective deflection angle set to zero internally by Missile DATCOM. Missile

DATCOM will perform calculations over all eight panels in each of the four finsets. Any

undefined panel is assigned zero length and does not contribute to the aerodynamic

coefficients being calculated. Assuming the panel is placed with the root chord located on

the body and the fin is perpendicular to the x-axis, then the deflection angles are defined

as positive if they induce a negative body axis rolling moment. A negative body axis

rolling moment is defined as counterclockwise when viewed along the x-axis looking

forward toward the nose. This is valid for all flaps regardless of orientation. The

deflection angle for flaps that are not located on the body are defined as if the fins are

located axially around the x-axis.

38

2.7 Generating Additional Data

Some of the limitations in Missile DATCOM can be overcome by running the

vehicle again in a new case while only changing one value. An example would be to

handle more than one side-slip angle. Even though Missile DATCOM will only consider

one side-slip value per case, by running multiple cases and only changing the side-slip

Figure 2.8: Missile DATCOM Control Surface Definition

Table 2.6: Missile DATCOM Namelist DEFLCT

Variable Name Array Size Description Units Default Value

DELTA1 8 Deflection values for Finset1 Deg. 0.0

DELTA2 8 Deflection values for Finset2 Deg. 0.0

DELTA3 8 Deflection values for Finset3 Deg. 0.0

DELTA4 8 Deflection values for Finset4 Deg. 0.0

39

value in each case Missile DATCOM will generate data for those side-slip angles. This

becomes especially useful when data for different control surface deflection angles are

desired. By saving the previous vehicle geometry using the SAVE control card, then

overwriting the deflection angle, Missile DATCOM will calculate the aerodynamic

coefficients for the new vehicle configuration.

2.8 File Format and Content

Missile DATCOM uses space delimiting as a method for distinguishing namelists

from control cards. Only a control card should be placed in the first character of a column

in the input file. Namelists should allow one space for the first column and should should

then start and end with a dollar sign ($). Variables in a namelist are separated using

commas and a comma must precede the terminating dollar sign of the namelist. A row

can only contain eighty characters including symbols and blank spaces. Values assigned

to variables must always contain a decimal point, for a value of zero the leading zero is

necessary, while a zero after the decimal point is not. In order for the case to be executed

a NEXT CASE control card must be inserted at the end of each case, including the last

case. Table 2.7 gives a brief explanation of the input and output files created and required

for execution by Missile DATCOM.

The for005.dat file is the input file to Missile DATCOM and contains the control

cards as well as the namelists that are used to describe the vehicle. The for005.dat file for

the Brumby MK. I is listed in Appendix A.1.

The for006.dat file contains two copies of the for005.dat file as well as the output

for the cases to be executed by Missile DATCOM. The first listing is a copy of the

40

for005.dat file and the second is the for005.dat file containing error checking markups.

The for003.dat file contains the aerodynamic coefficients for the cases executed

by Missile DATCOM. The Columns of the for003.dat file are: Angle-of-Attack

(ALPHA), Normal Force Coefficient (CN), Pitching Moment Coefficient (CM), Axial

Force Coefficient (CA), Side-Force Coefficient (CY), Yawing Moment Coefficient

(CLN), Rolling Moment Coefficient (CLL) , Deflection Angle for zero Pitching Moment

(DELTA), Lift Coefficient (CL), and Drag Force Coefficient (CD). The rows correspond

to the angle-of-attack values ALPHA. Missile DATCOM will generate a matrix of

ALPHA rows and coefficient columns for each MACH value specified, for each case that

is executed.

The for0021.dat file contains all of the necessary aerodynamic coefficients that

would be required to create a nonlinear vehicle simulation using a build up of the

individual components. The for021.dat file contains a row of variables: Mach, altitude,

side-slip angle, the deflection angles for the flaps, the number of rows of data, the total

columns of data, and finally the number of columns of derivatives. The variables are

immediately followed by the angle-of-attack (ALPHA) and the aerodynamic coefficients

which are: normal force coefficient (CN), pitching moment coefficient (CM), axial force

coefficient (CA), side force coefficient (CY), yawing moment coefficient (CLN), rolling

moment coefficient (CLL), normal force due to pitch rate (CNQ), pitching moment due

to pitch rate (CMQ), axial force due to pitch rate (CAQ), side force due to yaw rate

(CYR), yawing moment due to yaw rate (CLNR), rolling moment due to yaw rate

(CLLR), side force due to roll rate (CYP), yawing moment due to roll rate (CLNP),

41

rolling moment due to roll rate (CLLP). Aerodynamic derivatives are only calculated for

the base model, where the deflection angles for the effectors are set to zero. The base

model is immediately followed by coefficients for each case that is executed by Missile

DATCOM.

2.9 Missile DATCOM Example

In this section an example missile from the Missile DATCOM user manual will

be presented.[4] This particular missile is axially body symmetric with four panels

equally distributed around the body. The dimensions are in inches (DIM IN). The

envelope in consideration is MACH values 0.4, 0.8, 2.0 (MACH= 0.4, 0.8, 2.0) and

angles of attack -8.00, -4.00, 0.00, 4.00, 8.00 (ALPHA=-8.00, -4.00, 0.00, 4.00, 8.00) at

an altitude of zero meters (ALT=0.0) with a side-slip angle of zero degrees (BETA=0.0).

The center of gravity lies 39.0 inches from the origin which is located at the tip of the

nose (XCG=39.0). The body of the missile is 54.0 inches long (LCENTR=54.0) and 12.0

inches in diameter (DCENTR=12.0). The nose of the missile is ogive in shape

(TYPE=OGIVE) and is 12.0 inches long (LNOSE=12.0) and has a base diameter of 12.0

Table 2.7: Missile DATCOM File Definitions

Filename Description

For005.dat User input file.

For006.dat Output file containing results from error checking and calculations.

For003.dat Output file generated by PLOT control card, containing calculated aerodynamic coefficients.

For021.dat Output file to be used with Air Force program DATCOMTableMEX.dll

42

inches (DNOSE=12.0). The missile has four fins that are evenly distributed around the

body. The Fins have a NACA airfoil shape with a NACA number of 0310

(SECTYP=NACA and NACA-1-4-0310). The leading edge of the fin at the first semi-

span locate is 64.0 inches from the nose (XLE=64.0).The semi-span values of the fins are

0.0 at the root and 9.0 inches at the tip (SSPAN=0.0, 9.0,). The chord length at the root is

14.0 inches and 8.0 inches at the tip (CHORD=14.0, 8.0). The sweep angle of the fins are

0.0 degrees and are measured with respect to the segment trailing edge (SWEEP=0.0 and

STA=1.0). There are four fin panels located at 45.0, 135.0, 225.0, 315.0 degrees around

the body (NPANEL=4.0, PHIF=45.0, 135.0, 225.0, 315.0, GAM=0.00, 0.00, 0.00, 0.00).

The fins have a control flap with a a constant cord to flap ratio of 0.25 that starts at the

second station point and runs to the tip of the chord (CFOC=0.0, 0.25, 0.25, 0.25). Data

must also be generated for a condition where the two fins that are facing horizontal have

a deflection that would cause the missile to pitch nose up (SAVE, NEXT CASE,

CASEID PANEL DEFLECTION, $DEFLCT DELTA1=5.0, 0., 0., -5.0, $, SAVE, NEXT

CASE). This case is presented in Figure 2.8. The for006.dat file is listed in Figures 2.9

through 2.33. Figures 2.34 and 2.35 show listings for the for003.dat and for021.dat files

respectively.

43

Figure 2.9: for005.dat File Example

CASEID ExampleDAMPPLOTDIM INDERIV RAD $FLTCON NMACH=3.0,ALT=0.,NALPHA=5.0, MACH =0.4,0.8,2.0, ALPHA = -8.00,-4.00,0.00,4.00,8.00, BETA=0.,$ $REFQ XCG=39.0,$ $AXIBOD TNOSE=OGIVE,LNOSE=12.0,DNOSE=12.0,LCENTR=54.0,DCENTR=12.0,$ $FINSET1 SECTYP=NACA, SSPAN=0.0,9.0, CHORD=14.0,8.0, XLE=64.0, SWEEP=0.0, STA=1.0, NPANEL=4., PHIF=45.0,135.0,225.0,315.0, GAM=0.00,0.00,0.00,0.00, CFOC=0.0,0.25,0.25,0.25,$ NACA-1-4-0310SAVENEXT CASECASEID PANEL DEFLECTIONDAMP $DEFLCT DELTA1=5.0,0.,0.,-5.0,$SAVENEXT CASE

44

Figure 2.10: for006.dat File Example (Data Input)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS

CONERR - INPUT ERROR CHECKING

ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR A - UNKNOWN VARIABLE NAME B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENT DESIGNATION - (N) D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED E - ASSIGNED VALUES EXCEED ARRAY DIMENSION F - SYNTAX ERROR

************************* INPUT DATA CARDS *************************

1 CASEID Example 2 DAMP 3 PLOT 4 DIM IN 5 DERIV RAD 6 $FLTCON NMACH=3.0,ALT=12*0.,NALPHA=5.0, 7 MACH =0.4,0.8,2.0, 8 ALPHA = -8.00,-4.00,0.00,4.00,8.00, 9 BETA=0.,$ 10 $REFQ XCG=39.0,$ 11 $AXIBOD TNOSE=OGIVE,LNOSE=12.0,DNOSE=12.0,LCENTR=54.0,DCENTR=12.0,$ ** SUBSTITUTING NUMERIC FOR NAME OGIVE 12 $FINSET1 SECTYP=NACA, ** SUBSTITUTING NUMERIC FOR NAME NACA 13 SSPAN=0.0,9.0, 14 CHORD=14.0,8.0, 15 XLE=64.0, 16 SWEEP=0.0, 17 STA=1.0, 18 NPANEL=4., 19 PHIF=45.0,135.0,225.0,315.0, 20 GAM=0.00,0.00,0.00,0.00, 21 CFOC=0.0,0.25,0.25,0.25,$ 22 NACA-1-4-0310 23 SAVE 24 NEXT CASE 25 CASEID PANEL DEFLECTION 26 DAMP 27 $DEFLCT DELTA1=5.0,0.,0.,-5.0,$ 28 SAVE 29 NEXT CASE

45

Figure 2.11: for006.dat File Example (Error Checking)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 1 CASE INPUTS FOLLOWING ARE THE CARDS INPUT FOR THIS CASE

CASEID Example DAMP PLOT DIM IN DERIV RAD $FLTCON NMACH=3.0,ALT=12*0.,NALPHA=5.0, MACH =0.4,0.8,2.0, ALPHA = -8.00,-4.00,0.00,4.00,8.00, BETA=0.,$ $REFQ XCG=39.0,$ $AXIBOD TNOSE=1.,LNOSE=12.0,DNOSE=12.0,LCENTR=54.0,DCENTR=12.0,$ $FINSET1 SECTYP=1., SSPAN=0.0,9.0, CHORD=14.0,8.0, XLE=64.0, SWEEP=0.0, STA=1.0, NPANEL=4., PHIF=45.0,135.0,225.0,315.0, GAM=0.00,0.00,0.00,0.00, CFOC=0.0,0.25,0.25,0.25,$ NACA-1-4-0310 SAVE NEXT CASE * WARNING * THE REFERENCE AREA IS UNSPECIFIED, DEFAULT VALUE ASSUMED * WARNING * THE REFERENCE LENGTH IS UNSPECIFIED, DEFAULT VALUE ASSUMED THE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT THE INPUT UNITS ARE IN INCHES, THE SCALE FACTOR IS 1.0000

46

Figure 2.12: for006.dat File Example (Case 1 Output, Page 2)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 2 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.200 1.360 0.032 0.000 0.000 0.000 -4.00 -0.585 0.682 0.091 0.000 0.000 0.000 0.00 0.000 0.000 0.113 0.000 0.000 0.000 4.00 0.585 -0.682 0.091 0.000 0.000 0.000 8.00 1.200 -1.360 0.032 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -1.183 0.199 -5.943 -1.134 -4.00 -0.578 0.131 -4.399 -1.165 0.00 0.000 0.113 0.000 -1.165 4.00 0.578 0.131 4.399 -1.165 8.00 1.183 0.199 5.943 -1.134

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

47

Figure 2.13: for006.dat File Example (Case 1 Output, Page 3)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 3 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 9.0007 -9.6911 -9.3921 11.8173 0.2469 -4.00 8.5908 -9.7420 -8.7265 10.6220 -0.0021 0.00 8.3861 -9.7675 -8.1787 9.3495 0.0000 4.00 8.5908 -9.7420 -8.7265 10.6220 0.0021 8.00 9.0007 -9.6911 -9.3921 11.8173 -0.2469

PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

48

Figure 2.14: for006.dat File Example (Case 1 Output, Page 4)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 4 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 42.648 -93.625 3.424 26.852 -13.587 -4.00 40.731 -88.833 0.820 26.852 -13.587 0.00 42.257 -92.660 -2.175 26.852 -13.587 4.00 44.700 -98.776 -4.956 26.852 -13.587 8.00 44.992 -99.495 -7.183 26.852 -13.587

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

49

Figure 2.15: for006.dat File Example (Case 1 Output, Page 5)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 5 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 43.645 -96.560 0.057 -0.036 0.090 -13.514 -4.00 42.541 -93.804 0.022 -0.003 0.008 -12.558 0.00 42.082 -92.660 0.000 0.000 0.000 -11.496 4.00 42.541 -93.804 -0.022 0.003 -0.008 -12.558 8.00 43.645 -96.560 -0.057 0.036 -0.090 -13.514

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V

50

Figure 2.16: for006.dat File Example (Case 1 Output, Page 6)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 6 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.233 1.421 0.053 0.000 0.000 0.000 -4.00 -0.604 0.721 0.110 0.000 0.000 0.000 0.00 0.000 0.000 0.132 0.000 0.000 0.000 4.00 0.604 -0.721 0.110 0.000 0.000 0.000 8.00 1.233 -1.421 0.053 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -1.214 0.224 -5.416 -1.152 -4.00 -0.595 0.152 -3.922 -1.192 0.00 0.000 0.132 0.000 -1.192 4.00 0.595 0.152 3.922 -1.192 8.00 1.214 0.224 5.416 -1.152

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

51

Figure 2.17: for006.dat File Example (Case 1 Output, Page 7)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 7 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 9.1791 -9.8874 -9.5764 12.0985 0.2753 -4.00 8.8313 -10.1771 -8.9663 11.0908 -0.0019 0.00 8.6575 -10.3220 -8.4680 9.9592 0.0000 4.00 8.8313 -10.1771 -8.9663 11.0908 0.0019 8.00 9.1791 -9.8874 -9.5764 12.0986 -0.2753

PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

52

Figure 2.18: for006.dat File Example (Case 1 Output, Page 8)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 8 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 43.540 -102.509 3.557 26.878 -12.015 -4.00 41.891 -98.416 0.865 26.878 -12.015 0.00 43.305 -101.938 -2.236 26.878 -12.015 4.00 45.350 -107.020 -5.121 26.878 -12.015 8.00 45.141 -106.492 -7.429 26.878 -12.015

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

53

Figure 2.19: for006.dat File Example (Case 1 Output, Page 9)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 9 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 44.153 -104.500 0.007 -0.032 0.078 -13.994 -4.00 43.433 -102.718 0.020 -0.003 0.008 -13.173 0.00 43.117 -101.938 0.000 0.000 0.000 -12.190 4.00 43.433 -102.718 -0.020 0.003 -0.008 -13.173 8.00 44.153 -104.501 -0.007 0.032 -0.078 -13.994

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

54

Figure 2.20: for006.dat File Example (Case 1 Output, Page 10)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 10 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.108 1.049 0.771 0.000 0.000 0.000 -4.00 -0.533 0.569 0.782 0.000 0.000 0.000 0.00 0.000 0.000 0.786 0.000 0.000 0.000 4.00 0.533 -0.569 0.782 0.000 0.000 0.000 8.00 1.108 -1.049 0.771 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -0.990 0.918 -1.079 -0.946 -4.00 -0.478 0.817 -0.584 -1.067 0.00 0.000 0.786 0.000 -1.067 4.00 0.478 0.817 0.584 -1.067 8.00 0.990 0.918 1.079 -0.946

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

55

Figure 2.21: for006.dat File Example (Case 1 Output, Page 11)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 11 Example STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 8.5313 -6.2311 -8.3955 8.8365 0.2574 -4.00 7.9368 -7.5101 -7.8241 8.6319 -0.0007 0.00 7.6400 -8.1515 -7.4963 8.0310 0.0000 4.00 7.9368 -7.5101 -7.8242 8.6319 0.0007 8.00 8.5313 -6.2311 -8.3955 8.8365 -0.2574

PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

BODY ALONE LINEAR DATA GENERATED FROM SECOND ORDER SHOCK EXPANSION METHOD

56

Figure 2.22: for006.dat File Example (Case 1 Output, Page 12)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 12 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 39.342 -108.127 0.000 28.285 -9.526 -4.00 39.022 -107.260 0.000 28.285 -9.526 0.00 40.288 -110.734 0.000 28.285 -9.526 4.00 40.755 -112.006 0.000 28.285 -9.526 8.00 39.578 -108.773 0.000 28.285 -9.526

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

57

Figure 2.23: for006.dat File Example (Case 1 Output, Page 13)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 13 Example BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 39.051 -107.399 0.017 -0.003 0.008 -9.839 -4.00 39.480 -108.582 0.003 -0.002 0.004 -9.678 0.00 39.880 -109.682 0.000 0.000 0.000 -9.191 4.00 39.480 -108.582 -0.003 0.002 -0.004 -9.678 8.00 39.051 -107.399 -0.017 0.003 -0.008 -9.839

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V

58

Figure 2.24: for006.dat File Example (Case 2 Output, Page 1 and 2)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 1 CASE INPUTS FOLLOWING ARE THE CARDS INPUT FOR THIS CASE

CASEID PANEL DEFLECTION DAMP $DEFLCT DELTA1=5.0,0.,0.,-5.0,$ SAVE NEXT CASE * WARNING * THE REFERENCE AREA IS UNSPECIFIED, DEFAULT VALUE ASSUMED * WARNING * THE REFERENCE LENGTH IS UNSPECIFIED, DEFAULT VALUE ASSUMED THE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT THE INPUT UNITS ARE IN INCHES, THE SCALE FACTOR IS 1.00001 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 2 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.200 1.360 0.032 0.000 0.000 0.000 -4.00 -0.585 0.682 0.091 0.000 0.000 0.000 0.00 0.000 0.000 0.113 0.000 0.000 0.000 4.00 0.585 -0.682 0.091 0.000 0.000 0.000 8.00 1.200 -1.360 0.032 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -1.183 0.199 -5.943 -1.134 -4.00 -0.578 0.131 -4.399 -1.165 0.00 0.000 0.113 0.000 -1.165 4.00 0.578 0.131 4.399 -1.165 8.00 1.183 0.199 5.943 -1.134

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

59

Figure 2.25: for006.dat File Example (Case 2 Output, Page 3)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 3 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 9.0007 -9.6911 -9.3921 11.8173 0.2469 -4.00 8.5908 -9.7420 -8.7265 10.6220 -0.0021 0.00 8.3861 -9.7675 -8.1787 9.3495 0.0000 4.00 8.5908 -9.7420 -8.7265 10.6220 0.0021 8.00 9.0007 -9.6911 -9.3921 11.8173 -0.2469

FLAP DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 5.00 0.00 0.00 -5.00 EQUIVALENT PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

60

Figure 2.26: for006.dat File Example (Case 2 Output, Page 4)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 4 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 42.648 -93.625 3.424 26.852 -13.587 -4.00 40.731 -88.833 0.820 26.852 -13.587 0.00 42.257 -92.660 -2.175 26.852 -13.587 4.00 44.700 -98.776 -4.956 26.852 -13.587 8.00 44.992 -99.495 -7.183 26.852 -13.587

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

61

Figure 2.27: for006.dat File Example (Case 2 Output, Page 5)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 5 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.40 REYNOLDS NO = 2.827E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 237.02 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 43.645 -96.560 0.057 -0.036 0.090 -13.514 -4.00 42.541 -93.804 0.022 -0.003 0.008 -12.558 0.00 42.082 -92.660 0.000 0.000 0.000 -11.496 4.00 42.541 -93.804 -0.022 0.003 -0.008 -12.558 8.00 43.645 -96.560 -0.057 0.036 -0.090 -13.514

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V

62

Figure 2.28: for006.dat File Example (Case 2 Output, Page 6)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 6 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.233 1.421 0.053 0.000 0.000 0.000 -4.00 -0.604 0.721 0.110 0.000 0.000 0.000 0.00 0.000 0.000 0.132 0.000 0.000 0.000 4.00 0.604 -0.721 0.110 0.000 0.000 0.000 8.00 1.233 -1.421 0.053 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -1.214 0.224 -5.416 -1.152 -4.00 -0.595 0.152 -3.922 -1.192 0.00 0.000 0.132 0.000 -1.192 4.00 0.595 0.152 3.922 -1.192 8.00 1.214 0.224 5.416 -1.152

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

63

Figure 2.29: for006.dat File Example (Case 2 Output, Page 7)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 7 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 9.1791 -9.8874 -9.5764 12.0985 0.2753 -4.00 8.8313 -10.1771 -8.9663 11.0908 -0.0019 0.00 8.6575 -10.3220 -8.4680 9.9592 0.0000 4.00 8.8313 -10.1771 -8.9663 11.0908 0.0019 8.00 9.1791 -9.8874 -9.5764 12.0986 -0.2753

FLAP DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 5.00 0.00 0.00 -5.00 EQUIVALENT PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

64

Figure 2.30: for006.dat File Example (Case 2 Output, Page 8)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 8 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 43.540 -102.509 3.557 26.878 -12.015 -4.00 41.891 -98.416 0.865 26.878 -12.015 0.00 43.305 -101.938 -2.236 26.878 -12.015 4.00 45.350 -107.020 -5.121 26.878 -12.015 8.00 45.141 -106.492 -7.429 26.878 -12.015

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

65

Figure 2.31: for006.dat File Example (Case 2 Output, Page 9)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 9 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.80 REYNOLDS NO = 5.655E+06 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 948.07 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 44.153 -104.500 0.007 -0.032 0.078 -13.994 -4.00 43.433 -102.718 0.020 -0.003 0.008 -13.173 0.00 43.117 -101.938 0.000 0.000 0.000 -12.190 4.00 43.433 -102.718 -0.020 0.003 -0.008 -13.173 8.00 44.153 -104.501 -0.007 0.032 -0.078 -13.994

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

*** NOSE TIP ANGLE GREATER THAN MACH ANGLE, HYBRID THEORY INVALID SECOND ORDER SHOCK EXPANSION TO BE USED

66

Figure 2.32: for006.dat File Example (Case 2 Output, Page 10)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 10 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-8.00 -1.108 1.049 0.771 0.000 0.000 0.000 -4.00 -0.533 0.569 0.782 0.000 0.000 0.000 0.00 0.000 0.000 0.786 0.000 0.000 0.000 4.00 0.533 -0.569 0.782 0.000 0.000 0.000 8.00 1.108 -1.049 0.771 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-8.00 -0.990 0.918 -1.079 -0.946 -4.00 -0.478 0.817 -0.584 -1.067 0.00 0.000 0.786 0.000 -1.067 4.00 0.478 0.817 0.584 -1.067 8.00 0.990 0.918 1.079 -0.946

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER

67

Figure 2.33: for006.dat File Example (Case 2 Output, Page 11)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 11 PANEL DEFLECTION STATIC AERODYNAMICS FOR BODY-FIN SET 1

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -8.00 8.5313 -6.2311 -8.3955 8.8365 0.2574 -4.00 7.9368 -7.5101 -7.8241 8.6319 -0.0007 0.00 7.6400 -8.1515 -7.4963 8.0310 0.0000 4.00 7.9368 -7.5101 -7.8242 8.6319 0.0007 8.00 8.5313 -6.2311 -8.3955 8.8365 -0.2574

FLAP DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 5.00 0.00 0.00 -5.00 EQUIVALENT PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 0.00 0.00

BODY ALONE LINEAR DATA GENERATED FROM SECOND ORDER SHOCK EXPANSION METHOD

68

Figure 2.34: for006.dat File Example (Case 2 Output, Page 12)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 12 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -8.00 39.342 -108.127 0.000 28.285 -9.526 -4.00 39.022 -107.260 0.000 28.285 -9.526 0.00 40.288 -110.734 0.000 28.285 -9.526 4.00 40.755 -112.006 0.000 28.285 -9.526 8.00 39.578 -108.773 0.000 28.285 -9.526

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V

69

Figure 2.35: for006.dat File Example (Case 2 Output, Page 13)

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 01/06 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 13 PANEL DEFLECTION BODY + 1 FIN SET DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 2.00 REYNOLDS NO = 1.414E+07 /FT ALTITUDE = 0.0 FT DYNAMIC PRESSURE = 5925.45 LB/FT**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 113.097 IN**2 MOMENT CENTER = 39.000 IN REF LENGTH = 12.00 IN LAT REF LENGTH = 12.00 IN

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -8.00 39.051 -107.399 0.017 -0.003 0.008 -9.839 -4.00 39.480 -108.582 0.003 -0.002 0.004 -9.678 0.00 39.880 -109.682 0.000 0.000 0.000 -9.191 4.00 39.480 -108.582 -0.003 0.002 -0.004 -9.678 8.00 39.051 -107.399 -0.017 0.003 -0.008 -9.839

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V *** END OF JOB ***

70

Figure 2.36: for003.dat File Example

VARIABLES=ALPHA,CN,CM,CA,CY,CLN,CLL,DELTA,CL,CDZONE T="NO TRIM MACH= 0.40" -8.0000 -1.1995 1.3602 0.0325 0.0000 0.0000 0.0000 0.4000 -1.1833 0.1991 -4.0000 -0.5855 0.6819 0.0907 0.0000 0.0000 0.0000 0.4000 -0.5777 0.1313 0.0000 0.0000 0.0000 0.1127 0.0000 0.0000 0.0000 0.4000 0.0000 0.1127 4.0000 0.5855 -0.6819 0.0907 0.0000 0.0000 0.0000 0.4000 0.5777 0.1313 8.0000 1.1995 -1.3602 0.0325 0.0000 0.0000 0.0000 0.4000 1.1833 0.1991ZONE T="NO TRIM MACH= 0.80" -8.0000 -1.2331 1.4210 0.0530 0.0000 0.0000 0.0000 0.8000 -1.2137 0.2241 -4.0000 -0.6044 0.7206 0.1099 0.0000 0.0000 0.0000 0.8000 -0.5953 0.1518 0.0000 0.0000 0.0000 0.1317 0.0000 0.0000 0.0000 0.8000 0.0000 0.1317 4.0000 0.6044 -0.7206 0.1099 0.0000 0.0000 0.0000 0.8000 0.5953 0.1518 8.0000 1.2331 -1.4210 0.0530 0.0000 0.0000 0.0000 0.8000 1.2137 0.2241ZONE T="NO TRIM MACH= 2.00" -8.0000 -1.1082 1.0487 0.7708 0.0000 0.0000 0.0000 2.0000 -0.9902 0.9175 -4.0000 -0.5334 0.5691 0.7819 0.0000 0.0000 0.0000 2.0000 -0.4775 0.8172 0.0000 0.0000 0.0000 0.7856 0.0000 0.0000 0.0000 2.0000 0.0000 0.7856 4.0000 0.5334 -0.5691 0.7819 0.0000 0.0000 0.0000 2.0000 0.4775 0.8172 8.0000 1.1082 -1.0487 0.7708 0.0000 0.0000 0.0000 2.0000 0.9902 0.9175ZONE T="NO TRIM MACH= 0.40" -8.0000 -1.1995 1.3602 0.0325 0.0000 0.0000 0.0000 0.4000 -1.1833 0.1991 -4.0000 -0.5855 0.6819 0.0907 0.0000 0.0000 0.0000 0.4000 -0.5777 0.1313 0.0000 0.0000 0.0000 0.1127 0.0000 0.0000 0.0000 0.4000 0.0000 0.1127 4.0000 0.5855 -0.6819 0.0907 0.0000 0.0000 0.0000 0.4000 0.5777 0.1313 8.0000 1.1995 -1.3602 0.0325 0.0000 0.0000 0.0000 0.4000 1.1833 0.1991ZONE T="NO TRIM MACH= 0.80" -8.0000 -1.2331 1.4210 0.0530 0.0000 0.0000 0.0000 0.8000 -1.2137 0.2241 -4.0000 -0.6044 0.7206 0.1099 0.0000 0.0000 0.0000 0.8000 -0.5953 0.1518 0.0000 0.0000 0.0000 0.1317 0.0000 0.0000 0.0000 0.8000 0.0000 0.1317 4.0000 0.6044 -0.7206 0.1099 0.0000 0.0000 0.0000 0.8000 0.5953 0.1518 8.0000 1.2331 -1.4210 0.0530 0.0000 0.0000 0.0000 0.8000 1.2137 0.2241ZONE T="NO TRIM MACH= 2.00" -8.0000 -1.1082 1.0487 0.7708 0.0000 0.0000 0.0000 2.0000 -0.9902 0.9175 -4.0000 -0.5334 0.5691 0.7819 0.0000 0.0000 0.0000 2.0000 -0.4775 0.8172 0.0000 0.0000 0.0000 0.7856 0.0000 0.0000 0.0000 2.0000 0.0000 0.7856 4.0000 0.5334 -0.5691 0.7819 0.0000 0.0000 0.0000 2.0000 0.4775 0.8172 8.0000 1.1082 -1.0487 0.7708 0.0000 0.0000 0.0000 2.0000 0.9902 0.9175

71

Figure 2.37: for021.dat File Example

VARIABLES: MACH,ALTITUDE,SIDESLIP,DEL1,DEL2,DEL3,DEL4 ROWS, TOTAL COLUMNS, COLUMNS OF DERIVATIVESDATA: ALPHA,CN,CM,CA,CY,CLN,CLL,CNQ,CMQ,CAQ,CYR,CLNR,CLLR,CYP,CLNP,CLLP 0.40 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 16.0 9.0-0.800E+01 -0.1200E+01 0.1360E+01 0.3248E-01 0.2529E-07 -0.6334E-07 0.1074E-07 0.4265E+02 -0.9363E+02 0.3424E+01 0.4364E+02 -0.9656E+02 0.5687E-01 -0.3588E-01 0.8987E-01 -0.1351E+02-0.400E+01 -0.5855E+00 0.6819E+00 0.9071E-01 -0.2940E-08 0.7365E-08 0.1541E-07 0.4073E+02 -0.8883E+02 0.8202E+00 0.4254E+02 -0.9380E+02 0.2176E-01 -0.3388E-02 0.8487E-02 -0.1256E+02 0.000E+00 0.0000E+00 -0.2934E-07 0.1127E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4226E+02 -0.9266E+02 -0.2175E+01 0.4208E+02 -0.9266E+02 0.1212E-05 -0.9743E-06 0.2441E-05 -0.1150E+02 0.400E+01 0.5855E+00 -0.6819E+00 0.9071E-01 -0.1879E-07 0.4707E-07 0.1620E-07 0.4470E+02 -0.9878E+02 -0.4956E+01 0.4254E+02 -0.9380E+02 -0.2176E-01 0.3388E-02 -0.8487E-02 -0.1256E+02 0.800E+01 0.1200E+01 -0.1360E+01 0.3248E-01 -0.5080E-07 0.1273E-06 0.2556E-07 0.4499E+02 -0.9950E+02 -0.7183E+01 0.4364E+02 -0.9656E+02 -0.5687E-01 0.3588E-01 -0.8987E-01 -0.1351E+02 0.80 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 16.0 9.0-0.800E+01 -0.1233E+01 0.1421E+01 0.5301E-01 0.2503E-07 -0.6227E-07 0.1141E-07 0.4354E+02 -0.1025E+03 0.3557E+01 0.4415E+02 -0.1045E+03 0.7166E-02 -0.3155E-01 0.7849E-01 -0.1399E+02-0.400E+01 -0.6044E+00 0.7206E+00 0.1099E+00 0.1385E-07 -0.3445E-07 0.2393E-07 0.4189E+02 -0.9842E+02 0.8646E+00 0.4343E+02 -0.1027E+03 0.2009E-01 -0.3073E-02 0.7646E-02 -0.1317E+02 0.000E+00 0.0000E+00 0.9313E-09 0.1317E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4330E+02 -0.1019E+03 -0.2236E+01 0.4312E+02 -0.1019E+03 0.1178E-05 -0.9279E-06 0.2309E-05 -0.1219E+02 0.400E+01 0.6044E+00 -0.7206E+00 0.1099E+00 -0.5782E-08 0.1438E-07 0.2264E-08 0.4535E+02 -0.1070E+03 -0.5121E+01 0.4343E+02 -0.1027E+03 -0.2009E-01 0.3070E-02 -0.7639E-02 -0.1317E+02 0.800E+01 0.1233E+01 -0.1421E+01 0.5301E-01 -0.4800E-07 0.1194E-06 0.2343E-07 0.4514E+02 -0.1065E+03 -0.7429E+01 0.4415E+02 -0.1045E+03 -0.7165E-02 0.3155E-01 -0.7849E-01 -0.1399E+02 2.00 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 16.0 9.0-0.800E+01 -0.1108E+01 0.1049E+01 0.7708E+00 0.9829E-08 -0.2690E-07 -0.1791E-07 0.3934E+02 -0.1081E+03 0.0000E+00 0.3905E+02 -0.1074E+03 0.1684E-01 -0.3002E-02 0.8216E-02 -0.9839E+01-0.400E+01 -0.5334E+00 0.5691E+00 0.7819E+00 0.7282E-10 -0.1993E-09 -0.8745E-08 0.3902E+02 -0.1073E+03 0.0000E+00 0.3948E+02 -0.1086E+03 0.2910E-02 -0.1501E-02 0.4109E-02 -0.9678E+01 0.000E+00 0.0000E+00 0.5588E-08 0.7856E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4029E+02 -0.1107E+03 0.0000E+00 0.3988E+02 -0.1097E+03 0.2254E-05 -0.7973E-06 0.2183E-05 -0.9191E+01 0.400E+01 0.5334E+00 -0.5691E+00 0.7819E+00 -0.3837E-08 0.1050E-07 0.7883E-08 0.4076E+02 -0.1120E+03 0.0000E+00 0.3948E+02 -0.1086E+03 -0.2907E-02 0.1501E-02 -0.4108E-02 -0.9678E+01 0.800E+01 0.1108E+01 -0.1049E+01 0.7708E+00 -0.4747E-07 0.1299E-06 0.2443E-07 0.3958E+02 -0.1088E+03 0.0000E+00 0.3905E+02 -0.1074E+03 -0.1684E-01 0.3004E-02 -0.8223E-02 -0.9839E+01 0.40 0.0 0.00 5.0 0.0 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 7.0 0.0-0.800E+01 -0.1200E+01 0.1360E+01 0.3248E-01 0.2529E-07 -0.6334E-07 0.1074E-07-0.400E+01 -0.5855E+00 0.6819E+00 0.9071E-01 -0.2940E-08 0.7365E-08 0.1541E-07 0.000E+00 0.0000E+00 -0.2934E-07 0.1127E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.400E+01 0.5855E+00 -0.6819E+00 0.9071E-01 -0.1879E-07 0.4707E-07 0.1620E-07 0.800E+01 0.1200E+01 -0.1360E+01 0.3248E-01 -0.5080E-07 0.1273E-06 0.2556E-07 0.80 0.0 0.00 5.0 0.0 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 7.0 0.0-0.800E+01 -0.1233E+01 0.1421E+01 0.5301E-01 0.2503E-07 -0.6227E-07 0.1141E-07-0.400E+01 -0.6044E+00 0.7206E+00 0.1099E+00 0.1385E-07 -0.3445E-07 0.2393E-07 0.000E+00 0.0000E+00 0.9313E-09 0.1317E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.400E+01 0.6044E+00 -0.7206E+00 0.1099E+00 -0.5782E-08 0.1438E-07 0.2264E-08 0.800E+01 0.1233E+01 -0.1421E+01 0.5301E-01 -0.4800E-07 0.1194E-06 0.2343E-07 2.00 0.0 0.00 5.0 0.0 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 7.0 0.0-0.800E+01 -0.1108E+01 0.1049E+01 0.7708E+00 0.9829E-08 -0.2690E-07 -0.1791E-07-0.400E+01 -0.5334E+00 0.5691E+00 0.7819E+00 0.7282E-10 -0.1993E-09 -0.8745E-08 0.000E+00 0.0000E+00 0.5588E-08 0.7856E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.400E+01 0.5334E+00 -0.5691E+00 0.7819E+00 -0.3837E-08 0.1050E-07 0.7883E-08 0.800E+01 0.1108E+01 -0.1049E+01 0.7708E+00 -0.4747E-07 0.1299E-06 0.2443E-07

72

Chapter 3: Missile DATCOM Model of the Brumby

Unmanned Aerial Vehicle

The Brumby UAV is an ideal aerospace vehicle for using Missile DATCOM to

create an aerodynamic model. The Brumby UAV has many characteristics similar to a

missile such as its geometry and having a constant diameter body cross-section. The

Brumby UAV model will benefit from the very broad flight envelope allowed by Missile

DATCOM. A broad flight envelope makes the model useful for studying many different

actual flight maneuvers.

3.1 Flight Conditions

The Brumby UAV was to be modeled under expected flight conditions. Data was

generated for the Brumby UAV over a range of -5.0 to 35.0 degrees of angle-of-attack(

). The values vary from -5.0 to 0.0 in 5.0 degree increments and from 0.0 to

20.0 degrees in 2.0 degree increments, to allow for nonlinearities in the aerodynamic

coefficients. The values from 20.0 to 35.0 degrees were taken in 5.0 degree

increments. The maximum velocity for the Brumby UAV is approximately 100 miles per

hour. The sea level speed of sound is approximately 1117 feet per second. The maximum

Brumby UAV velocity would be approximately 146.67 feet per second. This would

correspond to a Mach value of approximately 0.13. The smallest Mach value that

Missile DATCOM will calculate is 0.01. This creates a lower velocity boundary of

approximately 7.6 miles per hour, assuming sea level speed of sound. Table 3.1 includes

the values input for each variable in namelist FLTCON.

73

Missile DATCOM uses reference values in order to scale the aerodynamic

coefficients. The reference values for longitudinal length, lateral length, and area are

LREF, LATREF, SREF. The reference values used for the Brumby UAV are the surface

area of the wing planform area, the mean aerodynamic chord length, and the wing span

length and are stored in SREF, LREF, LATREF. Missile DATCOM calculates the

position of the aerodynamic center of pressure with respect to the center of gravity along

the x-axis and is represented as the variable Xcp value. The aerodynamic center of

pressure is defined as the point on the infinitely thin airfoil section where the

aerodynamic moment is zero.[6] The aerodynamic center of pressure tends to be at

approximately 0.25c aft from the leading edge of the airfoil section for commonly used

airfoil sections at subsonic speeds.[5] The actual aerodynamic center of pressure changes

as a function of the angle-of-attack[6], however the 0.25c value of the aerodynamic

center of pressure is a commonly used approximation at subsonic speeds. Missile

Table 3.1: Brumby UAV Flight Conditions (FLTCON)

Variable Name

Brumby Values Units

NALPHA 15.0 N/A

ALPHA -5.00,0.00,2.00,4.00,6.00,8.00,10.00,12.00,14.00,16.00,18.00,20.00,25.00,30.00,35.00

Degrees

BETA 0.0 Degrees

PHI 0.0 Degrees

NMACH 4.0 N/A

MACH 0.05,0.08,0.10,0.15 N/A

ALT 0.0,0.0 Meters

74

DATCOM calculates the center of pressure for the Brumby UAV to be 0.90 meters aft

from the tip of the nose. Therefore, the center of gravity must be approximately 0.90

meters or less aft from X0, where X0 is at the tip of the nose cone, in order for the

Brumby UAV to be longitudinally statically stable. For longitudinal static stability the

center of pressure resides slightly aft of the center of gravity, such that the vehicle can be

trimmed to be statically stable by use of the horizontal control surface or elevator. This

also causes the vehicle to pitch nose over in the event that the free stream velocity is zero

during flight. Typically, this is considered during the design of the airframe and includes

the placement of equipment about the airframe in order to maintain the desired center of

gravity location. The values used in the REFQ namelist variables are presented in Table

3.2. The center-of-gravity was chosen to be at 0.85 meters from the tip of the nose.

Missile DATCOM shows the center-of-pressure to be located at 0.90 meters from the tip

of the nose. A center of gravity location of 0.85 meters from the tip of the nose will create

static stability in the dynamics of the aircraft. Aircraft designers consider the location of

the center of gravity during the design of the airframe. The aircraft designer locates the

components of the aircraft, such as the airframe, power plant, and instrumentation, such

that the location of the center of gravity forward of the center-of-pressure.

75

3.2 FuselageThe fuselage of the Brumby UAV is a cylinder with a blunted ogive nose cone.

The body of the Brumby UAV will be modeled in Missile DATCOM using the Axially

Symmetric namelist (ASYM). This will allow the body geometry to be defined using the

least number of variables. The body could have been defined at longitudinal station

points, which would have required additional measurements and should yield similar

results.

Figure 3.1: Brumby UAV Fuselage

Table 3.2: Brumby UAV Reference Values (REFQ)

Variable Name Brumby Values Units

SREF 1.251700 Meters^2

LREF 0.634700 Meters

LATREF 2.324000 Meters

XCG 0.85 Meters

ZCG -0.04 Meters

76

The longitudinal point of reference, X0, was set to zero. This sets the origin of the

Missile DATCOM coordinate system at the tip of the nose on the Brumby UAV.[1]

Setting the origin of the coordinate system at the tip of the nose simplifies the

measurements along the longitudinal axis.

3.3 Wing Planform

The main lifting surface planform of the Brumby UAV is a delta wing that is

located on the xy-plane. This planform is the foremost finset and is therefore labeled

FINSET1. The leading edge is located aft from the nose at a length of 0.97 meters. The

wing is composed of two panels located at 90.0 degrees and -90.0 degrees from the

positive z-axis. The wing had no measurable dihedral and therefore the GAM values are

0.0. The airfoil section was determined to be symmetric with an approximate chord

thickness of 10% located 30% aft from the leading edge, which is an airfoil section of

NACA 0310. The Brumby UAV wing planform airfoil section is modeled in Missile

DATCOM as NACA-1-4-0310. A detailed explanation of how to implement the control

Table 3.3: Brumby UAV Body Definition (ASYM)

Variable Name Brumby UAV Value Units

XO 0.0 Meters

TNOSE OGIVE N/A

LNOSE 0.1970 Meters

DNOSE 0.1524 Meters

BNOSE 0.0 Meters

LCENTR 1.7730 Meters

DCENTR 0.1524 Meters

77

surfaces for this planform will be discussed in Section 3.5.

3.4 Vertical Stabilizer

The Brumby UAV has twin vertical stabilizers located on the wing planform

approximately 0.2660 meters from the body mold line. The twin vertical stabilizers are

aft of the wing planform and are defined as FINSET2 in Missile DATCOM. In order to

place the panels perpendicular to the wing panel the vertical stabilizers are located at a

PHIF angle of 90.0 and -90.0. Then the vertical stabilizers will be given dihedral angles

GAM of -90.0 and 90.0, which will roll the panels into a vertical orientation. In order to

Figure 3.2: Brumby UAV Wing Planform

78

place the panels away from the body and onto the wing the first SSPAN value will be

half the body diameter plus the distance of the panel from the body mold line. The second

value for SSPAN is the distance from the first SSPAN length to the end of the panel. The

values used for SSPAN are 0.2660 and 0.6790 for the starboard and port panels. The

panels are 1.57 meters from X0 along the body x-axis. The twin vertical tails are swept

from the root chord aft of the aircraft toward the tip chord. Missile DATCOM allows the

user to define the sweep angle with reference to either the leading edge or the trailing

edge. For the twin vertical stabilizers on the Brumby UAV the sweep angle is 13.99

degrees and is assigned to the variable SWEEP. To assign the reference edge to be the

trailing edge, assign STA the value of 1.0. The Brumby UAV vertical stabilizers use a

symmetric airfoil section with an airfoil thickness of 20% , located 30% aft from the

leading edge. This is represented using a NACA 4 series airfoil as NACA 0320. To

assign FINSET2, the user inputs the following control card NACA 2-4-0320.

79

Figure 3.3: Brumby UAV Vertical Planform

Table 3.4: Brumby UAV Twin Vertical Tail Planform Definition (FINSET2)

Variable Name Default Value Units

XLE 1.57 Meters

CHORD 0.4000,0.1952 Meters

SSPAN 0.2660,0.6790 Meters

CFOC 0.2600,0.5328 N/A

NPANEL 2.0 N/A

PHIF 90.00,270.00 Degrees

GAM -90.00,90.00 Degrees

SECTYPE NACA N/A

STA 1.0 N/A

SWEEP 13.99 Degrees

80

3.5 Control Surfaces

Traditional aircraft have control surfaces located on the planforms. The wing

planform typically contains ailerons that create rolling moments about the x-axis. The

Horizontal stabilizer either has a movable section or is completely movable where the

control surface is defined as the elevator. The elevator is used to create pitching

moments about the y-axis, as well as to trim the vehicle longitudinally. The vertical

stabilizer has a control surface defined as the rudder, which creates yawing moments

about the aircraft z-axis.

The Brumby UAV has a delta wing planform with two control surfaces on each

panel, as well as a control surface on each of the twin vertical tails. The delta wing has

ailerons that create rolling moments as well as elevators that create pitching moments.

Missile DATCOM does not allow for multiple control surfaces on a fin. In order to

accomplish a similar control scheme using a single control surface, the elevator and

aileron displacement inputs must be geometrically summed together. This configuration

of control surfaces that can create both rolling and pitching moments are defined as

Elevons. When the wing planform control surfaces are deflected equally up or down,

then the control surfaces contribute to the pitching moment, similar to elevators. When

the control surfaces on the wing panels are deflected an equal distance in opposite

directions, the control surfaces contribute to the rolling moment, similar to ailerons. By

combining the elevator and aileron deflection angles for each wing panel control surface

we can accomplish simultaneous aileron and elevator control.

The size of the control surfaces are defined in Missile DATCOM using the flap

81

chord length to chord length ratio CFOC.

CFOC = Flap Chord LengthCHORD (3.1)

The wing planform is defined as FINSET1, and the the twin vertical stabilizers will be

defined as FINSET2. Notice that the control surface of the twin vertical stabilizers

extends over the length of the panel span, while the control surface on the wing planform

extends only over a portion of the span length.

In order to create aerodynamic data over the range of control surface deflection

values, the model must be run for each deflection angle of each control surface. This is

accomplished by saving the geometric model definition from previous cases and only

changing the deflection values for the control surface under consideration, and by setting

the control surface deflection angles to 0.0 for the base case. Invoking the SAVE control

card retains the previous variable definitions so the values can be used during the

execution of the next case. As an example, consider a base case where the SAVE control

card is included before the NEXT CASE control card. The namelist DEFLCT contains a

variable for each finset. Since the wing has been defined as FINSET1, the deflection

angle for the starboard panel is contained in the first element of the array DELTA1. The

Second element is the port panel deflection angle, which will be set to zero for this case,

because the base model values will be used in the preceding case, the SAVE control card

must be used before the NEXT CASE control card. In subsequent cases the aerodynamic

data will be computed for the same model with different values of side-slip angle,

altitude, and control surface deflection angles.

82

Figure 3.4: Brumby UAV Vehicle Description Case for005.dat File

CASEID BrumbyDAMPPLOTDIM MDERIV RAD $FLTCON NMACH=1.0,ALT=12*0.,NALPHA=15.0, MACH = 0.05,0.08,0.10,0.15, ALT = 0.00,0.00,0.00,0.00, ALPHA = -5.00,0.00,2.00,4.00,6.00, ALPHA(6)=8.00,10.00,12.00,14.00,16.00, ALPHA(11)=18.00,20.00,25.00,30.00,35.00, BETA=0.,$ $REFQ SREF=1.251700,LREF=0.634700,LATREF=2.324000,XCG=0.85,ZCG=-0.04,$ $AXIBOD TNOSE=OGIVE,LNOSE=0.1970,DNOSE=0.1524,LCENTR=1.7730,DCENTR=0.1524,$ $FINSET1 SECTYP=NACA, SSPAN=0.0000,0.2660,1.0096, CHORD=1.0033,0.8048,0.2500, XLE=0.97, NPANEL=2., PHIF=90.00,270.00, GAM=0.00,0.00, CFOC=0.0000,0.1553,0.5000,$ NACA-1-4-1310 $FINSET2 SECTYP=NACA, SSPAN=0.2660,0.6790, CHORD=0.1040,0.1040, XLE=1.57, CFOC=1.0000,1.0000, STA=1., SWEEP=13.99, NPANEL=2., PHIF=90.00,-90.00, GAM=-90.00,90.00,$ NACA-2-4-0020SAVENEXT CASE

83

Figure 3.5: Brumby UAV Wing Control Deflection Cases for005.dat File

CASEID WING FLAPS $DEFLCT DELTA1=-45.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-35.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-25.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-15.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-5.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=5.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=15.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=25.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=35.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=45.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=0.0,45.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,35.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,25.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,15.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,5.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-5.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-15.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-25.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-35.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-45.00,$SAVENEXT CASE

84

Figure 3.6: Brumby UAV Twin Vertical Tail Control Deflection Cases for005.dat

File

CASEID RIGHT RUDDER $DEFLCT DELTA1=0.,0.,$ $DEFLCT DELTA2=-25.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=-15.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=-5.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=5.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=15.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=25.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-25.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-15.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-5.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,5.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,15.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,25.00,$SAVENEXT CASE

85

Figure 3.7: Brumby UAV Side-Slip Angle and Altitude Cases for005.dat File

$DEFLCT DELTA2=0.,0.,$ $FLTCON BETA=-20.,$ SAVENEXT CASE $FLTCON BETA=-10.,$ SAVENEXT CASE $FLTCON BETA=10.,$ SAVENEXT CASE $FLTCON BETA=20.,$ SAVENEXT CASE $FLTCON BETA=0.,ALT=5*100.,$SAVENEXT CASE $FLTCON ALT=10*100.,$SAVENEXT CASE

86

Chapter 4: Equations of Motion and Rigid Body Modeling

This chapter will discuss the mathematical model of a rigid body. The nonlinear

equations of motion for a non-rotating flat earth reference frame will be presented. The

equations will be presented in a manner that they can be integrated into a simulation

environment. For a derivation of the equations presented here the reader is directed to

Reference [7].

4.1 Equations of Motion for A Rigid Body

The movement of an object can be described with respect to an inertial reference

frame. For three-dimensional motion this is done by defining a coordinate system in a

reference frame. Multiple coordinate frames exist, however, only coordinate systems that

obey the right hand rule for vector orientation will be considered.

The first coordinate system of interest is one that is defined on an “Earth Fixed

Inertial Frame” located on the earth's surface.[7] This coordinate system aligns the

positive x-axis increasing in the East direction and the positive y-axis increasing in the

North direction. The positive z-axis increasing along the equatorial plane and is often

abbreviated using: East, North, Up or ENU.[7]

The next coordinate system of interest is the frame with respect to the vehicle

navigation. The coordinate system is defined as having the origin located on the surface

of the earth. The x-axis is positive increasing toward the North direction. The y-axis is

positive increasing toward the East direction. The z-axis is positive increasing Down

toward the center of the Earth, in accordance with the right hand rule. This coordinate

system is known as the “vehicle navigation” frame and is abbreviated as: North, East,

87

Down, or NED.[7]

The next coordinate system of interest is the coordinate frame with respect to

which the vehicle's stability is defined. The coordinate system is defined as having the

origin located at the center of mass of the vehicle. The positive x-axis is increasing

toward the nose of the aircraft. The positive y-axis is increasing toward the starboard

wing tip. The positive z-axis is increasing in accordance with the right hand rule. This is

known as the “body fixed” coordinate system and is defined as the body axes.[7]

The final coordinate systems of interest are the stability axes coordinate system

and the wind axes coordinate system. These coordinate systems relate the aerodynamic

forces acting on the vehicle and each has its origin at the center of mass of the vehicle.

The angular difference between the body x-axis and the stability x-axis along the x-z

plane, is known as the angle-of-attack ( ). The angular difference between the body

x-axis and the wind x-axis along the x-y plane, is known as the side-slip angle ( ).

The z-axis always obeys the right hand rule. Figure 4.1 illustrates the stability and wind

frames.

88

Assume that there are two coordinate systems that are related by one coordinate

system being rotated with respect to the other one about a parallel axis. Then let one of

Figure 4.1: Aerodynamic Angles

Table 4.5: Brumby UAV Wing Planform Definition (FINSET1)

Variable Name Default Value Units

XLE 0.97 Meters

CHORD 1.0033,0.8048,0.2500 Meters

SSPAN 0.0000,0.2660,1.0096 Meters

CFOC 0.0000,0.1553,0.5000 N/A

NPANEL 2.0 N/A

PHIF 90.00,270.00 Degrees

GAM 0.0,0.0 Degrees

SECTYPE NACA N/A

89

the coordinate systems be rotated about one of the axes with respect to the other axis. Let

us denote the angular difference between the two y-axes in the y-z plane as phi ( ),

the angular difference between the two x-axes in the x-z plane as theta ( ), and finally

the angle between the two x-axes in the x-z plane as psi ( ). These angles are the

Euler Angles.

A vector in one coordinate system (a) can be converted to another coordinate

system (b) by multiplying the vector by a Direction Cosine Matrix ( Ca /b ).

Equation 4.1 is a Direction Cosine Matrix that converts a vector from the navigation

frame to the body frame.

Cb /n = [ cos cos cossin −sin −cossin sin sin cos coscos sin sin sin sin cossin sin cos sin cos −sin coscossin sin cos cos] (4.2)

The fundamental equations of motion for the initial simulation of a vehicle can be

as simple as the flat earth equations of motion such as Equations 4.3-7. Equation 4.3

shows that the Direction Cosine Matrix is a function of the Euler Angles. The derivative

of position in the navigation frame is the velocity vector in the body frame converted into

the position frame, Equation 4.4. The differential equation of the Euler angles is shown in

Equation 4.5. The translational accelerations are given by Equation 4.6. The rotational

accelerations are given in Equation 4.7.

Cb /n = fn (4.3)

Poisson's Kinematic Equation

pne = C b /n vCM / eb (4.4)

90

Euler Kinematic Equation

= H b / eb (4.5)

Translational Acceleration

vCM / ebb = 1/m F A ,T

b Cb /n gn − b/ eb vCM / e

b (4.6)

Rotational Acceleration

b / ebb = J b−1 [M A ,T

b − b/ eb J b b /e

b ] (4.7)

Where:

H = [1 tansin tancos 0 cos −sin 0 sin /cos cos /cos ] (4.8)

b/eb vCM / e

b = b / eb × vCM / e

b (4.9)

J b=[ J x 0 −J x z

0 J y 0−J xz 0 J z

] (4.10)

F A ,Tb =[F Ax

F A yF Az

][F T xFT y

F T z] (4.11)

M A ,Tb =[M Ax

M A yM Az

][M T xM T y

M T z] (4.12)

g n=[0 0 g ] (4.13)

The vectors of interest for control and navigation purposes are the Navigation

Position Vector (Equation 4.11), the Euler Angles Vector (Equation 4.12), the

Translational Velocity Vector(Equation 4.13), and the Angular Velocity Vector

(Equation 4.14).

91

pne = [ p N pe pD ]T (4.14)

= [ ]T (4.15)

vCM / eb = [U V W ]T (4.16)

b /eb = [ P Q R ]T (4.17)

The matrix given in Equation 4.9 contains the moments of inertia for the vehicle

in question. Due to symmetry in the xz-plane J XY = J YX = 0 , moments of inertia

about J XX , J YY , J ZZ , and J XZ are non-zero. In situations where the inertia

tensor is difficult to obtain analytically, there exist experimental methods such as the

pendulum method outlined by M. P. Miller .[8]

4.2 Aerodynamic Coefficients

The forces and moments of interest are taken about the aircraft's center of mass.

Drag is friction caused by the aircraft moving through the air. The air molecules move

around the aircraft as it moves through the atmosphere. The molecules that cling to the

surface of the aircraft create skin friction.[6] The natural texture of the surface of the

aircraft is aerodynamically rough and is specified using the Roughness Height Rating

(RHR). The RHR is the arithmetic mean of the surface variation in millionths of an inch.

[4] Missile DATCOM allows the user to input the roughness factor of the vehicle surface.

The Lift force is created by both Bernoulli Lift and Vortex Lift.[6] Typically, the side

force is very small in an aircraft flying in wings level steady flight with side-slip angle at

or near zero. The aerodynamic forces of Lift and Drag are defined in the Stability frame.

92

The total moment acting on the aircraft is considered about the principle axes of the

coordinate system. The moment about the body x-axis is known as the Rolling Moment,

the moment about the body y-axis is known as the Pitching Moment, and the moment

about the body z-axis is known as the Yawing Moment. The sense of the moments are

defined using the right hand rule and are defined as follows. A positive Rolling Moment

is one in which the pilot experiences a clockwise rotation about the x-axis. The starboard

wing would be moving toward the positive z-axis and the port wing would be moving

toward the negative z-axis. A positive Pitching Moment is one in which the pilot

experiences the nose of the aircraft moving toward the positive z-axis and the tail of the

aircraft moving toward the negative z-axis. The positive Yawing Moment is one in which

the pilot experiences a clockwise rotation about the z-axis. The sense of the moments is

illustrated in Figure 4.4. Aircraft moving through fluid will experience certain restoring

forces, such as the vehicle to returning to a straight flight after experiencing a side-slip

perturbation. This is caused by the vertical stabilizer and is known as weather veining.

These restoring forces are represented as damping derivatives. Equation 4.20 shows how

to dimmensionalize the non-dimmensionalized aerodynamic coefficients and derivatives.

The rate value is the rotational rate with respect to the derivative, this is either Rolling

Rate p, the Pitching Rate q, or the Yawing Rate r. The constant k is either the wing span

length b in the case of roll and yaw rates or the mean aerodynamic chord c with

respect to the pitch rate. The damping derivative coefficients of interest are typically:

Rolling Moment with respect to Roll Rate C l p ,

Pitching Moment with respect to Pitch Rate Cmq ,

93

Yawing Moment with respect to Yaw Rate Cnr ,

Rolling Moment with respect to Yaw Rate C l r ,

Yawing Moment with respect to Roll Rate Cn p ,

Lift Force with respect to Pitch Rate C Lr ,

Side Force with respect to Roll Rate CY P ,

Side Force with respect to Yaw Rate CY r .

There are also derivatives of the force and moment coefficients with respect to the

various control surfaces. These are typically:

Pitching Moment with respect to Elevator Deflection Angle Cq ele

,

Lift Force with respect to Elevator Deflection Angle C L ele

,

Rolling Moment with respect to Aileron Deflection Angle C l ail

,

Yawing Moment with respect to Aileron Deflection Angle Cn

ail ,

Rolling Moment with respect to Rudder Deflection Angle C l rud

,

Yawing Moment with respect to Rudder Deflection Angle Cn rud

.

There also are derivatives for force and moment coefficients with respect to changes in

Mach, altitude, and thrust.

The aerodynamic forces, moments, and derivative coefficients are non-

dimensionalized so that aerodynamic data for an aircraft is scaled from the coefficients.

This allows data taken from models in wind tunnels to be used on full scale aircraft. The

equations used to create dimensionalized forces, moments, and derivatives are given in

94

Equations 4.17 – 23. Missile DATCOM provides force and moment coefficients for each

Mach and Alpha pair specified in the FLTCON namelist. Missile DATCOM only

provides coefficients for the dynamic derivatives over the Alpha range specified. The

Drag, Lift, and Cross-Wind Forces are projected onto the body frame of the vehicle using

the Direction Cosine Matrix given in Equation 4.36.

The lift and drag force coefficients are plotted in Figure 4.2 and the force and moment

coefficients in the body frame are plotted in Figure 4.3 for the Brumby UAV with zero

control surface deflection angles. If there aircraft is in straight and level flight equilibrium

then the longitudinal and lateral coefficients are be decoupled. For straight level flight the

lateral force coefficients of Side-force coefficients, Rolling and Pitching moment

coefficients will be of lower magnitude than the longitudinal force coefficients of Axial

and Normal force coefficients, and pitching moment coefficient.

(a) (b)

Figure 4.2: Lift Coefficient (a) and Drag Coefficient (b)

95

Figure 4.3: Force(a, b, c) and Moment Coefficients(d, e, f)

(a) (d)

(b) (e)

( c) (f)

96

Aerodynamic Forces

Drag Force

D = q S C D (4.18)

Lift Force

L = q S C L (4.19)

Side Force

Y = q S CS (4.20)

Aerodynamic Moments

Rolling Moment

lW = q S b C l (4.21)

Pitching Moment

mW = q S c Cm (4.22)

Yawing Moment

nW = q S b Cn (4.23)

Dynamic Derivatives

∇ C = C , ,M , h ,s × k2 V T

× rate (4.24)

Where:

q = 12 V T

2 Dynamic Pressure units of force / unit area (4.25)

97

b= Wing Span units of length (4.26)

c= mean aerodynamic chord unitsof length (4.27)

S = Wing Area units of length2 (4.28)

= massdensity mass /cubic volume (4.29)

V T = Speed unit distance / unit time (4.30)

k = dimensionless rate scale factor (4.31)

= Angle−of −Attack units of angle (4.32)

= Side−Slip Angle unitsof angle (4.33)

M = MACH (4.34)

98

h = Altittude units of length (4.35)

s = Control Surface S deflection angle units of angle (4.36)

Cw /b = [ cos cos sin sin cos −cos sin cos −sin sin

−sin 0 cos ] (4.37)

The total aerodynamic forces and moments acting on the vehicle are the sum of

Figure 4.4: Brumby UAV Moment Definition

99

the individual forces and moments. For example the total lift force acting on the vehicle

is a function of Mach, Alpha, Beta, Altitude, and Control Surface deflection angles

summed with the thrust forces.

The cumulative forces and moments enter into the equations of motion through

the vectors F A ,Tb and M A ,T

b . The aerodynamic force components

[F A , x F A , y F A, z ]T are either the aerodynamic forces in the wind frame converted to

the body frame F A ,Tb = Cb /w × [−Dw Y w −Lw ]

T or already in the body frame

F A ,Tb = [Ab Y b N b ]

T . Figure 4.6 illustrates the Lift and Drag force vectors. Due to

the coordinate frame that Missile DATCOM is using the forces in the body frame are

defined F A ,Tb = [−Ab Y b −N b ]

T . Where −Ab is the axial force with respect to

the body and is positive increasing toward the nose along the positive body x-axis, Y b

is the side force with respect to the free-stream and is positive increasing out the

starboard wing from the center of mass, −N b is the normal force and is positive

increasing from the center of mass along the positive body z-axis. Missile DATCOM

provides these values for every Mach and Alpha point. Equations 4.37 and 4.38 are the

dimensionalized Axial and Normal forces respectively, dimmensionalized Side force is

listed in Equations 4.19. Figure 4.5 illustrates the Axial and Normal force vectors.

Axial Force

A = q S C A (4.38)

Normal Force

100

N = q S C N (4.39)

Figure 4.5: Axial and Normal Forces

Figure 4.6: Lift and Drag Forces

101

4.3 Six Degree-of-Freedom Aircraft Model

A nonlinear six-degrees of freedom model was created using the flat earth

nonlinear equations of motion 4.3–7 . Since the variables of interest are only available

through integration of the nonlinear equations, one could linearize the nonlinear model

about an equilibrium point and represent the linearized system using a state transition

matrix typically used in state-space control theory. This, however, can be very difficult

and tedious, considering that the state transition matrix would have to be recalculated due

to the changing nonlinear time-varying aerodynamic contribution beyond the allowable

deviation from the equilibrium point. A better method would be to create a non-linear

model in The Mathwork's Matlab and Simulink environments. This allows the nonlinear

model to be created in the Simulink environment and programmed as an s-function. The

benefit of using an s-function is that, by the use of flags Simulink will integrate and keep

track of the state variables. The state variable vector given in Equation 4.39 is the

position vector in the navigation frame pne T , Euler Angle Vector T , Translational

Velocity Vector in the body frame vCM / eb T , and Angular Velocity Vector in the body

frame b /eb .

X = [ pne T T vCM / eb T b / e

b T ]T (4.40)

The forces and moments acting on the vehicle enter the equations of motion as

the Force Vector in the body frame F A ,Tb and the Moment Vector in the body frame

M A ,Tb . The forces and moments are the sum of the aerodynamic contribution, denoted

102

with a subscript A, and the thrust contribution, denoted with a subscript T. The Thrust

force vector is composed of the forces acting on the center of mass in the body frame.

The total force equation is given in Equation 4.40 and the total moments equation is

given in Equation 4.41.

F A ,Tb = [F A , x F A , y F A , z ]

T [F T , x F T , y FT , z ]

T (4.41)

M A ,Tb = [l A , b mA ,b nA, b ]

T [ lT ,b mT , b nT ,b ]

T (4.42)

103

Chapter 5: Simulation

In this chapter a nonlinear aircraft model is developed using The Mathwork's

Matlab and Simulink environments. The nonlinear model has the aerodynamics trimmed

around an equilibrium point and then a linearized model is created. The linearized model

is used to analyze the static and dynamic stability of the model.

5.1 Simulink Nonlinear Aircraft Model

The nonlinear aircraft model is implemented as a Simulink model. The model

uses an s-function to perform the equations-of-motion calculations and Matlab functions

execute DATCOMTableMex.dll to perform the linear interpolation on the Missile

DATCOM for0021.dat data file. The model, shown in Figure 5.1, allows the user to input

the gravitational acceleration, inertia matrix, initial conditions, as well as input values for

the control surfaces.

Figure 5.1: Simulink Nonlinear Aircraft Model

104

The components of the Brumby UAV including the airframe, power plant, as well

as the onboard instrumentation were treated as point masses and used to calculate the

location of the center-of-mass and the inertia matrix values. Table 5.2 contains the mass

properties of the Brumby UAV that were calculated by Sean Calhoun.[1]

The s-function requires the inertia matrix values, the gravity constant, current time

step, and the initial state vector as function inputs. Execution of the s-function with the

appropriate flags is controlled by the Simulink environment. The s-function provides the

following functionality shown in Table 5.2. There are other flags which are not used in

this simulation, and therefore will not be discussed.

Table 5.1: Brumby UAV Mass Properties

Table 5.2: S-function Functionality

Flag Value Output

0 Initialization of state vector

1 Calculate derivatives at current time

3 Output current state values

Mass Properties of the Brumby UAV Values Units

Mass 22.8543 Kg

Moment of Inertia (Jxx) 2.41583571804 Kg*m^2

Moment of Inertia (Jyy) 21.973713217110 kg*m^2

Moment of Inertia (Jzz) 23.942135938328 kg*m^2

Moment of Inertial (Jxz) -0.16090180279 kg*m^2

Gravity Constant 9.81 m/s^2

105

The Matlab function that calculates the forces and moments acting on the aircraft

perform several important tasks. The inputs to the function are the state vector and the

control input values. The function tests the input values to see if the control surface

deflections are within the physical tolerances of the full scale aircraft. After an aircraft

specification has been created in the for005.dat file, the user must execute Missile

DATCOM to create the for021.dat file. The Matlab function is used to calculate the

forces and moments is a wrapper function for DATCOMTableMex.dll.

DATCOMTableMex.dll requires the for021.dat file be read and the aerodynamic

coefficients be stored in random access memory. Storing the aerodynamic data in

memory is accomplished by executing DATCOMTableMEX with the inputs being a flag

of 1 and the for021.dat filename. DATCOMTableMex.dll will return the table

identification number that signifies the location of the data in random access memory.

DATCOMTableMex accesses the aerodynamic coefficients stored in memory when

executed with a flag of 2. Executing DATCOMTableMex with inputs: a flag of 2, table

identification number, angle-of-attack in degrees, Mach value, altitude in units of length,

side slip value in degrees, control surface deflection values in degrees returns the

following outputs: the incremental contribution to the aerodynamic coefficients, stability

derivatives, and base aerodynamic coefficients for the aircraft model with zero control

surface deflection. These coefficients must be dimensionalized by using the equations

defined in Chapter 4. To overcome the complexity of calling DATCOMTableMex and

then dimensionalizing the aerodynamic forces and moments from the Simlulink model

environment a driver function was written. The Matlab driver function was defined as

106

forces_moments.m and outputs the force and moments in the body frame.

Forces_moments.m requires the state vector and the control input values as inputs. The

function then proceeds to calculate the aerodynamic angle-of-attack, side slip, and Mach

values which are inputs needed when datcomderive.m is called. The driver function

datcomderive.m then executes DATCOMTableMex.dll with the appropriate inputs. The

aerodynamic forces and moments returned by datcomderive.m are added to the thrust

forces and moments to create the total forces and moments that are acting on the aircraft

with respect to the body frame.

Execution of datcomderive.m requires the user to input the angle-of-attack in

degrees, the side slip value in degrees, the altitude, control surface deflection angle

vector, Mach, the angular velocity vector, table identification number, the lateral

reference length, the longitudinal reference length, the reference area, the speed of

sound, and the fluid density. Both forces_moments.m and datcomderive.m are included

Table 5.3: DATCOMTableMex.dll Functionality

Flag Function Definition1 tableID = DATCOMTableMex(flag,filename)

2 [DepDeltaIncrements, Derivatives_Stab, DepBaseIncrements] =DATCOMTableMex(flag,tableID,IndVariables)

4 DATCOMTableMex(flag)

Where,

filename - 'for021.dat'tableID - pointer to data table in memorydeltadeg - [Starboard Ailevon Deflection Angle,Port Ailevon Deflection Angle,Starboard Rudder Deflection Angle,Port Rudder

Deflection Angle,0,0]IndVariables - [Angle-of-Attack , MACH, altitude (-Z), SideSlip Angle , deltadeg]DepDeltaIncrements - Incremental Control Surface Forces and Moments ContributionsDerivatives_Stab - Stability DerivativesDepBaseIncrements - Vehicle with zero control surfaces deflection angles Force and Monents Contributions

107

in the Appendix .

5.2 Trimmed Aircraft Flight

The simulation was trimmed for straight and level flight using the Simulink Trim

command. The trimmed control input values are given in Table 5.4. The values for the

trimmed initial conditions are given in Table 5.5. The control surfaces on the aircraft are

deflected such that the forces and moments on the aircraft are in equilibrium. The

translational and rotational accelerations on the aircraft are zero. This condition is known

as trimming the aircraft. Typically, this is performed for wings level straight and steady

flight. For a trimmed aircraft the translational velocity derivatives, rotational velocity

derivatives, and the derivatives of roll and pitch Euler angles are zero. The velocity

component along the Body x-axis velocity (U) and the velocity component along the

Body z-axis (W), the Euler Angle Theta ( ), and the Down position ( PZ ) are

allowed to have non zero constant values. East position ( P X ) and North position (

PY ) are allowed to vary with time, while all other state variables must maintain values

of zero.

Table 5.4: Brumby UAV Control Input Trimmed Values (Case 1)

Control Inputs Values UnitsElevator -20.9891 DegreesAileron 0.0000 DegreesRudder 0.0000 DegreesThrust Force 80.4064 Newtons

108

5.3 Linearized Aircraft Model

The model was linearized around this equilibrium point using the Simulink

command linmod. The state-space equation is defined in Equation 5.1 with state vector x

defined in Equation 5.2, and input vector given in Equation 5.3, and the output vector

Table 5.5: Brumby UAV State Variables Initial Condition Values (Case 1)

State Vector Initial Conditions Values Units

Navigation East Position ( P X ) 0.0000 meters

Navigation East Position ( PY ) 0.0000 meters

Navigation East Position ( PZ ) 0.0000 meters

Euler Angle ( ) 0.0000 radiansEuler Angle ( ) 0.1087 radiansEuler Angle ( ) 0.0000 radiansTranslational Velocity (U) 90.3775 meters/secondTranslational Velocity (V) 0.0000 meters/secondTranslational Velocity (W) 9.8658 meters/secondAngular Velocity (p) 0.0000 radians/secondAngular Velocity (q) 0.0000 radians/secondAngular Velocity (r) 0.0000 radians/second

Table 5.6: Brumby UAV Trimmed Aerodynamic Values (Case 1)

Aerodynamic Values of Trimmed Condition

Values Units

angle-of-attack ( ) 6.2299 degreesSide-slip Angle ( ) 0.0000 degreesSpeed (S) 90.9144 meters / second

109

given in Equation 5.4. The state-space representation coefficient matrices A, B, C and D

are listed as Equations 5.5-8.

X = Ax BuY = Cx Du (5.1)

x = [∇ pne T ∇T ∇ vCM /eb T ∇b/ e

b T ]T (5.2)

u = [∇ail ∇ele ∇rud ∇thrust ]T (5.3)

Y = [∇ pne T ∇T ∇ vCM / eb T ∇b /e

b T ]T (5.4)

A = [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9941 0.0000 0.1085 0.0000 0.0000 0.00000.0000 0.0000 0.0000 −9.8658 0.0000 90.9144 0.0000 1.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 −90.9144 0.0000 −0.1085 0.0000 0.9941 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.10920.0000 0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.00590.0000 0.0000 0.0000 0.0000 −9.7521 0.0000 −0.2003 0.0000 1.3375 0.0000 −9.8104 0.00000.0000 0.0000 0.0000 9.7521 0.0000 0.0000 −0.0000 −2.5025 0.0000 12.4164 0.0000 −79.66700.0000 0.0000 0.0000 0.0000 −1.0646 0.0000 0.9197 0.0000 −10.4017 0.0000 89.8141 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0000 −5.0595 0.0000 −20.1594 0.0000 19.48630.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 0.0733 −0.0000 −0.6712 0.0000 −1.5359 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.0800 −0.0000 −12.0662 0.0000 −52.4232

] (5.5)

B = [0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.1407 0.0296 0.0438−0.9344 0.0000 −0.8710 0.00000.0000 −1.7621 0.0000 0.00004.4417 0.0000 −1.5911 0.00000.0000 −0.1178 −0.0011 0.00004.4318 −0.0000 4.1784 0.0000

] (5.6)

C = [1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

] (5.7)

110

D = [0.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.00000.0000 0.0000 0.0000 0.0000

] (5.8)

Eigenvalues of the state differential equation A matrix are given in Equation 5.9.

The position vector in the navigation frame pne T , was removed from the A coefficient

matrix whose eigenvalues are listed in Equation 5.9. The position vector in the navigation

frame is not needed for the stability analysis that is being performed in this chapter.

= [0

−27.388323.5888i−27.3883−23.5888i−6.03156.3905i−6.0315−6.3905i

−20.3019−0.03750.1280i−0.0375−0.1280i

−0.0067]

(5.9)

(5.10)

(5.11)

For Bounded-Input Bounded-Output (BIBO) stability the non-zero eigenvalues of

the A Coefficient Matrix must contain only negative real parts. [9] Bounded-Input

Bounded-Output stability represents longitudinal and lateral stability in aircraft.

Equation 5.10 contains the longitudinal eigenvalues for the state variables

,U ,W ,q , and Equation 5.12 relates the eigenvalues to the longitudinal dynamics of

the aircraft. The lateral eigenvalues for the state variables , ,V , p ,q , associated

Longitudinal = [−0.03750.1280i−0.0375−0.1280i−6.03156.3905i−6.0315−6.3905i]

Lateral = [ 0−0.0067

−27.388323.5888i−27.3883−23.5888i

−20.3019]

111

with the lateral dynamics are listed in Equation 5.11 and an explanation of the

eigenvalues effect on the lateral dynamics is listed in Equation 5.13. The explanation of

the eigenvalues includes the period of natural oscillation T and the damping ratio

for complex conjugate pairs and the time constant for real and distinct

eigenvalues.

(5.12)

The short-period mode is the natural mode of the aircraft and is the transient

response in the longitudinal direction. Once the short-period mode has decayed the

aircraft experiences a very lightly damped oscillation known as the phugoid mode.[7]

(5.13)

The dutch roll mode of the aircraft consists of rolling and yawing motion with

some side-slip and is similar to the motion of a drunken ice skater. The Brumby has a

dutch roll mode period of 0.1738 seconds and a damping ratio of 0.7577. The dutch roll

mode period for the Brumby is very short but highly damped. The roll subsidence mode

gives an indication of the time required for the rolling moment control inputs create the

rolling moment. The Brumby has a quick roll response at 0.0493 seconds. The spiral

mode of the aircraft is the time lapse before the aircraft to go into a downward spiral with

no control input correction. [7]

The Brumby was also trimmed for a coordinated turn with a constant rate of

climb. The turn rate used for this trim condition is 0.1 radians per second, and the rate of

−0.0375±0.1280i Phugoid Mode , T = 47.1060 s , =0.2811−6.0315±6.3905i Short−Period Mode , T = 0.7150 s , =0.6864

−27.3883±23.5888i Dutch Roll Mode , T = 0.1738 s , =0.7577−20.3019 Roll Subsidence Mode , = 0.0493 s −0.0067 Spiral Mode , = 148.8067 s

112

climb is 0.5 meters per second. The turn rate was chosen so that the centripetal

acceleration on the aircraft would be less than 0.5 times the force of gravity during the

turn.

5.4 Nonlinear Simulation Results

Nonlinear simulation was performed on the trimmed aircraft model, and the state

variables are plotted in this section. Figures 5.2–9 show the Brumby UAV trimmed for

straight and level flight (SLF). The reader should note that the Euler angle is

obscured by the Euler angle in Figure 5.3. This demonstrates the aircraft in a cruise

maneuver, such as when flying from one way point to another . Nonlinear simulation

results for the Brumby UAV trimmed for a coordinated turn with a constant rate of climb

(CTROC) are shown in Figures 5.10–17.

Table 5.7: Brumby UAV Control Input Trimmed Values (Case 2)

Control Inputs Values UnitsElevator -42.0978 DegreesAileron -0.0174 DegreesRudder 0.2862 DegreesThrust Force 92.9212 Newtons

113

Figure 5.2: Navigation Position Output (SLF)

Figure 5.3: Euler Angles Output (SLF)

114

Figure 5.4: Translational Velocities Output (SLF)

Figure 5.5: Angular Velocities Output (SLF)

115

Figure 5.6: Velocity Magnitude Output (SLF)

Figure 5.7: Aerodynamic Angles Output (SLF)

116

Figure 5.8: Flight-Path Angle Output (SLF)

Figure 5.9: Rate-of-Climb Output (SLF)

117

Figure 5.10: Navigation Position Ground Track Output (SLF)

Figure 5.11: Navigation Position 3-Dimensional Output (SLF)

118

Figure 5.12: Navigation Position Output (CTROC)

Figure 5.13: Euler Angles Output (CTROC)

119

Figure 5.14: Translational Velocities Output (CTROC)

Figure 5.15: Angular Velocities Output (CTROC)

120

Figure 5.16: Velocity Magnitude Output (CTROC)

Figure 5.17: Aerodynamic Angles Output (CTROC)

121

Figure 5.18: Flight-Path Angle Output (CTROC)

Figure 5.19: Rate-of-Climb Output (CTROC)

122

Figure 5.20: Navigation Position Ground Track Output (CTROC)

Figure 5.21: Navigation Position 3-Dimensional Output (CTROC)

123

5.4 Control Surface Doublet Simulation Results

The aircraft model will now be subjected to perturbations about the trimmed

equilibrium point. A doublet is composed of a positive displacement immediately

followed by a negative displacement with equal magnitude. The doublet differs from a

step input in that, a doublet has a finite duration and returns to the initial value. The

positive displacement must be identical to the negative displacement in both magnitude

and duration. Because the input is returned to the trimmed input value the net effect of

the doublet on the steady-state output is zero. The first trim condition is that of straight

and level flight and the input values are listed in Table 5.4. The second flight condition is

that of the coordinated turn with a constant rate of climb and the input values are listed in

Table 5.7 The Brumby UAV model will be subjected to the similar control surface

doublets as those presented in Reference [1]. Figures 5.18–26 shows input perturbations

for the Brumby UAV trimmed for straight and level flight (SLF). Results for the input

perturbations to the Brumby UAV trimmed for a coordinated turn with a constant rate of

climb (CTROC) are shown in Figures 5.27–35.

124

Table 5.8: Brumby UAV Control Effector Doublet Values

Control Effector Values Units Time (s)

Elevator Positive Displacement Trim Value + 0.01 Radians 7

Elevator Negative Displacement Trim Value - 0.01 Radians 9

Elevator Return to Trim Trim Value Radians 11

Aileron Positive Displacement Trim Value + 0.1 Radians 133

Aileron Negative Displacement Trim Value - 0.1 Radians 135

Aileron Return to Trim Trim Value Radians 137

Rudder Positive Displacement Trim Value + 0.01 Radians 261

Rudder Positive Displacement Trim Value - 0.01 Radians 263

Rudder Return to Trim Trim Value Radians 265

Thrust Force Positive Displacement

Trim Value + 5.0 newtons 433

Thrust Force Negative Displacement

Trim Value – 5.0 newtons 435

Thrust Force Return to Trim Trim Value newtons 437

125

Figure 5.22: Doublet Response Navigation Position Output (SLF)

Figure 5.23: Doublet Response Euler Angles Output(SLF)

126

Figure 5.24: Doublet Response Translational Velocities Output(SLF)

Figure 5.25: Doublet Response Angular Velocities Output (SLF)

127

Figure 5.26: Doublet Response Velocity Magnitude Output (SLF)

Figure 5.27: Doublet Response Aerodynamic Angles Output (SLF)

128

Figure 5.28: Flight-Path Angle Output (SLF)

Figure 5.29: Rate-of-Climb Output (SLF)

129

Figure 5.30: Doublet Response Navigation Ground Track Output (SLF)

Figure 5.31: Doublet Response Navigation 3-Dimensional Output (SLF)

130

Figure 5.32: Control Surface Deflection Input Angles (SLF)

Figure 5.33: Aerodynamic Control Surface Deflection Input Angles (SLF)

131

Figure 5.34: Doublet Response Navigation Position Output (CTROC)

Figure 5.35: Doublet Response Euler Angles Output (CTROC)

132

Figure 5.36: Doublet Response Translational Velocities Output (CTROC)

Figure 5.37: Doublet Response Angular Velocities Output (CTROC)

133

Figure 5.38: Doublet Response Velocity Magnitude Output (CTROC)

Figure 5.39: Doublet Response Aerodynamic Angles Output (CTROC)

134

Figure 5.40: Flight-Path Angle Output (CTROC)

Figure 5.41: Rate-of-Climb Output (CTROC)

135

Figure 5.42: Doublet Response Navigation Ground Track Output (CTROC)

Figure 5.43: Doublet Response Navigation 3-Dimensional Output (CTROC)

136

Figure 5.44: Control Surface Deflection Input Angles (CTROC)

Figure 5.45: Aerodynamic Control Surface Deflection Input Angles (CTROC)

137

In Figures 5.23-26 and Figures 5.27-35 the Brumby UAV returns to the trimmed

equilibrium point after the doublet perturbation is applied. The model's ability to return to

the equilibrium point illustrates that the model is statically stable as well as dynamically

stable. Dynamic stability is defined as the time-dependent behavior of the aircraft being

stable in response to an impulsive input.[7] Once perturbed from the equilibrium point

the aircraft will return to the equilibrium point some time after the perturbation is applied.

The model presented in this thesis has been shown to be stable. In Calhoun's Thesis the

aerodynamic model created from time sampled data was shown to be unstable. The

model presented here has had the center of mass chosen so that it creates a longitudinal

statically stable aircraft. The benefit of using computational fluid dynamic prediction

codes is that the center-of-pressure of the lifting surface can be determined and the point

masses located in such a manner as to induce static stability.

138

Chapter 6: Conclusions and Future Work

This research has presented a six degree-of-freedom model of the Brumby UAV

using a computational fluid dynamic prediction code. The time history simulations show

that the trimmed nonlinear model is both longitudinally and laterally stable. The Brumby

UAV returns to the trimmed condition after the perturbation. This is just the first step in

creating a flight control system to be implemented on the physical vehicle.

The model must first be validated against flight test data to ensure that the model

is an adequate approximation of the physical model. The center of gravity of the aircraft

and the Inertia Tensor need to be recalculated. The Brumby UAV elevator control

surfaces are located on the lifting planform. If the center of gravity does not lie forward

of the center of pressure, then the center of gravity will create a negative moment about

the center of pressure. In order to cancel out this moment traditional aircraft use the

elevator control surface located on the horizontal stabilizer. If the center of gravity is

forward of the center of pressure then the elevator would need to apply a positive

moment. This acts as a spoiler on the lifting planform of the Brumby UAV, decreasing

the lift coefficient, increasing the drag coefficient, and inducing a positive pitching

moment. If the center of gravity is aft of the center of pressure then the elevators must

provide negative pitching moment. This would act as an additional lifting surface on the

Brumby UAV which would increase the amount of lift as well as increasing the amount

of drag, and inducing a positive pitching moment. The Brumby UAV may not have

enough control authority to correct for extreme misalignment between the center of

gravity and the center of pressure without introducing instability in the aerodynamic

139

forces and moments. The placement of components in the Brumby UAV should be

performed with consideration of the center of pressure. It may be possible for a human

pilot to counter act the natural instability of the aircraft induced by misaligned center of

gravity and center of pressure. The inertia matrix can be determined using the method

outlined by Miller in Reference [8].

The compensation scheme should include a state feedback loop as well as an

observer. The state feedback gains as well as the observer gains should be gain

scheduled. Gain Scheduling requires a finite set of feedback gains whose values are valid

only over a defined flight condition. This type of controller requires the least amount of

processor time or memory. [9]

The model and associated compensation scheme must be validated by simulation

of disturbance inputs. Disturbances should include responses to control surface failures,

wind gusts, and the power plant perturbations. The Simulink model described in Chapter

5 should be considered as a starting point in the simulation of perturbations. Failure

modes that should be explored are effectors that are seized or that have become

disconnected from the drive mechanism and are free to move, or a combination thereof.

140

References

[1] Calhoun, S.M., Six Degree-of-Freedom Modeling on an Uninhabited Aerial

Vehicle, Thesis: Ohio University, 2006.

[2] McDonnell Douglas Corporation, USAF Stability and Control DATCOM, 1960.

[3] McDonnell Douglas Corporation, The USAF Stability and Control Digital

DATCOM, 1979.

[4] United States Air Force, Missile DATCOM User's Manual, 1997.

[5] Abbott, I. H., A. E. Doenhoff, Theory of Wing Sections, New York: Dover, 1958.

[6] Anderson, J. D. , Fundamentals of Aerodynamics, New York: McGraw-Hill, 2001.

[7] Stevens, B. L., F. L. Lewis, Aircraft Control and Simulation, New York: Wiley,

2003.

[8] Miller, M. P., An Accurate Method of Measuring the Moments of Inertia of

Airplanes, 1930.

[9] Williams, R. L., D. A. Lawrence, Linear State-Space Control Systems, New York:

Wiley, 2007.

141

Appendix A.1: for005.dat File

CASEID BrumbyDAMPPLOTDIM MDERIV RAD $FLTCON NMACH=1.0,ALT=12*0.,NALPHA=15.0, MACH = 0.05,0.08,0.10,0.15, ALT = 0.00,0.00,0.00,0.00, ALPHA = -5.00,0.00,2.00,4.00,6.00, ALPHA(6)=8.00,10.00,12.00,14.00,16.00, ALPHA(11)=18.00,20.00,25.00,30.00,35.00, BETA=0.,$ $REFQ SREF=1.251700,LREF=0.634700,LATREF=2.324000,XCG=0.85,ZCG=-0.04,$ $AXIBOD TNOSE=OGIVE,LNOSE=0.1970,DNOSE=0.1524,LCENTR=1.7730,DCENTR=0.1524,$ $FINSET1 SECTYP=NACA, SSPAN=0.0000,0.2660,1.0096, CHORD=1.0033,0.8048,0.2500, XLE=0.97, NPANEL=2., PHIF=90.00,270.00, GAM=0.00,0.00, CFOC=0.0000,0.1553,0.5000,$ NACA-1-4-1310 $FINSET2 SECTYP=NACA, SSPAN=0.2660,0.6790, CHORD=0.1040,0.1040, XLE=5.66, CFOC=1.0000,1.0000, STA=1., SWEEP=13.99, NPANEL=2., PHIF=90.00,-90.00, GAM=-90.00,90.00,$ NACA-2-4-0020SAVENEXT CASECASEID WING FLAPS $DEFLCT DELTA1=-45.00,0.,$SAVENEXT CASE

142

$DEFLCT DELTA1=-35.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-25.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-15.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=-5.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=5.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=15.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=25.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=35.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=45.00,0.,$SAVENEXT CASE $DEFLCT DELTA1=0.0,45.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,35.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,25.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,15.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,5.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-5.00,$SAVE

143

NEXT CASE $DEFLCT DELTA1=0.0,-15.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-25.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-35.00,$SAVENEXT CASE $DEFLCT DELTA1=0.0,-45.00,$SAVENEXT CASECASEID RIGHT RUDDER $DEFLCT DELTA1=0.,0.,$ $DEFLCT DELTA2=-25.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=-15.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=-5.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=5.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=15.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=25.00,0.0,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-25.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-15.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,-5.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,5.00,$SAVE

144

NEXT CASE $DEFLCT DELTA2=0.0,15.00,$SAVENEXT CASE $DEFLCT DELTA2=0.0,25.00,$SAVENEXT CASE $DEFLCT DELTA2=0.,0.,$ $FLTCON BETA=-20.,$ SAVENEXT CASE $FLTCON BETA=-10.,$ SAVENEXT CASE $FLTCON BETA=10.,$ SAVENEXT CASE $FLTCON BETA=20.,$ SAVENEXT CASE $FLTCON BETA=0.,ALT=5*100.,$SAVENEXT CASE $FLTCON ALT=10*100.,$SAVENEXT CASE

145

Appendix A.2 : Truncated for006.dat File

1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS

CONERR - INPUT ERROR CHECKING

ERROR CODES - N* DENOTES THE NUMBER OF OCCURENCES OF EACH ERROR A - UNKNOWN VARIABLE NAME B - MISSING EQUAL SIGN FOLLOWING VARIABLE NAME C - NON-ARRAY VARIABLE HAS AN ARRAY ELEMENTDESIGNATION - (N) D - NON-ARRAY VARIABLE HAS MULTIPLE VALUES ASSIGNED E - ASSIGNED VALUES EXCEED ARRAY DIMENSION F - SYNTAX ERROR

************************* INPUT DATA CARDS *************************

1 CASEID Brumby 2 DAMP 3 PLOT 4 DIM M 5 DERIV RAD 6 $FLTCON NMACH=1.0,ALT=12*0.,NALPHA=15.0, 7 MACH = 0.05,0.08,0.10,0.15, 8 ALT = 0.00,0.00,0.00,0.00, 9 ALPHA = -5.00,0.00,2.00,4.00,6.00, 10 ALPHA(6)=8.00,10.00,12.00,14.00,16.00, 11 ALPHA(11)=18.00,20.00,25.00,30.00,35.00, 12 BETA=0.,$ 13 $REFQ SREF=1.251700,LREF=0.634700,LATREF=2.324000,XCG=0.85,ZCG=-0.04,$ 14 $AXIBOD TNOSE=OGIVE,LNOSE=0.1970,DNOSE=0.1524,LCENTR=1.7730,DCENTR=0.1524,$ ** SUBSTITUTING NUMERIC FOR NAME OGIVE 15 $FINSET1 SECTYP=NACA, ** SUBSTITUTING NUMERIC FOR NAME NACA 16 SSPAN=0.0000,0.2660,1.0096, 17 CHORD=1.0033,0.8048,0.2500, 18 XLE=0.97, 19 NPANEL=2., 20 PHIF=90.00,270.00,

146

21 GAM=0.00,0.00, 22 CFOC=0.0000,0.1553,0.5000,$ 23 NACA-1-4-0310 24 $FINSET2 SECTYP=NACA, ** SUBSTITUTING NUMERIC FOR NAME NACA 25 SSPAN=0.2660,0.6726, 26 CHORD=0.4000,0.1952, 27 XLE=5.66, 28 CFOC=0.2600,0.5328, 29 STA=1., 30 SWEEP=13.99, 31 NPANEL=2., 32 PHIF=90.00,-90.00, 33 GAM=-90.00,90.00,$ 34 NACA-2-4-0310 35 SAVE 36 NEXT CASE 37 CASEID WING FLAPS 38 $DEFLCT DELTA1=-45.00,0.,$ 39 SAVE 40 NEXT CASE 41 $DEFLCT DELTA1=-35.00,0.,$ 42 SAVE 43 NEXT CASE 44 $DEFLCT DELTA1=-25.00,0.,$ 45 SAVE 46 NEXT CASE 47 $DEFLCT DELTA1=-15.00,0.,$ 48 SAVE 49 NEXT CASE 50 $DEFLCT DELTA1=-5.00,0.,$ 51 SAVE 52 NEXT CASE 53 $DEFLCT DELTA1=5.00,0.,$ 54 SAVE 55 NEXT CASE 56 $DEFLCT DELTA1=15.00,0.,$ 57 SAVE 58 NEXT CASE 59 $DEFLCT DELTA1=25.00,0.,$ 60 SAVE 61 NEXT CASE 62 $DEFLCT DELTA1=35.00,0.,$ 63 SAVE

147

64 NEXT CASE 65 $DEFLCT DELTA1=45.00,0.,$ 66 SAVE 67 NEXT CASE 68 $DEFLCT DELTA1=0.0,45.00,$ 69 SAVE 70 NEXT CASE 71 $DEFLCT DELTA1=0.0,35.00,$ 72 SAVE 73 NEXT CASE 74 $DEFLCT DELTA1=0.0,25.00,$ 75 SAVE 76 NEXT CASE 77 $DEFLCT DELTA1=0.0,15.00,$ 78 SAVE 79 NEXT CASE 80 $DEFLCT DELTA1=0.0,5.00,$ 81 SAVE 82 NEXT CASE 83 $DEFLCT DELTA1=0.0,-5.00,$ 84 SAVE 85 NEXT CASE 86 $DEFLCT DELTA1=0.0,-15.00,$ 87 SAVE 88 NEXT CASE 89 $DEFLCT DELTA1=0.0,-25.00,$ 90 SAVE 91 NEXT CASE 92 $DEFLCT DELTA1=0.0,-35.00,$ 93 SAVE 94 NEXT CASE 95 $DEFLCT DELTA1=0.0,-45.00,$ 96 SAVE 97 NEXT CASE 98 CASEID RIGHT RUDDER 99 $DEFLCT DELTA1=0.,0.,$ 100 $DEFLCT DELTA2=-25.00,0.0,$ 101 SAVE 102 NEXT CASE 103 $DEFLCT DELTA2=-15.00,0.0,$ 104 SAVE 105 NEXT CASE 106 $DEFLCT DELTA2=-5.00,0.0,$ 107 SAVE

148

108 NEXT CASE 109 $DEFLCT DELTA2=5.00,0.0,$ 110 SAVE 111 NEXT CASE 112 $DEFLCT DELTA2=15.00,0.0,$ 113 SAVE 114 NEXT CASE 115 $DEFLCT DELTA2=25.00,0.0,$ 116 SAVE 117 NEXT CASE 118 $DEFLCT DELTA2=0.0,-25.00,$ 119 SAVE 120 NEXT CASE 121 $DEFLCT DELTA2=0.0,-15.00,$ 122 SAVE 123 NEXT CASE 124 $DEFLCT DELTA2=0.0,-5.00,$ 125 SAVE 126 NEXT CASE 127 $DEFLCT DELTA2=0.0,5.00,$ 128 SAVE 129 NEXT CASE 130 $DEFLCT DELTA2=0.0,15.00,$ 131 SAVE 132 NEXT CASE 133 $DEFLCT DELTA2=0.0,25.00,$ 134 SAVE 135 NEXT CASE 136 $DEFLCT DELTA2=0.,0.,$ 137 $FLTCON BETA=-20.,$ 138 SAVE 139 NEXT CASE 140 $FLTCON BETA=-10.,$ 141 SAVE 142 NEXT CASE 143 $FLTCON BETA=10.,$ 144 SAVE 145 NEXT CASE 146 $FLTCON BETA=20.,$ 147 SAVE 148 NEXT CASE 149 $FLTCON BETA=0.,ALT=5*100.,$ 150 SAVE 151 NEXT CASE

149

152 $FLTCON ALT=10*100.,$ 153 SAVE NEXT CASE ** MISSING NEXT CASE CARD ADDED **1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 1 CASE INPUTS FOLLOWING ARE THE CARDS INPUT FOR THIS CASE

CASEID Brumby DAMP PLOT DIM M DERIV RAD $FLTCON NMACH=1.0,ALT=12*0.,NALPHA=15.0, MACH = 0.05,0.08,0.10,0.15, ALT = 0.00,0.00,0.00,0.00, ALPHA = -5.00,0.00,2.00,4.00,6.00, ALPHA(6)=8.00,10.00,12.00,14.00,16.00, ALPHA(11)=18.00,20.00,25.00,30.00,35.00, BETA=0.,$ $REFQ SREF=1.251700,LREF=0.634700,LATREF=2.324000,XCG=0.85,ZCG=-0.04,$ $AXIBOD TNOSE=1.,LNOSE=0.1970,DNOSE=0.1524,LCENTR=1.7730,DCENTR=0.1524,$ $FINSET1 SECTYP=1., SSPAN=0.0000,0.2660,1.0096, CHORD=1.0033,0.8048,0.2500, XLE=0.97, NPANEL=2., PHIF=90.00,270.00, GAM=0.00,0.00, CFOC=0.0000,0.1553,0.5000,$ NACA-1-4-0310 $FINSET2 SECTYP=1., SSPAN=0.2660,0.6726, CHORD=0.4000,0.1952, XLE=5.66, CFOC=0.2600,0.5328, STA=1., SWEEP=13.99, NPANEL=2., PHIF=90.00,-90.00,

150

GAM=-90.00,90.00,$ NACA-2-4-0310 SAVE NEXT CASE THE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT THE INPUT UNITS ARE IN METERS, THE SCALE FACTOR IS 1.00001 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 2 Brumby STATIC AERODYNAMICS FOR BODY-FIN SET 1 AND 2

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.05 REYNOLDS NO = 1.159E+06 /M ALTITUDE = 0.0 M DYNAMIC PRESSURE = 177.32 N/M**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 1.252 M**2 MOMENT CENTER = 0.850 M REF LENGTH = 0.63 M LAT REF LENGTH = 2.32 M

----- LONGITUDINAL ----- -- LATERAL DIRECTIONAL -- ALPHA CN CM CA CY CLN CLL

-5.00 -0.314 0.028 0.002 0.000 0.000 0.000 0.00 0.000 0.001 0.017 0.000 0.000 0.000 2.00 0.122 -0.010 0.014 0.000 0.000 0.000 4.00 0.249 -0.022 0.007 0.000 0.000 0.000 6.00 0.379 -0.034 -0.004 0.000 0.000 0.000 8.00 0.512 -0.047 -0.018 0.000 0.000 0.000 10.00 0.646 -0.060 -0.026 0.000 0.000 0.000 12.00 0.774 -0.071 -0.015 0.000 0.000 0.000 14.00 0.887 -0.080 0.006 0.000 0.000 0.000 16.00 0.989 -0.089 0.017 0.000 0.000 0.000 18.00 1.078 -0.097 0.016 0.000 0.000 0.000 20.00 1.150 -0.104 0.015 0.000 0.000 0.000 25.00 1.250 -0.114 0.015 0.000 0.000 0.000 30.00 1.161 -0.106 0.013 0.000 0.000 0.000 35.00 1.046 -0.095 0.016 0.000 0.000 0.000

ALPHA CL CD CL/CD X-C.P.

-5.00 -0.313 0.029 -10.775 -0.089 0.00 0.000 0.017 0.000 -0.088 2.00 0.122 0.019 6.539 -0.081

151

4.00 0.248 0.025 10.017 -0.087 6.00 0.378 0.036 10.579 -0.090 8.00 0.510 0.053 9.603 -0.092 10.00 0.641 0.087 7.360 -0.092 12.00 0.760 0.146 5.197 -0.092 14.00 0.859 0.220 3.906 -0.090 16.00 0.946 0.289 3.278 -0.090 18.00 1.020 0.348 2.933 -0.090 20.00 1.075 0.408 2.637 -0.091 25.00 1.126 0.541 2.080 -0.091 30.00 0.998 0.592 1.687 -0.091 35.00 0.848 0.613 1.384 -0.091

X-C.P. MEAS. FROM MOMENT CENTER IN REF. LENGTHS, NEG. AFT OF MOMENT CENTER1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 3 Brumby STATIC AERODYNAMICS FOR BODY-FIN SET 1 AND 2

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.05 REYNOLDS NO = 1.159E+06 /M ALTITUDE = 0.0 M DYNAMIC PRESSURE = 177.32 N/M**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 1.252 M**2 MOMENT CENTER = 0.850 M REF LENGTH = 0.63 M LAT REF LENGTH = 2.32 M

---------- DERIVATIVES (PER RADIAN) ---------- ALPHA CNA CMA CYB CLNB CLLB -5.00 3.6478 -0.3067 -0.7278 1.4592 -0.0384 0.00 3.5494 -0.3106 -0.7165 1.4485 -0.0458 2.00 3.5692 -0.3245 -0.9691 1.9917 -0.0665 4.00 3.6835 -0.3461 -1.0636 2.1875 -0.0766 6.00 3.7641 -0.3635 -0.8770 1.7770 -0.0677 8.00 3.8196 -0.3681 -0.7706 1.5396 -0.0643 10.00 3.7468 -0.3418 -0.6814 1.3398 -0.0613 12.00 3.4472 -0.2911 -0.5935 1.1431 -0.0559 14.00 3.0888 -0.2591 -0.5019 0.9390 -0.0499 16.00 2.7384 -0.2478 -0.4146 0.7446 -0.0442 18.00 2.3028 -0.2185 -0.3337 0.5643 -0.0369 20.00 1.6032 -0.1534 -0.2625 0.4057 -0.0283 25.00 0.0607 -0.0087 -0.1120 0.0709 -0.0059

152

30.00 -1.1676 0.1066 -0.0437 -0.0828 0.0282 35.00 -1.4636 0.1327 0.1671 -0.5398 0.0212

PANEL DEFLECTION ANGLES (DEGREES) SET FIN 1 FIN 2 FIN 3 FIN 4 FIN 5 FIN 6 FIN 7 FIN 8 1 0.00 0.00 2 0.00 0.001 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 4 Brumby BODY + 2 FIN SETS DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.05 REYNOLDS NO = 1.159E+06 /M ALTITUDE = 0.0 M DYNAMIC PRESSURE = 177.32 N/M**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 1.252 M**2 MOMENT CENTER = 0.850 M REF LENGTH = 0.63 M LAT REF LENGTH = 2.32 M

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CNQ CMQ CAQ CNAD CMAD -5.00 0.573 -2.389 0.045 6.838 1.555 0.00 0.536 -2.388 0.005 6.838 1.555 2.00 0.550 -2.391 -0.019 6.838 1.555 4.00 0.568 -2.394 -0.036 6.838 1.555 6.00 0.579 -2.396 -0.058 6.838 1.555 8.00 0.588 -2.397 -0.053 6.838 1.555 10.00 0.585 -2.393 0.011 6.838 1.555 12.00 0.527 -2.383 0.081 6.838 1.555 14.00 0.483 -2.380 0.067 6.838 1.555 16.00 0.431 -2.379 0.001 6.838 1.555 18.00 0.372 -2.374 0.000 6.838 1.555 20.00 0.295 -2.368 0.000 6.838 1.555 25.00 0.116 -2.353 0.000 6.838 1.555 30.00 -0.200 -2.327 0.000 6.838 1.555 35.00 0.034 -2.343 0.000 6.838 1.555

PITCH RATE DERIVATIVES NON-DIMENSIONALIZED BY Q*LREF/2*V1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 1 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 5

153

Brumby BODY + 2 FIN SETS DYNAMIC DERIVATIVES

******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES ******* MACH NO = 0.05 REYNOLDS NO = 1.159E+06 /M ALTITUDE = 0.0 M DYNAMIC PRESSURE = 177.32 N/M**2 SIDESLIP = 0.00 DEG ROLL = 0.00 DEG REF AREA = 1.252 M**2 MOMENT CENTER = 0.850 M REF LENGTH = 0.63 M LAT REF LENGTH = 2.32 M

------------ DYNAMIC DERIVATIVES (PER RADIAN) ----------- ALPHA CYR CLNR CLLR CYP CLNP CLLP -5.00 3.058 -6.727 0.208 0.798 -1.721 -0.260 0.00 3.024 -6.655 0.205 0.675 -1.456 -0.259 2.00 3.020 -6.646 0.205 0.678 -1.462 -0.263 4.00 3.017 -6.639 0.205 0.700 -1.511 -0.268 6.00 3.013 -6.631 0.205 0.716 -1.544 -0.268 8.00 3.008 -6.621 0.204 0.728 -1.570 -0.271 10.00 3.003 -6.609 0.203 0.722 -1.558 -0.266 12.00 2.997 -6.596 0.203 0.625 -1.347 -0.234 14.00 2.992 -6.584 0.202 0.543 -1.172 -0.210 16.00 2.989 -6.579 0.202 0.453 -0.976 -0.188 18.00 2.991 -6.583 0.202 0.348 -0.750 -0.157 20.00 2.998 -6.598 0.202 0.217 -0.468 -0.119 25.00 3.044 -6.698 0.204 -0.083 0.179 -0.031 30.00 3.140 -6.903 0.210 -0.573 1.235 0.118 35.00 3.293 -7.234 0.220 -0.212 0.458 0.010

YAW AND ROLL RATE DERIVATIVES NON-DIMENSIONALIZED BY R*LATREF/2*V1 ***** THE USAF AUTOMATED MISSILE DATCOM * REV 9/02 ***** CASE 2 AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS PAGE 1 CASE INPUTS FOLLOWING ARE THE CARDS INPUT FOR THIS CASE

154

Appendix A.3 : for003.dat FileVARIABLES=ALPHA,CN,CM,CA,CY,CLN,CLL,DELTA,CL,CDZONE T="NO TRIM MACH= 0.05" -5.0000 -0.3140 0.0280 0.0017 0.0000 0.0000 0.0000 0.0500 -0.3127 0.0290 0.0000 0.0000 0.0011 0.0167 0.0000 0.0000 0.0000 0.0500 0.0000 0.0167 2.0000 0.1222 -0.0099 0.0143 0.0000 0.0000 0.0000 0.0500 0.1216 0.0186 4.0000 0.2492 -0.0216 0.0074 0.0000 0.0000 0.0000 0.0500 0.2481 0.0248 6.0000 0.3793 -0.0340 -0.0040 0.0000 0.0000 0.0000 0.0500 0.3777 0.0357 8.0000 0.5120 -0.0470 -0.0184 0.0000 0.0000 0.0000 0.0500 0.5095 0.0531 10.0000 0.6460 -0.0597 -0.0255 0.0000 0.0000 0.0000 0.0500 0.6406 0.0870 12.0000 0.7735 -0.0708 -0.0150 0.0000 0.0000 0.0000 0.0500 0.7597 0.1462 14.0000 0.8867 -0.0800 0.0056 0.0000 0.0000 0.0000 0.0500 0.8590 0.2199 16.0000 0.9892 -0.0889 0.0167 0.0000 0.0000 0.0000 0.0500 0.9463 0.2887 18.0000 1.0778 -0.0973 0.0155 0.0000 0.0000 0.0000 0.0500 1.0203 0.3478 20.0000 1.1500 -0.1042 0.0154 0.0000 0.0000 0.0000 0.0500 1.0753 0.4078 25.0000 1.2495 -0.1139 0.0148 0.0000 0.0000 0.0000 0.0500 1.1262 0.5414 30.0000 1.1605 -0.1057 0.0134 0.0000 0.0000 0.0000 0.0500 0.9984 0.5919 35.0000 1.0457 -0.0953 0.0157 0.0000 0.0000 0.0000 0.0500 0.8476 0.6126

155

Appendix A.4 : for021.dat File

VARIABLES: MACH,ALTITUDE,SIDESLIP,DEL1,DEL2,DEL3,DEL4 ROWS, TOTAL COLUMNS, COLUMNS OF DERIVATIVESDATA: ALPHA,CN,CM,CA,CY,CLN,CLL,CNQ,CMQ,CAQ,CYR,CLNR,CLLR,CYP,CLNP,CLLP 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 16.0 9.0-0.500E+01 -0.3140E+00 0.2799E-01 0.1657E-02 0.7704E-08 0.4366E-08 -0.9096E-10 0.5728E+00 -0.2389E+01 0.4518E-01 0.3058E+01 -0.6727E+01 0.2077E+00 0.7981E+00 -0.1721E+01 -0.2599E+00 0.000E+00 0.0000E+00 0.1053E-02 0.1671E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.5362E+00 -0.2388E+01 0.4789E-02 0.3024E+01 -0.6655E+01 0.2054E+00 0.6749E+00 -0.1456E+01 -0.2592E+00 0.200E+01 0.1222E+00 -0.9857E-02 0.1434E-01 -0.2767E-08 -0.2208E-08 0.5058E-10 0.5503E+00 -0.2391E+01 -0.1890E-01 0.3020E+01 -0.6646E+01 0.2053E+00 0.6777E+00 -0.1462E+01 -0.2631E+00 0.400E+01 0.2492E+00 -0.2160E-01 0.7400E-02 -0.8889E-08 0.2516E-08 -0.1054E-09 0.5677E+00 -0.2394E+01 -0.3617E-01 0.3017E+01 -0.6639E+01 0.2053E+00 0.7004E+00 -0.1511E+01 -0.2675E+00 0.600E+01 0.3793E+00 -0.3402E-01 -0.3973E-02 -0.7599E-08 -0.8943E-08 0.3458E-09 0.5792E+00 -0.2396E+01 -0.5754E-01 0.3013E+01 -0.6631E+01 0.2047E+00 0.7160E+00 -0.1544E+01 -0.2678E+00 0.800E+01 0.5120E+00 -0.4698E-01 -0.1837E-01 -0.2033E-07 0.9691E-08 -0.3499E-09 0.5878E+00 -0.2397E+01 -0.5294E-01 0.3008E+01 -0.6621E+01 0.2040E+00 0.7280E+00 -0.1570E+01 -0.2711E+00 0.100E+02 0.6460E+00 -0.5972E-01 -0.2552E-01 -0.3312E-07 0.2838E-07 -0.7916E-09 0.5851E+00 -0.2393E+01 0.1105E-01 0.3003E+01 -0.6609E+01 0.2034E+00 0.7223E+00 -0.1558E+01 -0.2657E+00 0.120E+02 0.7735E+00 -0.7084E-01 -0.1496E-01 -0.2848E-07 0.9935E-08 -0.3882E-09 0.5272E+00 -0.2383E+01 0.8061E-01 0.2997E+01 -0.6596E+01 0.2027E+00 0.6247E+00 -0.1347E+01 -0.2340E+00 0.140E+02 0.8867E+00 -0.8004E-01 0.5581E-02 -0.4062E-07 0.2866E-07 -0.9540E-09 0.4830E+00 -0.2380E+01 0.6722E-01 0.2992E+01 -0.6584E+01 0.2020E+00 0.5433E+00 -0.1172E+01 -0.2103E+00 0.160E+02 0.9892E+00 -0.8893E-01 0.1670E-01 -0.2650E-07 -0.8508E-08 0.1298E-09 0.4311E+00 -0.2379E+01 0.9943E-03 0.2989E+01 -0.6579E+01 0.2016E+00 0.4527E+00 -0.9764E+00 -0.1885E+00 0.180E+02 0.1078E+01 -0.9734E-01 0.1553E-01 -0.3353E-07 0.8890E-09 -0.1576E-09 0.3715E+00 -0.2374E+01 -0.3844E-03 0.2991E+01 -0.6583E+01 0.2015E+00 0.3479E+00 -0.7504E+00 -0.1575E+00 0.200E+02 0.1150E+01 -0.1042E+00 0.1541E-01 -0.2487E-07 -0.2242E-07 0.6461E-09 0.2951E+00 -0.2368E+01 -0.2330E-03 0.2998E+01 -0.6598E+01

156

0.2018E+00 0.2169E+00 -0.4678E+00 -0.1190E+00 0.250E+02 0.1250E+01 -0.1139E+00 0.1476E-01 -0.2552E-07 -0.2709E-07 0.6431E-09 0.1160E+00 -0.2353E+01 -0.2254E-04 0.3044E+01 -0.6698E+01 0.2045E+00 -0.8301E-01 0.1790E+00 -0.3076E-01 0.300E+02 0.1161E+01 -0.1057E+00 0.1339E-01 -0.1689E-07 -0.3895E-07 0.1129E-08 -0.2002E+00 -0.2327E+01 0.8931E-04 0.3140E+01 -0.6903E+01 0.2104E+00 -0.5727E+00 0.1235E+01 0.1176E+00 0.350E+02 0.1046E+01 -0.9526E-01 0.1566E-01 -0.3030E-07 -0.1511E-08 -0.7884E-10 0.3410E-01 -0.2343E+01 0.8568E-05 0.3293E+01 -0.7234E+01 0.2204E+00 -0.2124E+00 0.4581E+00 0.9807E-02 0.05 0.0 0.00 -45.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5850E+00 0.5764E-01 0.5884E-01 -0.1234E+00 0.2662E+00 0.3176E-01 0.000E+00 -0.2620E+00 0.2735E-01 0.3523E-01 -0.1432E+00 0.3090E+00 0.3119E-01 0.200E+01 -0.1344E+00 0.1581E-01 0.3091E-01 -0.1421E+00 0.3066E+00 0.3087E-01 0.400E+01 -0.7230E-02 0.4018E-02 0.2301E-01 -0.1377E+00 0.2969E+00 0.3112E-01 0.600E+01 0.1188E+00 -0.7932E-02 0.1222E-01 -0.1355E+00 0.2922E+00 0.3156E-01 0.800E+01 0.2430E+00 -0.2003E-01 -0.2035E-02 -0.1366E+00 0.2947E+00 0.3209E-01 0.100E+02 0.3679E+00 -0.3234E-01 -0.1694E-01 -0.1390E+00 0.2998E+00 0.3271E-01 0.120E+02 0.4936E+00 -0.4449E-01 -0.2622E-01 -0.1403E+00 0.3026E+00 0.3290E-01 0.140E+02 0.6138E+00 -0.5589E-01 -0.3030E-01 -0.1377E+00 0.2970E+00 0.3195E-01 0.160E+02 0.7299E+00 -0.6726E-01 -0.3844E-01 -0.1320E+00 0.2848E+00 0.3031E-01 0.180E+02 0.8406E+00 -0.7856E-01 -0.5191E-01 -0.1225E+00 0.2643E+00 0.2785E-01 0.200E+02 0.9421E+00 -0.8859E-01 -0.5773E-01 -0.1093E+00 0.2357E+00 0.2477E-01 0.250E+02 0.1132E+01 -0.1070E+00 -0.5933E-01 -0.6329E-01 0.1365E+00 0.1522E-01 0.300E+02 0.1192E+01 -0.1142E+00 -0.7227E-01 0.5965E-02 -0.1286E-01 -0.5753E-04 0.350E+02 0.1154E+01 -0.1116E+00 -0.7500E-01 0.6543E-01 -0.1411E+00 -0.1318E-01 0.05 0.0 0.00 -35.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0

157

-0.500E+01 -0.5509E+00 0.5319E-01 0.4019E-01 -0.1138E+00 0.2455E+00 0.2764E-01 0.000E+00 -0.2237E+00 0.2328E-01 0.2895E-01 -0.1261E+00 0.2721E+00 0.2651E-01 0.200E+01 -0.9688E-01 0.1184E-01 0.2507E-01 -0.1220E+00 0.2632E+00 0.2646E-01 0.400E+01 0.2944E-01 0.1780E-03 0.1798E-01 -0.1166E+00 0.2514E+00 0.2682E-01 0.600E+01 0.1542E+00 -0.1163E-01 0.7684E-02 -0.1164E+00 0.2511E+00 0.2723E-01 0.800E+01 0.2784E+00 -0.2375E-01 -0.6805E-02 -0.1190E+00 0.2566E+00 0.2765E-01 0.100E+02 0.4050E+00 -0.3623E-01 -0.2174E-01 -0.1215E+00 0.2621E+00 0.2810E-01 0.120E+02 0.5320E+00 -0.4848E-01 -0.3071E-01 -0.1225E+00 0.2642E+00 0.2815E-01 0.140E+02 0.6531E+00 -0.5999E-01 -0.3494E-01 -0.1193E+00 0.2573E+00 0.2712E-01 0.160E+02 0.7701E+00 -0.7136E-01 -0.4148E-01 -0.1127E+00 0.2431E+00 0.2534E-01 0.180E+02 0.8806E+00 -0.8227E-01 -0.4909E-01 -0.1023E+00 0.2206E+00 0.2297E-01 0.200E+02 0.9781E+00 -0.9149E-01 -0.4816E-01 -0.8993E-01 0.1940E+00 0.2046E-01 0.250E+02 0.1159E+01 -0.1092E+00 -0.5214E-01 -0.4844E-01 0.1045E+00 0.1170E-01 0.300E+02 0.1204E+01 -0.1146E+00 -0.6175E-01 0.1397E-01 -0.3012E-01 -0.2196E-02 0.350E+02 0.1147E+01 -0.1100E+00 -0.6110E-01 0.6016E-01 -0.1297E+00 -0.1245E-01 0.05 0.0 0.00 -25.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5158E+00 0.4891E-01 0.2578E-01 -0.1042E+00 0.2247E+00 0.2323E-01 0.000E+00 -0.1875E+00 0.1952E-01 0.2432E-01 -0.1073E+00 0.2315E+00 0.2228E-01 0.200E+01 -0.6153E-01 0.8209E-02 0.2127E-01 -0.1008E+00 0.2175E+00 0.2239E-01 0.400E+01 0.6374E-01 -0.3318E-02 0.1480E-01 -0.9714E-01 0.2095E+00 0.2272E-01 0.600E+01 0.1877E+00 -0.1506E-01 0.4312E-02 -0.9826E-01 0.2119E+00 0.2311E-01 0.800E+01 0.3130E+00 -0.2731E-01 -0.1049E-01 -0.1011E+00 0.2180E+00 0.2345E-01

158

0.100E+02 0.4412E+00 -0.3995E-01 -0.2543E-01 -0.1035E+00 0.2233E+00 0.2375E-01 0.120E+02 0.5692E+00 -0.5231E-01 -0.3433E-01 -0.1044E+00 0.2251E+00 0.2369E-01 0.140E+02 0.6912E+00 -0.6385E-01 -0.3761E-01 -0.1004E+00 0.2165E+00 0.2249E-01 0.160E+02 0.8087E+00 -0.7503E-01 -0.4036E-01 -0.9285E-01 0.2003E+00 0.2071E-01 0.180E+02 0.9168E+00 -0.8534E-01 -0.4196E-01 -0.8292E-01 0.1788E+00 0.1870E-01 0.200E+02 0.1011E+01 -0.9399E-01 -0.3767E-01 -0.7232E-01 0.1560E+00 0.1665E-01 0.250E+02 0.1182E+01 -0.1109E+00 -0.4377E-01 -0.3600E-01 0.7763E-01 0.8698E-02 0.300E+02 0.1212E+01 -0.1147E+00 -0.5101E-01 0.2002E-01 -0.4317E-01 -0.3837E-02 0.350E+02 0.1131E+01 -0.1075E+00 -0.4712E-01 0.4986E-01 -0.1075E+00 -0.1056E-01 0.05 0.0 0.00 -15.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.4812E+00 0.4492E-01 0.1535E-01 -0.9107E-01 0.1964E+00 0.1900E-01 0.000E+00 -0.1541E+00 0.1611E-01 0.2115E-01 -0.8735E-01 0.1884E+00 0.1849E-01 0.200E+01 -0.2901E-01 0.4946E-02 0.1901E-01 -0.8168E-01 0.1762E+00 0.1859E-01 0.400E+01 0.9512E-01 -0.6467E-02 0.1267E-01 -0.7984E-01 0.1722E+00 0.1892E-01 0.600E+01 0.2192E+00 -0.1825E-01 0.1813E-02 -0.8153E-01 0.1759E+00 0.1925E-01 0.800E+01 0.3460E+00 -0.3066E-01 -0.1325E-01 -0.8380E-01 0.1807E+00 0.1948E-01 0.100E+02 0.4755E+00 -0.4343E-01 -0.2816E-01 -0.8591E-01 0.1853E+00 0.1971E-01 0.120E+02 0.6044E+00 -0.5587E-01 -0.3694E-01 -0.8628E-01 0.1861E+00 0.1957E-01 0.140E+02 0.7270E+00 -0.6735E-01 -0.3815E-01 -0.8164E-01 0.1761E+00 0.1823E-01 0.160E+02 0.8440E+00 -0.7814E-01 -0.3537E-01 -0.7409E-01 0.1598E+00 0.1657E-01 0.180E+02 0.9484E+00 -0.8774E-01 -0.3151E-01 -0.6623E-01 0.1428E+00 0.1504E-01 0.200E+02 0.1040E+01 -0.9616E-01 -0.2748E-01 -0.5695E-01 0.1228E+00 0.1314E-01

159

0.250E+02 0.1200E+01 -0.1122E+00 -0.3509E-01 -0.2611E-01 0.5631E-01 0.6285E-02 0.300E+02 0.1216E+01 -0.1145E+00 -0.4046E-01 0.2413E-01 -0.5203E-01 -0.4981E-02 0.350E+02 0.1111E+01 -0.1048E+00 -0.3429E-01 0.3756E-01 -0.8100E-01 -0.8111E-02 0.05 0.0 0.00 -5.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3704E+00 0.3339E-01 0.1498E-02 -0.3259E-01 0.7029E-01 0.6294E-02 0.000E+00 -0.5119E-01 0.5995E-02 0.1721E-01 -0.2764E-01 0.5963E-01 0.6374E-02 0.200E+01 0.7051E-01 -0.4850E-02 0.1511E-01 -0.2673E-01 0.5766E-01 0.6454E-02 0.400E+01 0.1950E+00 -0.1634E-01 0.8211E-02 -0.2753E-01 0.5938E-01 0.6594E-02 0.600E+01 0.3232E+00 -0.2856E-01 -0.3026E-02 -0.2833E-01 0.6111E-01 0.6623E-02 0.800E+01 0.4542E+00 -0.4140E-01 -0.1829E-01 -0.2915E-01 0.6287E-01 0.6689E-02 0.100E+02 0.5870E+00 -0.5440E-01 -0.3132E-01 -0.2978E-01 0.6424E-01 0.6732E-02 0.120E+02 0.7176E+00 -0.6643E-01 -0.3074E-01 -0.2851E-01 0.6150E-01 0.6299E-02 0.140E+02 0.8366E+00 -0.7654E-01 -0.1559E-01 -0.2541E-01 0.5480E-01 0.5502E-02 0.160E+02 0.9437E+00 -0.8565E-01 -0.1191E-02 -0.2316E-01 0.4995E-01 0.5215E-02 0.180E+02 0.1039E+01 -0.9444E-01 0.1133E-02 -0.1999E-01 0.4310E-01 0.4489E-02 0.200E+02 0.1119E+01 -0.1021E+00 -0.7539E-03 -0.1610E-01 0.3471E-01 0.3617E-02 0.250E+02 0.1240E+01 -0.1140E+00 -0.3304E-02 -0.5250E-02 0.1132E-01 0.1217E-02 0.300E+02 0.1196E+01 -0.1103E+00 -0.4511E-02 0.1738E-01 -0.3749E-01 -0.3898E-02 0.350E+02 0.1057E+01 -0.9731E-01 0.4005E-03 0.5968E-02 -0.1287E-01 -0.1344E-02 0.05 0.0 0.00 5.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.2589E+00 0.2275E-01 0.2657E-02 0.3098E-01 -0.6681E-01 -0.6393E-02 0.000E+00 0.5119E-01 -0.3825E-02 0.1721E-01 0.2764E-01 -0.5962E-01 -0.6374E-02

160

0.200E+01 0.1756E+00 -0.1497E-01 0.1467E-01 0.2807E-01 -0.6055E-01 -0.6512E-02 0.400E+01 0.3046E+00 -0.2691E-01 0.7734E-02 0.2873E-01 -0.6197E-01 -0.6551E-02 0.600E+01 0.4365E+00 -0.3949E-01 -0.3476E-02 0.2944E-01 -0.6351E-01 -0.6590E-02 0.800E+01 0.5705E+00 -0.5231E-01 -0.1354E-01 0.3005E-01 -0.6481E-01 -0.6654E-02 0.100E+02 0.7029E+00 -0.6428E-01 -0.1077E-01 0.2903E-01 -0.6262E-01 -0.6283E-02 0.120E+02 0.8241E+00 -0.7432E-01 0.7337E-02 0.2576E-01 -0.5555E-01 -0.5453E-02 0.140E+02 0.9328E+00 -0.8323E-01 0.2585E-01 0.2349E-01 -0.5067E-01 -0.5152E-02 0.160E+02 0.1029E+01 -0.9185E-01 0.3180E-01 0.2030E-01 -0.4378E-01 -0.4430E-02 0.180E+02 0.1110E+01 -0.9944E-01 0.3229E-01 0.1644E-01 -0.3545E-01 -0.3565E-02 0.200E+02 0.1173E+01 -0.1053E+00 0.3299E-01 0.1171E-01 -0.2525E-01 -0.2517E-02 0.250E+02 0.1248E+01 -0.1125E+00 0.3304E-01 -0.1315E-02 0.2835E-02 0.3598E-03 0.300E+02 0.1124E+01 -0.1011E+00 0.2912E-01 -0.1782E-01 0.3843E-01 0.4134E-02 0.350E+02 0.1041E+01 -0.9388E-01 0.3045E-01 -0.1842E-02 0.3971E-02 0.4814E-03 0.05 0.0 0.00 15.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.1571E+00 0.1327E-01 0.7522E-02 0.8750E-01 -0.1887E+00 -0.1862E-01 0.000E+00 0.1541E+00 -0.1345E-01 0.2117E-01 0.8656E-01 -0.1867E+00 -0.1854E-01 0.200E+01 0.2821E+00 -0.2492E-01 0.1895E-01 0.8660E-01 -0.1868E+00 -0.1887E-01 0.400E+01 0.4142E+00 -0.3701E-01 0.1456E-01 0.8730E-01 -0.1883E+00 -0.1912E-01 0.600E+01 0.5477E+00 -0.4905E-01 0.1461E-01 0.8766E-01 -0.1891E+00 -0.1920E-01 0.800E+01 0.6760E+00 -0.6023E-01 0.2210E-01 0.8424E-01 -0.1817E+00 -0.1819E-01 0.100E+02 0.7982E+00 -0.7066E-01 0.3404E-01 0.7724E-01 -0.1666E+00 -0.1637E-01 0.120E+02 0.9093E+00 -0.8007E-01 0.4673E-01 0.6913E-01 -0.1491E+00 -0.1467E-01

161

0.140E+02 0.1006E+01 -0.8814E-01 0.5982E-01 0.6024E-01 -0.1299E+00 -0.1288E-01 0.160E+02 0.1087E+01 -0.9524E-01 0.6632E-01 0.4880E-01 -0.1052E+00 -0.1028E-01 0.180E+02 0.1151E+01 -0.1011E+00 0.6777E-01 0.3593E-01 -0.7749E-01 -0.7397E-02 0.200E+02 0.1198E+01 -0.1054E+00 0.6887E-01 0.2323E-01 -0.5010E-01 -0.4593E-02 0.250E+02 0.1195E+01 -0.1055E+00 0.6347E-01 -0.3166E-01 0.6827E-01 0.7585E-02 0.300E+02 0.1086E+01 -0.9568E-01 0.5668E-01 -0.3220E-01 0.6944E-01 0.7784E-02 0.350E+02 0.1042E+01 -0.9214E-01 0.5926E-01 0.8058E-03 -0.1738E-02 0.2360E-03 0.05 0.0 0.00 25.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.1259E+00 0.1043E-01 0.1003E-01 0.1056E+00 -0.2277E+00 -0.2238E-01 0.000E+00 0.1875E+00 -0.1646E-01 0.2426E-01 0.1061E+00 -0.2289E+00 -0.2236E-01 0.200E+01 0.3165E+00 -0.2796E-01 0.2301E-01 0.1049E+00 -0.2264E+00 -0.2283E-01 0.400E+01 0.4492E+00 -0.3988E-01 0.2235E-01 0.1045E+00 -0.2254E+00 -0.2317E-01 0.600E+01 0.5807E+00 -0.5138E-01 0.2797E-01 0.1030E+00 -0.2221E+00 -0.2292E-01 0.800E+01 0.7055E+00 -0.6209E-01 0.3776E-01 0.9774E-01 -0.2108E+00 -0.2133E-01 0.100E+02 0.8249E+00 -0.7239E-01 0.4746E-01 0.8978E-01 -0.1937E+00 -0.1924E-01 0.120E+02 0.9318E+00 -0.8149E-01 0.5877E-01 0.8032E-01 -0.1732E+00 -0.1701E-01 0.140E+02 0.1023E+01 -0.8907E-01 0.7196E-01 0.6891E-01 -0.1486E+00 -0.1456E-01 0.160E+02 0.1099E+01 -0.9567E-01 0.7794E-01 0.5447E-01 -0.1175E+00 -0.1129E-01 0.180E+02 0.1158E+01 -0.1011E+00 0.7939E-01 0.3917E-01 -0.8449E-01 -0.7869E-02 0.200E+02 0.1198E+01 -0.1048E+00 0.8006E-01 0.2271E-01 -0.4898E-01 -0.4242E-02 0.250E+02 0.1173E+01 -0.1028E+00 0.7111E-01 -0.4426E-01 0.9546E-01 0.1060E-01 0.300E+02 0.1080E+01 -0.9460E-01 0.6544E-01 -0.3265E-01 0.7041E-01 0.8078E-02

162

0.350E+02 0.1044E+01 -0.9175E-01 0.6868E-01 0.2933E-02 -0.6326E-02 -0.6406E-04 0.05 0.0 0.00 35.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.9218E-01 0.7397E-02 0.1334E-01 0.1252E+00 -0.2702E+00 -0.2639E-01 0.000E+00 0.2237E+00 -0.1964E-01 0.2879E-01 0.1248E+00 -0.2693E+00 -0.2659E-01 0.200E+01 0.3536E+00 -0.3111E-01 0.2949E-01 0.1222E+00 -0.2636E+00 -0.2726E-01 0.400E+01 0.4861E+00 -0.4264E-01 0.3475E-01 0.1206E+00 -0.2602E+00 -0.2750E-01 0.600E+01 0.6136E+00 -0.5343E-01 0.4559E-01 0.1168E+00 -0.2520E+00 -0.2660E-01 0.800E+01 0.7356E+00 -0.6393E-01 0.5450E-01 0.1104E+00 -0.2382E+00 -0.2467E-01 0.100E+02 0.8511E+00 -0.7410E-01 0.6034E-01 0.1011E+00 -0.2181E+00 -0.2204E-01 0.120E+02 0.9531E+00 -0.8268E-01 0.7257E-01 0.9025E-01 -0.1947E+00 -0.1916E-01 0.140E+02 0.1038E+01 -0.8971E-01 0.8531E-01 0.7628E-01 -0.1645E+00 -0.1589E-01 0.160E+02 0.1108E+01 -0.9583E-01 0.9059E-01 0.5899E-01 -0.1272E+00 -0.1198E-01 0.180E+02 0.1162E+01 -0.1007E+00 0.9176E-01 0.4072E-01 -0.8783E-01 -0.7904E-02 0.200E+02 0.1191E+01 -0.1034E+00 0.9128E-01 0.1823E-01 -0.3932E-01 -0.2966E-02 0.250E+02 0.1153E+01 -0.1004E+00 0.7892E-01 -0.5535E-01 0.1194E+00 0.1329E-01 0.300E+02 0.1076E+01 -0.9358E-01 0.7498E-01 -0.3206E-01 0.6915E-01 0.8191E-02 0.350E+02 0.1047E+01 -0.9137E-01 0.7901E-01 0.5669E-02 -0.1223E-01 -0.4460E-03 0.05 0.0 0.00 45.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5613E-01 0.4253E-02 0.1845E-01 0.1459E+00 -0.3147E+00 -0.3068E-01 0.000E+00 0.2620E+00 -0.2291E-01 0.3518E-01 0.1420E+00 -0.3063E+00 -0.3127E-01 0.200E+01 0.3925E+00 -0.3421E-01 0.3961E-01 0.1382E+00 -0.2980E+00 -0.3199E-01 0.400E+01 0.5225E+00 -0.4512E-01 0.5088E-01 0.1347E+00 -0.2905E+00 -0.3178E-01

163

0.600E+01 0.6461E+00 -0.5542E-01 0.6370E-01 0.1293E+00 -0.2788E+00 -0.3022E-01 0.800E+01 0.7648E+00 -0.6579E-01 0.6964E-01 0.1219E+00 -0.2629E+00 -0.2791E-01 0.100E+02 0.8758E+00 -0.7558E-01 0.7480E-01 0.1112E+00 -0.2398E+00 -0.2459E-01 0.120E+02 0.9718E+00 -0.8355E-01 0.8745E-01 0.9828E-01 -0.2120E+00 -0.2091E-01 0.140E+02 0.1051E+01 -0.9004E-01 0.9948E-01 0.8198E-01 -0.1768E+00 -0.1681E-01 0.160E+02 0.1116E+01 -0.9570E-01 0.1039E+00 0.6207E-01 -0.1339E+00 -0.1227E-01 0.180E+02 0.1161E+01 -0.9982E-01 0.1042E+00 0.3894E-01 -0.8397E-01 -0.7142E-02 0.200E+02 0.1175E+01 -0.1012E+00 0.1015E+00 0.8058E-02 -0.1738E-01 -0.3955E-03 0.250E+02 0.1139E+01 -0.9850E-01 0.8741E-01 -0.6306E-01 0.1360E+00 0.1526E-01 0.300E+02 0.1073E+01 -0.9264E-01 0.8521E-01 -0.3043E-01 0.6563E-01 0.8126E-02 0.350E+02 0.1050E+01 -0.9098E-01 0.9009E-01 0.8845E-02 -0.1907E-01 -0.8644E-03 0.05 0.0 0.00 0.0 -45.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5850E+00 0.5764E-01 0.5884E-01 0.1234E+00 -0.2662E+00 -0.3176E-01 0.000E+00 -0.2620E+00 0.2735E-01 0.3523E-01 0.1432E+00 -0.3090E+00 -0.3119E-01 0.200E+01 -0.1344E+00 0.1581E-01 0.3091E-01 0.1421E+00 -0.3066E+00 -0.3087E-01 0.400E+01 -0.7230E-02 0.4018E-02 0.2301E-01 0.1377E+00 -0.2969E+00 -0.3112E-01 0.600E+01 0.1188E+00 -0.7932E-02 0.1222E-01 0.1355E+00 -0.2922E+00 -0.3156E-01 0.800E+01 0.2430E+00 -0.2003E-01 -0.2035E-02 0.1366E+00 -0.2947E+00 -0.3209E-01 0.100E+02 0.3679E+00 -0.3234E-01 -0.1694E-01 0.1390E+00 -0.2998E+00 -0.3271E-01 0.120E+02 0.4936E+00 -0.4449E-01 -0.2622E-01 0.1403E+00 -0.3026E+00 -0.3290E-01 0.140E+02 0.6138E+00 -0.5589E-01 -0.3030E-01 0.1377E+00 -0.2970E+00 -0.3195E-01 0.160E+02 0.7299E+00 -0.6726E-01 -0.3844E-01 0.1320E+00 -0.2848E+00 -0.3031E-01

164

0.180E+02 0.8406E+00 -0.7856E-01 -0.5191E-01 0.1225E+00 -0.2643E+00 -0.2785E-01 0.200E+02 0.9421E+00 -0.8859E-01 -0.5773E-01 0.1093E+00 -0.2357E+00 -0.2477E-01 0.250E+02 0.1132E+01 -0.1070E+00 -0.5933E-01 0.6329E-01 -0.1365E+00 -0.1522E-01 0.300E+02 0.1192E+01 -0.1142E+00 -0.7227E-01 -0.5965E-02 0.1286E-01 0.5753E-04 0.350E+02 0.1154E+01 -0.1116E+00 -0.7500E-01 -0.6543E-01 0.1411E+00 0.1318E-01 0.05 0.0 0.00 0.0 -35.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5509E+00 0.5319E-01 0.4019E-01 0.1138E+00 -0.2455E+00 -0.2764E-01 0.000E+00 -0.2237E+00 0.2328E-01 0.2895E-01 0.1261E+00 -0.2721E+00 -0.2651E-01 0.200E+01 -0.9688E-01 0.1184E-01 0.2507E-01 0.1220E+00 -0.2632E+00 -0.2646E-01 0.400E+01 0.2944E-01 0.1780E-03 0.1798E-01 0.1166E+00 -0.2514E+00 -0.2682E-01 0.600E+01 0.1542E+00 -0.1163E-01 0.7684E-02 0.1164E+00 -0.2511E+00 -0.2723E-01 0.800E+01 0.2784E+00 -0.2375E-01 -0.6805E-02 0.1190E+00 -0.2566E+00 -0.2765E-01 0.100E+02 0.4050E+00 -0.3623E-01 -0.2174E-01 0.1215E+00 -0.2621E+00 -0.2810E-01 0.120E+02 0.5320E+00 -0.4848E-01 -0.3071E-01 0.1225E+00 -0.2642E+00 -0.2815E-01 0.140E+02 0.6531E+00 -0.5999E-01 -0.3494E-01 0.1193E+00 -0.2573E+00 -0.2712E-01 0.160E+02 0.7701E+00 -0.7136E-01 -0.4148E-01 0.1127E+00 -0.2431E+00 -0.2534E-01 0.180E+02 0.8806E+00 -0.8227E-01 -0.4909E-01 0.1023E+00 -0.2206E+00 -0.2297E-01 0.200E+02 0.9781E+00 -0.9149E-01 -0.4816E-01 0.8993E-01 -0.1940E+00 -0.2046E-01 0.250E+02 0.1159E+01 -0.1092E+00 -0.5214E-01 0.4843E-01 -0.1045E+00 -0.1170E-01 0.300E+02 0.1204E+01 -0.1146E+00 -0.6175E-01 -0.1397E-01 0.3012E-01 0.2196E-02 0.350E+02 0.1147E+01 -0.1100E+00 -0.6110E-01 -0.6016E-01 0.1297E+00 0.1245E-01 0.05 0.0 0.00 0.0 -25.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0

165

-0.500E+01 -0.5158E+00 0.4891E-01 0.2578E-01 0.1042E+00 -0.2247E+00 -0.2323E-01 0.000E+00 -0.1875E+00 0.1952E-01 0.2432E-01 0.1073E+00 -0.2315E+00 -0.2228E-01 0.200E+01 -0.6153E-01 0.8209E-02 0.2127E-01 0.1008E+00 -0.2175E+00 -0.2239E-01 0.400E+01 0.6374E-01 -0.3318E-02 0.1480E-01 0.9714E-01 -0.2095E+00 -0.2272E-01 0.600E+01 0.1877E+00 -0.1506E-01 0.4312E-02 0.9826E-01 -0.2119E+00 -0.2311E-01 0.800E+01 0.3130E+00 -0.2731E-01 -0.1049E-01 0.1011E+00 -0.2180E+00 -0.2345E-01 0.100E+02 0.4412E+00 -0.3995E-01 -0.2543E-01 0.1035E+00 -0.2233E+00 -0.2375E-01 0.120E+02 0.5692E+00 -0.5231E-01 -0.3433E-01 0.1044E+00 -0.2251E+00 -0.2369E-01 0.140E+02 0.6912E+00 -0.6385E-01 -0.3761E-01 0.1004E+00 -0.2165E+00 -0.2249E-01 0.160E+02 0.8087E+00 -0.7503E-01 -0.4036E-01 0.9285E-01 -0.2003E+00 -0.2071E-01 0.180E+02 0.9168E+00 -0.8534E-01 -0.4196E-01 0.8292E-01 -0.1788E+00 -0.1870E-01 0.200E+02 0.1011E+01 -0.9399E-01 -0.3767E-01 0.7232E-01 -0.1560E+00 -0.1665E-01 0.250E+02 0.1182E+01 -0.1109E+00 -0.4377E-01 0.3600E-01 -0.7763E-01 -0.8698E-02 0.300E+02 0.1212E+01 -0.1147E+00 -0.5101E-01 -0.2002E-01 0.4317E-01 0.3837E-02 0.350E+02 0.1131E+01 -0.1075E+00 -0.4712E-01 -0.4986E-01 0.1075E+00 0.1056E-01 0.05 0.0 0.00 0.0 -15.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.4812E+00 0.4492E-01 0.1535E-01 0.9107E-01 -0.1964E+00 -0.1900E-01 0.000E+00 -0.1541E+00 0.1611E-01 0.2115E-01 0.8735E-01 -0.1884E+00 -0.1849E-01 0.200E+01 -0.2901E-01 0.4946E-02 0.1901E-01 0.8168E-01 -0.1762E+00 -0.1859E-01 0.400E+01 0.9512E-01 -0.6467E-02 0.1267E-01 0.7984E-01 -0.1722E+00 -0.1892E-01 0.600E+01 0.2192E+00 -0.1825E-01 0.1813E-02 0.8153E-01 -0.1759E+00 -0.1925E-01 0.800E+01 0.3460E+00 -0.3066E-01 -0.1325E-01 0.8380E-01 -0.1807E+00 -0.1948E-01

166

0.100E+02 0.4755E+00 -0.4343E-01 -0.2816E-01 0.8591E-01 -0.1853E+00 -0.1971E-01 0.120E+02 0.6044E+00 -0.5587E-01 -0.3694E-01 0.8628E-01 -0.1861E+00 -0.1957E-01 0.140E+02 0.7270E+00 -0.6735E-01 -0.3815E-01 0.8164E-01 -0.1761E+00 -0.1823E-01 0.160E+02 0.8440E+00 -0.7814E-01 -0.3537E-01 0.7409E-01 -0.1598E+00 -0.1657E-01 0.180E+02 0.9484E+00 -0.8774E-01 -0.3151E-01 0.6623E-01 -0.1428E+00 -0.1504E-01 0.200E+02 0.1040E+01 -0.9616E-01 -0.2748E-01 0.5695E-01 -0.1228E+00 -0.1314E-01 0.250E+02 0.1200E+01 -0.1122E+00 -0.3509E-01 0.2611E-01 -0.5631E-01 -0.6285E-02 0.300E+02 0.1216E+01 -0.1145E+00 -0.4046E-01 -0.2413E-01 0.5203E-01 0.4981E-02 0.350E+02 0.1111E+01 -0.1048E+00 -0.3429E-01 -0.3756E-01 0.8100E-01 0.8111E-02 0.05 0.0 0.00 0.0 -5.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3704E+00 0.3339E-01 0.1498E-02 0.3259E-01 -0.7029E-01 -0.6294E-02 0.000E+00 -0.5119E-01 0.5995E-02 0.1721E-01 0.2764E-01 -0.5963E-01 -0.6374E-02 0.200E+01 0.7051E-01 -0.4850E-02 0.1511E-01 0.2673E-01 -0.5766E-01 -0.6454E-02 0.400E+01 0.1950E+00 -0.1634E-01 0.8211E-02 0.2753E-01 -0.5938E-01 -0.6594E-02 0.600E+01 0.3232E+00 -0.2856E-01 -0.3026E-02 0.2833E-01 -0.6111E-01 -0.6623E-02 0.800E+01 0.4542E+00 -0.4140E-01 -0.1829E-01 0.2915E-01 -0.6287E-01 -0.6689E-02 0.100E+02 0.5870E+00 -0.5440E-01 -0.3132E-01 0.2978E-01 -0.6424E-01 -0.6732E-02 0.120E+02 0.7176E+00 -0.6643E-01 -0.3074E-01 0.2851E-01 -0.6150E-01 -0.6299E-02 0.140E+02 0.8366E+00 -0.7654E-01 -0.1559E-01 0.2541E-01 -0.5480E-01 -0.5502E-02 0.160E+02 0.9437E+00 -0.8565E-01 -0.1191E-02 0.2316E-01 -0.4995E-01 -0.5215E-02 0.180E+02 0.1039E+01 -0.9444E-01 0.1133E-02 0.1999E-01 -0.4310E-01 -0.4489E-02 0.200E+02 0.1119E+01 -0.1021E+00 -0.7539E-03 0.1610E-01 -0.3471E-01 -0.3617E-02

167

0.250E+02 0.1240E+01 -0.1140E+00 -0.3304E-02 0.5250E-02 -0.1132E-01 -0.1217E-02 0.300E+02 0.1196E+01 -0.1103E+00 -0.4511E-02 -0.1738E-01 0.3749E-01 0.3898E-02 0.350E+02 0.1057E+01 -0.9731E-01 0.4005E-03 -0.5968E-02 0.1287E-01 0.1344E-02 0.05 0.0 0.00 0.0 5.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.2589E+00 0.2275E-01 0.2657E-02 -0.3098E-01 0.6681E-01 0.6393E-02 0.000E+00 0.5119E-01 -0.3825E-02 0.1721E-01 -0.2764E-01 0.5962E-01 0.6374E-02 0.200E+01 0.1756E+00 -0.1497E-01 0.1467E-01 -0.2807E-01 0.6055E-01 0.6512E-02 0.400E+01 0.3046E+00 -0.2691E-01 0.7734E-02 -0.2873E-01 0.6197E-01 0.6551E-02 0.600E+01 0.4365E+00 -0.3949E-01 -0.3476E-02 -0.2944E-01 0.6351E-01 0.6590E-02 0.800E+01 0.5705E+00 -0.5231E-01 -0.1354E-01 -0.3005E-01 0.6481E-01 0.6654E-02 0.100E+02 0.7029E+00 -0.6428E-01 -0.1077E-01 -0.2903E-01 0.6262E-01 0.6283E-02 0.120E+02 0.8241E+00 -0.7432E-01 0.7337E-02 -0.2576E-01 0.5555E-01 0.5453E-02 0.140E+02 0.9328E+00 -0.8323E-01 0.2585E-01 -0.2349E-01 0.5067E-01 0.5152E-02 0.160E+02 0.1029E+01 -0.9185E-01 0.3180E-01 -0.2030E-01 0.4378E-01 0.4430E-02 0.180E+02 0.1110E+01 -0.9944E-01 0.3229E-01 -0.1644E-01 0.3545E-01 0.3565E-02 0.200E+02 0.1173E+01 -0.1053E+00 0.3299E-01 -0.1171E-01 0.2525E-01 0.2517E-02 0.250E+02 0.1248E+01 -0.1125E+00 0.3304E-01 0.1315E-02 -0.2835E-02 -0.3598E-03 0.300E+02 0.1124E+01 -0.1011E+00 0.2912E-01 0.1782E-01 -0.3843E-01 -0.4134E-02 0.350E+02 0.1041E+01 -0.9388E-01 0.3045E-01 0.1842E-02 -0.3971E-02 -0.4814E-03 0.05 0.0 0.00 0.0 15.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.1571E+00 0.1327E-01 0.7522E-02 -0.8750E-01 0.1887E+00 0.1862E-01 0.000E+00 0.1541E+00 -0.1345E-01 0.2117E-01 -0.8656E-01 0.1867E+00 0.1854E-01

168

0.200E+01 0.2821E+00 -0.2492E-01 0.1895E-01 -0.8660E-01 0.1868E+00 0.1887E-01 0.400E+01 0.4142E+00 -0.3701E-01 0.1456E-01 -0.8730E-01 0.1883E+00 0.1912E-01 0.600E+01 0.5477E+00 -0.4905E-01 0.1461E-01 -0.8766E-01 0.1891E+00 0.1920E-01 0.800E+01 0.6760E+00 -0.6023E-01 0.2210E-01 -0.8424E-01 0.1817E+00 0.1819E-01 0.100E+02 0.7982E+00 -0.7066E-01 0.3404E-01 -0.7724E-01 0.1666E+00 0.1637E-01 0.120E+02 0.9093E+00 -0.8007E-01 0.4673E-01 -0.6913E-01 0.1491E+00 0.1467E-01 0.140E+02 0.1006E+01 -0.8814E-01 0.5982E-01 -0.6024E-01 0.1299E+00 0.1288E-01 0.160E+02 0.1087E+01 -0.9524E-01 0.6632E-01 -0.4880E-01 0.1052E+00 0.1028E-01 0.180E+02 0.1151E+01 -0.1011E+00 0.6777E-01 -0.3593E-01 0.7749E-01 0.7397E-02 0.200E+02 0.1198E+01 -0.1054E+00 0.6887E-01 -0.2323E-01 0.5010E-01 0.4593E-02 0.250E+02 0.1195E+01 -0.1055E+00 0.6347E-01 0.3166E-01 -0.6827E-01 -0.7585E-02 0.300E+02 0.1086E+01 -0.9568E-01 0.5668E-01 0.3220E-01 -0.6944E-01 -0.7784E-02 0.350E+02 0.1042E+01 -0.9214E-01 0.5926E-01 -0.8058E-03 0.1738E-02 -0.2360E-03 0.05 0.0 0.00 0.0 25.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.1259E+00 0.1043E-01 0.1003E-01 -0.1056E+00 0.2277E+00 0.2238E-01 0.000E+00 0.1875E+00 -0.1646E-01 0.2426E-01 -0.1061E+00 0.2289E+00 0.2236E-01 0.200E+01 0.3165E+00 -0.2796E-01 0.2301E-01 -0.1049E+00 0.2264E+00 0.2283E-01 0.400E+01 0.4492E+00 -0.3988E-01 0.2235E-01 -0.1045E+00 0.2254E+00 0.2317E-01 0.600E+01 0.5807E+00 -0.5138E-01 0.2797E-01 -0.1030E+00 0.2221E+00 0.2292E-01 0.800E+01 0.7055E+00 -0.6209E-01 0.3776E-01 -0.9774E-01 0.2108E+00 0.2133E-01 0.100E+02 0.8249E+00 -0.7239E-01 0.4746E-01 -0.8978E-01 0.1937E+00 0.1924E-01 0.120E+02 0.9318E+00 -0.8149E-01 0.5877E-01 -0.8032E-01 0.1732E+00 0.1701E-01

169

0.140E+02 0.1023E+01 -0.8907E-01 0.7196E-01 -0.6891E-01 0.1486E+00 0.1456E-01 0.160E+02 0.1099E+01 -0.9567E-01 0.7794E-01 -0.5447E-01 0.1175E+00 0.1129E-01 0.180E+02 0.1158E+01 -0.1011E+00 0.7939E-01 -0.3917E-01 0.8449E-01 0.7869E-02 0.200E+02 0.1198E+01 -0.1048E+00 0.8006E-01 -0.2271E-01 0.4898E-01 0.4242E-02 0.250E+02 0.1173E+01 -0.1028E+00 0.7111E-01 0.4426E-01 -0.9546E-01 -0.1060E-01 0.300E+02 0.1080E+01 -0.9460E-01 0.6544E-01 0.3265E-01 -0.7041E-01 -0.8078E-02 0.350E+02 0.1044E+01 -0.9175E-01 0.6868E-01 -0.2933E-02 0.6326E-02 0.6406E-04 0.05 0.0 0.00 0.0 35.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.9218E-01 0.7397E-02 0.1334E-01 -0.1252E+00 0.2702E+00 0.2639E-01 0.000E+00 0.2237E+00 -0.1964E-01 0.2879E-01 -0.1248E+00 0.2693E+00 0.2659E-01 0.200E+01 0.3536E+00 -0.3111E-01 0.2949E-01 -0.1222E+00 0.2636E+00 0.2726E-01 0.400E+01 0.4861E+00 -0.4264E-01 0.3475E-01 -0.1206E+00 0.2602E+00 0.2750E-01 0.600E+01 0.6136E+00 -0.5343E-01 0.4559E-01 -0.1168E+00 0.2520E+00 0.2660E-01 0.800E+01 0.7356E+00 -0.6393E-01 0.5450E-01 -0.1104E+00 0.2382E+00 0.2467E-01 0.100E+02 0.8511E+00 -0.7410E-01 0.6034E-01 -0.1011E+00 0.2181E+00 0.2204E-01 0.120E+02 0.9531E+00 -0.8268E-01 0.7257E-01 -0.9025E-01 0.1947E+00 0.1916E-01 0.140E+02 0.1038E+01 -0.8971E-01 0.8531E-01 -0.7628E-01 0.1645E+00 0.1589E-01 0.160E+02 0.1108E+01 -0.9583E-01 0.9059E-01 -0.5899E-01 0.1272E+00 0.1198E-01 0.180E+02 0.1162E+01 -0.1007E+00 0.9176E-01 -0.4072E-01 0.8783E-01 0.7904E-02 0.200E+02 0.1191E+01 -0.1034E+00 0.9128E-01 -0.1823E-01 0.3932E-01 0.2966E-02 0.250E+02 0.1153E+01 -0.1004E+00 0.7892E-01 0.5535E-01 -0.1194E+00 -0.1329E-01 0.300E+02 0.1076E+01 -0.9358E-01 0.7498E-01 0.3206E-01 -0.6915E-01 -0.8191E-02

170

0.350E+02 0.1047E+01 -0.9137E-01 0.7901E-01 -0.5669E-02 0.1223E-01 0.4460E-03 0.05 0.0 0.00 0.0 45.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.5613E-01 0.4253E-02 0.1845E-01 -0.1459E+00 0.3147E+00 0.3068E-01 0.000E+00 0.2620E+00 -0.2291E-01 0.3518E-01 -0.1420E+00 0.3063E+00 0.3127E-01 0.200E+01 0.3925E+00 -0.3421E-01 0.3961E-01 -0.1382E+00 0.2980E+00 0.3199E-01 0.400E+01 0.5225E+00 -0.4512E-01 0.5088E-01 -0.1347E+00 0.2905E+00 0.3178E-01 0.600E+01 0.6461E+00 -0.5542E-01 0.6370E-01 -0.1293E+00 0.2788E+00 0.3022E-01 0.800E+01 0.7648E+00 -0.6579E-01 0.6964E-01 -0.1219E+00 0.2629E+00 0.2791E-01 0.100E+02 0.8758E+00 -0.7558E-01 0.7480E-01 -0.1112E+00 0.2398E+00 0.2459E-01 0.120E+02 0.9718E+00 -0.8355E-01 0.8745E-01 -0.9828E-01 0.2120E+00 0.2091E-01 0.140E+02 0.1051E+01 -0.9004E-01 0.9948E-01 -0.8198E-01 0.1768E+00 0.1681E-01 0.160E+02 0.1116E+01 -0.9570E-01 0.1039E+00 -0.6207E-01 0.1339E+00 0.1227E-01 0.180E+02 0.1161E+01 -0.9982E-01 0.1042E+00 -0.3894E-01 0.8397E-01 0.7142E-02 0.200E+02 0.1175E+01 -0.1012E+00 0.1015E+00 -0.8058E-02 0.1738E-01 0.3955E-03 0.250E+02 0.1139E+01 -0.9850E-01 0.8741E-01 0.6306E-01 -0.1360E+00 -0.1526E-01 0.300E+02 0.1073E+01 -0.9264E-01 0.8521E-01 0.3043E-01 -0.6563E-01 -0.8126E-02 0.350E+02 0.1050E+01 -0.9098E-01 0.9009E-01 -0.8845E-02 0.1907E-01 0.8644E-03 0.05 0.0 0.00 0.0 0.0 -25.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2832E-01 0.6961E-02 0.5399E-01 -0.1165E+00 0.3680E-02 0.000E+00 0.0000E+00 0.1600E-02 0.2538E-01 0.5550E-01 -0.1197E+00 0.3807E-02 0.200E+01 0.1222E+00 -0.9195E-02 0.2486E-01 0.5610E-01 -0.1210E+00 0.3835E-02 0.400E+01 0.2492E+00 -0.2084E-01 0.1938E-01 0.5554E-01 -0.1198E+00 0.3783E-02

171

0.600E+01 0.3793E+00 -0.3320E-01 0.9053E-02 0.5464E-01 -0.1179E+00 0.3707E-02 0.800E+01 0.5120E+00 -0.4611E-01 -0.4682E-02 0.5387E-01 -0.1162E+00 0.3643E-02 0.100E+02 0.6460E+00 -0.5883E-01 -0.1144E-01 0.5337E-01 -0.1151E+00 0.3599E-02 0.120E+02 0.7735E+00 -0.6994E-01 -0.7155E-03 0.5321E-01 -0.1148E+00 0.3581E-02 0.140E+02 0.8867E+00 -0.7915E-01 0.1976E-01 0.5338E-01 -0.1151E+00 0.3588E-02 0.160E+02 0.9892E+00 -0.8804E-01 0.3070E-01 0.5373E-01 -0.1159E+00 0.3609E-02 0.180E+02 0.1078E+01 -0.9648E-01 0.2926E-01 0.5421E-01 -0.1169E+00 0.3640E-02 0.200E+02 0.1150E+01 -0.1033E+00 0.2879E-01 0.5476E-01 -0.1181E+00 0.3677E-02 0.250E+02 0.1250E+01 -0.1131E+00 0.2703E-01 0.5608E-01 -0.1209E+00 0.3768E-02 0.300E+02 0.1161E+01 -0.1050E+00 0.2439E-01 0.5696E-01 -0.1228E+00 0.3831E-02 0.350E+02 0.1046E+01 -0.9462E-01 0.2579E-01 0.5711E-01 -0.1232E+00 0.3842E-02 0.05 0.0 0.00 0.0 0.0 -15.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2819E-01 0.4874E-02 0.4460E-01 -0.9621E-01 0.3033E-02 0.000E+00 0.0000E+00 0.1410E-02 0.2237E-01 0.4574E-01 -0.9867E-01 0.3149E-02 0.200E+01 0.1222E+00 -0.9432E-02 0.2110E-01 0.4658E-01 -0.1005E+00 0.3200E-02 0.400E+01 0.2492E+00 -0.2110E-01 0.1526E-01 0.4704E-01 -0.1015E+00 0.3218E-02 0.600E+01 0.3793E+00 -0.3347E-01 0.4752E-02 0.4708E-01 -0.1015E+00 0.3208E-02 0.800E+01 0.5120E+00 -0.4639E-01 -0.9045E-02 0.4690E-01 -0.1012E+00 0.3184E-02 0.100E+02 0.6460E+00 -0.5911E-01 -0.1580E-01 0.4671E-01 -0.1007E+00 0.3162E-02 0.120E+02 0.7735E+00 -0.7022E-01 -0.5075E-02 0.4665E-01 -0.1006E+00 0.3152E-02 0.140E+02 0.8867E+00 -0.7943E-01 0.1540E-01 0.4677E-01 -0.1009E+00 0.3157E-02 0.160E+02 0.9892E+00 -0.8832E-01 0.2634E-01 0.4697E-01 -0.1013E+00 0.3168E-02

172

0.180E+02 0.1078E+01 -0.9675E-01 0.2490E-01 0.4722E-01 -0.1018E+00 0.3184E-02 0.200E+02 0.1150E+01 -0.1036E+00 0.2444E-01 0.4745E-01 -0.1023E+00 0.3200E-02 0.250E+02 0.1250E+01 -0.1133E+00 0.2286E-01 0.4772E-01 -0.1029E+00 0.3221E-02 0.300E+02 0.1161E+01 -0.1052E+00 0.2050E-01 0.4754E-01 -0.1025E+00 0.3212E-02 0.350E+02 0.1046E+01 -0.9485E-01 0.2215E-01 0.4728E-01 -0.1020E+00 0.3196E-02 0.05 0.0 0.00 0.0 0.0 -5.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2798E-01 0.1562E-02 0.1569E-01 -0.3385E-01 0.1076E-02 0.000E+00 0.0000E+00 0.1092E-02 0.1733E-01 0.1513E-01 -0.3263E-01 0.1028E-02 0.200E+01 0.1222E+00 -0.9803E-02 0.1520E-01 0.1554E-01 -0.3353E-01 0.1066E-02 0.400E+01 0.2492E+00 -0.2153E-01 0.8452E-02 0.1581E-01 -0.3410E-01 0.1090E-02 0.600E+01 0.3793E+00 -0.3395E-01 -0.2792E-02 0.1598E-01 -0.3447E-01 0.1105E-02 0.800E+01 0.5120E+00 -0.4690E-01 -0.1711E-01 0.1609E-01 -0.3471E-01 0.1115E-02 0.100E+02 0.6460E+00 -0.5964E-01 -0.2422E-01 0.1617E-01 -0.3489E-01 0.1121E-02 0.120E+02 0.7735E+00 -0.7075E-01 -0.1363E-01 0.1622E-01 -0.3499E-01 0.1123E-02 0.140E+02 0.8867E+00 -0.7996E-01 0.6899E-02 0.1624E-01 -0.3502E-01 0.1122E-02 0.160E+02 0.9892E+00 -0.8884E-01 0.1800E-01 0.1624E-01 -0.3502E-01 0.1120E-02 0.180E+02 0.1078E+01 -0.9726E-01 0.1680E-01 0.1622E-01 -0.3498E-01 0.1116E-02 0.200E+02 0.1150E+01 -0.1041E+00 0.1663E-01 0.1619E-01 -0.3491E-01 0.1111E-02 0.250E+02 0.1250E+01 -0.1138E+00 0.1585E-01 0.1608E-01 -0.3467E-01 0.1095E-02 0.300E+02 0.1161E+01 -0.1056E+00 0.1432E-01 0.1590E-01 -0.3429E-01 0.1075E-02 0.350E+02 0.1046E+01 -0.9520E-01 0.1646E-01 0.1575E-01 -0.3396E-01 0.1060E-02 0.05 0.0 0.00 0.0 0.0 5.0 0.0 0.0 0.0 15.0 7.0 0.0

173

-0.500E+01 -0.3140E+00 0.2808E-01 0.3086E-02 -0.1623E-01 0.3501E-01 -0.1127E-02 0.000E+00 0.0000E+00 0.1092E-02 0.1733E-01 -0.1513E-01 0.3263E-01 -0.1028E-02 0.200E+01 0.1222E+00 -0.9833E-02 0.1473E-01 -0.1496E-01 0.3228E-01 -0.1012E-02 0.400E+01 0.2492E+00 -0.2158E-01 0.7636E-02 -0.1510E-01 0.3257E-01 -0.1023E-02 0.600E+01 0.3793E+00 -0.3401E-01 -0.3838E-02 -0.1530E-01 0.3300E-01 -0.1039E-02 0.800E+01 0.5120E+00 -0.4697E-01 -0.1831E-01 -0.1546E-01 0.3334E-01 -0.1052E-02 0.100E+02 0.6460E+00 -0.5972E-01 -0.2551E-01 -0.1557E-01 0.3358E-01 -0.1060E-02 0.120E+02 0.7735E+00 -0.7084E-01 -0.1496E-01 -0.1563E-01 0.3371E-01 -0.1063E-02 0.140E+02 0.8867E+00 -0.8004E-01 0.5579E-02 -0.1564E-01 0.3373E-01 -0.1062E-02 0.160E+02 0.9892E+00 -0.8892E-01 0.1672E-01 -0.1562E-01 0.3369E-01 -0.1058E-02 0.180E+02 0.1078E+01 -0.9734E-01 0.1559E-01 -0.1558E-01 0.3361E-01 -0.1053E-02 0.200E+02 0.1150E+01 -0.1042E+00 0.1551E-01 -0.1552E-01 0.3348E-01 -0.1046E-02 0.250E+02 0.1250E+01 -0.1138E+00 0.1496E-01 -0.1536E-01 0.3312E-01 -0.1028E-02 0.300E+02 0.1161E+01 -0.1057E+00 0.1373E-01 -0.1524E-01 0.3286E-01 -0.1014E-02 0.350E+02 0.1046E+01 -0.9523E-01 0.1608E-01 -0.1524E-01 0.3286E-01 -0.1013E-02 0.05 0.0 0.00 0.0 0.0 15.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2866E-01 0.1225E-01 -0.4572E-01 0.9862E-01 -0.3096E-02 0.000E+00 0.0000E+00 0.1410E-02 0.2237E-01 -0.4574E-01 0.9867E-01 -0.3149E-02 0.200E+01 0.1222E+00 -0.9555E-02 0.1914E-01 -0.4499E-01 0.9704E-01 -0.3084E-02 0.400E+01 0.2492E+00 -0.2133E-01 0.1167E-01 -0.4466E-01 0.9633E-01 -0.3046E-02 0.600E+01 0.3793E+00 -0.3377E-01 -0.6767E-04 -0.4459E-01 0.9618E-01 -0.3032E-02 0.800E+01 0.5120E+00 -0.4674E-01 -0.1470E-01 -0.4463E-01 0.9627E-01 -0.3029E-02

174

0.100E+02 0.6460E+00 -0.5950E-01 -0.2200E-01 -0.4470E-01 0.9642E-01 -0.3029E-02 0.120E+02 0.7735E+00 -0.7062E-01 -0.1149E-01 -0.4478E-01 0.9658E-01 -0.3030E-02 0.140E+02 0.8867E+00 -0.7982E-01 0.9069E-02 -0.4484E-01 0.9672E-01 -0.3030E-02 0.160E+02 0.9892E+00 -0.8870E-01 0.2025E-01 -0.4490E-01 0.9685E-01 -0.3030E-02 0.180E+02 0.1078E+01 -0.9711E-01 0.1919E-01 -0.4496E-01 0.9697E-01 -0.3031E-02 0.200E+02 0.1150E+01 -0.1039E+00 0.1919E-01 -0.4502E-01 0.9710E-01 -0.3032E-02 0.250E+02 0.1250E+01 -0.1136E+00 0.1892E-01 -0.4524E-01 0.9756E-01 -0.3044E-02 0.300E+02 0.1161E+01 -0.1054E+00 0.1802E-01 -0.4560E-01 0.9834E-01 -0.3072E-02 0.350E+02 0.1046E+01 -0.9494E-01 0.2059E-01 -0.4594E-01 0.9907E-01 -0.3101E-02 0.05 0.0 0.00 0.0 0.0 25.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2893E-01 0.1658E-01 -0.5176E-01 0.1116E+00 -0.3491E-02 0.000E+00 0.0000E+00 0.1600E-02 0.2538E-01 -0.5550E-01 0.1197E+00 -0.3807E-02 0.200E+01 0.1222E+00 -0.9394E-02 0.2170E-01 -0.5467E-01 0.1179E+00 -0.3750E-02 0.400E+01 0.2492E+00 -0.2118E-01 0.1401E-01 -0.5427E-01 0.1171E+00 -0.3719E-02 0.600E+01 0.3793E+00 -0.3363E-01 0.2193E-02 -0.5414E-01 0.1168E+00 -0.3697E-02 0.800E+01 0.5120E+00 -0.4660E-01 -0.1250E-01 -0.5414E-01 0.1168E+00 -0.3688E-02 0.100E+02 0.6460E+00 -0.5936E-01 -0.1983E-01 -0.5420E-01 0.1169E+00 -0.3684E-02 0.120E+02 0.7735E+00 -0.7048E-01 -0.9335E-02 -0.5427E-01 0.1171E+00 -0.3683E-02 0.140E+02 0.8867E+00 -0.7969E-01 0.1123E-01 -0.5436E-01 0.1172E+00 -0.3684E-02 0.160E+02 0.9892E+00 -0.8856E-01 0.2243E-01 -0.5444E-01 0.1174E+00 -0.3686E-02 0.180E+02 0.1078E+01 -0.9697E-01 0.2139E-01 -0.5453E-01 0.1176E+00 -0.3689E-02 0.200E+02 0.1150E+01 -0.1038E+00 0.2142E-01 -0.5464E-01 0.1178E+00 -0.3694E-02

175

0.250E+02 0.1250E+01 -0.1134E+00 0.2124E-01 -0.5496E-01 0.1185E+00 -0.3715E-02 0.300E+02 0.1161E+01 -0.1052E+00 0.2049E-01 -0.5542E-01 0.1195E+00 -0.3743E-02 0.350E+02 0.1046E+01 -0.9478E-01 0.2322E-01 -0.5582E-01 0.1204E+00 -0.3765E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2893E-01 0.1658E-01 0.5176E-01 -0.1116E+00 0.3491E-02 0.000E+00 0.0000E+00 0.1600E-02 0.2538E-01 0.5550E-01 -0.1197E+00 0.3807E-02 0.200E+01 0.1222E+00 -0.9394E-02 0.2170E-01 0.5467E-01 -0.1179E+00 0.3750E-02 0.400E+01 0.2492E+00 -0.2118E-01 0.1401E-01 0.5427E-01 -0.1171E+00 0.3719E-02 0.600E+01 0.3793E+00 -0.3363E-01 0.2193E-02 0.5414E-01 -0.1168E+00 0.3697E-02 0.800E+01 0.5120E+00 -0.4660E-01 -0.1250E-01 0.5414E-01 -0.1168E+00 0.3688E-02 0.100E+02 0.6460E+00 -0.5936E-01 -0.1983E-01 0.5420E-01 -0.1169E+00 0.3684E-02 0.120E+02 0.7735E+00 -0.7048E-01 -0.9335E-02 0.5427E-01 -0.1171E+00 0.3683E-02 0.140E+02 0.8867E+00 -0.7969E-01 0.1123E-01 0.5436E-01 -0.1172E+00 0.3684E-02 0.160E+02 0.9892E+00 -0.8856E-01 0.2243E-01 0.5444E-01 -0.1174E+00 0.3686E-02 0.180E+02 0.1078E+01 -0.9697E-01 0.2139E-01 0.5453E-01 -0.1176E+00 0.3689E-02 0.200E+02 0.1150E+01 -0.1038E+00 0.2142E-01 0.5464E-01 -0.1178E+00 0.3694E-02 0.250E+02 0.1250E+01 -0.1134E+00 0.2124E-01 0.5496E-01 -0.1185E+00 0.3715E-02 0.300E+02 0.1161E+01 -0.1052E+00 0.2049E-01 0.5542E-01 -0.1195E+00 0.3743E-02 0.350E+02 0.1046E+01 -0.9478E-01 0.2322E-01 0.5582E-01 -0.1204E+00 0.3765E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2866E-01 0.1225E-01 0.4572E-01 -0.9862E-01 0.3096E-02 0.000E+00 0.0000E+00 0.1410E-02 0.2237E-01 0.4574E-01 -0.9867E-01 0.3149E-02

176

0.200E+01 0.1222E+00 -0.9555E-02 0.1914E-01 0.4499E-01 -0.9704E-01 0.3084E-02 0.400E+01 0.2492E+00 -0.2133E-01 0.1167E-01 0.4466E-01 -0.9633E-01 0.3046E-02 0.600E+01 0.3793E+00 -0.3377E-01 -0.6767E-04 0.4459E-01 -0.9618E-01 0.3032E-02 0.800E+01 0.5120E+00 -0.4674E-01 -0.1470E-01 0.4463E-01 -0.9627E-01 0.3029E-02 0.100E+02 0.6460E+00 -0.5950E-01 -0.2200E-01 0.4470E-01 -0.9642E-01 0.3029E-02 0.120E+02 0.7735E+00 -0.7062E-01 -0.1149E-01 0.4478E-01 -0.9658E-01 0.3030E-02 0.140E+02 0.8867E+00 -0.7982E-01 0.9069E-02 0.4484E-01 -0.9672E-01 0.3030E-02 0.160E+02 0.9892E+00 -0.8870E-01 0.2025E-01 0.4490E-01 -0.9685E-01 0.3030E-02 0.180E+02 0.1078E+01 -0.9711E-01 0.1919E-01 0.4496E-01 -0.9697E-01 0.3031E-02 0.200E+02 0.1150E+01 -0.1039E+00 0.1919E-01 0.4502E-01 -0.9710E-01 0.3032E-02 0.250E+02 0.1250E+01 -0.1136E+00 0.1892E-01 0.4524E-01 -0.9756E-01 0.3044E-02 0.300E+02 0.1161E+01 -0.1054E+00 0.1802E-01 0.4560E-01 -0.9834E-01 0.3072E-02 0.350E+02 0.1046E+01 -0.9494E-01 0.2059E-01 0.4594E-01 -0.9907E-01 0.3101E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2808E-01 0.3086E-02 0.1623E-01 -0.3501E-01 0.1127E-02 0.000E+00 0.0000E+00 0.1092E-02 0.1733E-01 0.1513E-01 -0.3263E-01 0.1028E-02 0.200E+01 0.1222E+00 -0.9833E-02 0.1473E-01 0.1496E-01 -0.3228E-01 0.1012E-02 0.400E+01 0.2492E+00 -0.2158E-01 0.7636E-02 0.1510E-01 -0.3257E-01 0.1023E-02 0.600E+01 0.3793E+00 -0.3401E-01 -0.3838E-02 0.1530E-01 -0.3300E-01 0.1039E-02 0.800E+01 0.5120E+00 -0.4697E-01 -0.1831E-01 0.1546E-01 -0.3334E-01 0.1052E-02 0.100E+02 0.6460E+00 -0.5972E-01 -0.2551E-01 0.1557E-01 -0.3358E-01 0.1060E-02 0.120E+02 0.7735E+00 -0.7084E-01 -0.1496E-01 0.1563E-01 -0.3371E-01 0.1063E-02

177

0.140E+02 0.8867E+00 -0.8004E-01 0.5579E-02 0.1564E-01 -0.3373E-01 0.1062E-02 0.160E+02 0.9892E+00 -0.8892E-01 0.1672E-01 0.1562E-01 -0.3369E-01 0.1058E-02 0.180E+02 0.1078E+01 -0.9734E-01 0.1559E-01 0.1558E-01 -0.3361E-01 0.1053E-02 0.200E+02 0.1150E+01 -0.1042E+00 0.1551E-01 0.1552E-01 -0.3348E-01 0.1046E-02 0.250E+02 0.1250E+01 -0.1138E+00 0.1496E-01 0.1536E-01 -0.3312E-01 0.1028E-02 0.300E+02 0.1161E+01 -0.1057E+00 0.1373E-01 0.1524E-01 -0.3286E-01 0.1014E-02 0.350E+02 0.1046E+01 -0.9523E-01 0.1608E-01 0.1524E-01 -0.3286E-01 0.1013E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2798E-01 0.1562E-02 -0.1569E-01 0.3385E-01 -0.1076E-02 0.000E+00 0.0000E+00 0.1092E-02 0.1733E-01 -0.1513E-01 0.3263E-01 -0.1028E-02 0.200E+01 0.1222E+00 -0.9803E-02 0.1520E-01 -0.1554E-01 0.3353E-01 -0.1066E-02 0.400E+01 0.2492E+00 -0.2153E-01 0.8452E-02 -0.1581E-01 0.3410E-01 -0.1090E-02 0.600E+01 0.3793E+00 -0.3395E-01 -0.2792E-02 -0.1598E-01 0.3447E-01 -0.1105E-02 0.800E+01 0.5120E+00 -0.4690E-01 -0.1711E-01 -0.1609E-01 0.3471E-01 -0.1115E-02 0.100E+02 0.6460E+00 -0.5964E-01 -0.2422E-01 -0.1617E-01 0.3489E-01 -0.1121E-02 0.120E+02 0.7735E+00 -0.7075E-01 -0.1363E-01 -0.1622E-01 0.3499E-01 -0.1123E-02 0.140E+02 0.8867E+00 -0.7996E-01 0.6899E-02 -0.1624E-01 0.3502E-01 -0.1122E-02 0.160E+02 0.9892E+00 -0.8884E-01 0.1800E-01 -0.1624E-01 0.3502E-01 -0.1120E-02 0.180E+02 0.1078E+01 -0.9726E-01 0.1680E-01 -0.1622E-01 0.3498E-01 -0.1116E-02 0.200E+02 0.1150E+01 -0.1041E+00 0.1663E-01 -0.1619E-01 0.3491E-01 -0.1111E-02 0.250E+02 0.1250E+01 -0.1138E+00 0.1585E-01 -0.1608E-01 0.3467E-01 -0.1095E-02 0.300E+02 0.1161E+01 -0.1056E+00 0.1432E-01 -0.1590E-01 0.3429E-01 -0.1075E-02

178

0.350E+02 0.1046E+01 -0.9520E-01 0.1646E-01 -0.1575E-01 0.3396E-01 -0.1060E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2819E-01 0.4874E-02 -0.4460E-01 0.9621E-01 -0.3033E-02 0.000E+00 0.0000E+00 0.1410E-02 0.2237E-01 -0.4574E-01 0.9867E-01 -0.3149E-02 0.200E+01 0.1222E+00 -0.9432E-02 0.2110E-01 -0.4658E-01 0.1005E+00 -0.3200E-02 0.400E+01 0.2492E+00 -0.2110E-01 0.1526E-01 -0.4704E-01 0.1015E+00 -0.3218E-02 0.600E+01 0.3793E+00 -0.3347E-01 0.4752E-02 -0.4708E-01 0.1015E+00 -0.3208E-02 0.800E+01 0.5120E+00 -0.4639E-01 -0.9045E-02 -0.4690E-01 0.1012E+00 -0.3184E-02 0.100E+02 0.6460E+00 -0.5911E-01 -0.1580E-01 -0.4671E-01 0.1007E+00 -0.3162E-02 0.120E+02 0.7735E+00 -0.7022E-01 -0.5075E-02 -0.4665E-01 0.1006E+00 -0.3152E-02 0.140E+02 0.8867E+00 -0.7943E-01 0.1540E-01 -0.4677E-01 0.1009E+00 -0.3157E-02 0.160E+02 0.9892E+00 -0.8832E-01 0.2634E-01 -0.4697E-01 0.1013E+00 -0.3168E-02 0.180E+02 0.1078E+01 -0.9675E-01 0.2490E-01 -0.4722E-01 0.1018E+00 -0.3184E-02 0.200E+02 0.1150E+01 -0.1036E+00 0.2444E-01 -0.4745E-01 0.1023E+00 -0.3200E-02 0.250E+02 0.1250E+01 -0.1133E+00 0.2286E-01 -0.4772E-01 0.1029E+00 -0.3221E-02 0.300E+02 0.1161E+01 -0.1052E+00 0.2050E-01 -0.4754E-01 0.1025E+00 -0.3212E-02 0.350E+02 0.1046E+01 -0.9485E-01 0.2215E-01 -0.4728E-01 0.1020E+00 -0.3196E-02 0.05 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2832E-01 0.6961E-02 -0.5399E-01 0.1165E+00 -0.3680E-02 0.000E+00 0.0000E+00 0.1600E-02 0.2538E-01 -0.5550E-01 0.1197E+00 -0.3807E-02 0.200E+01 0.1222E+00 -0.9195E-02 0.2486E-01 -0.5610E-01 0.1210E+00 -0.3835E-02 0.400E+01 0.2492E+00 -0.2084E-01 0.1938E-01 -0.5554E-01 0.1198E+00 -0.3783E-02

179

0.600E+01 0.3793E+00 -0.3320E-01 0.9053E-02 -0.5464E-01 0.1179E+00 -0.3707E-02 0.800E+01 0.5120E+00 -0.4611E-01 -0.4682E-02 -0.5387E-01 0.1162E+00 -0.3643E-02 0.100E+02 0.6460E+00 -0.5883E-01 -0.1144E-01 -0.5337E-01 0.1151E+00 -0.3599E-02 0.120E+02 0.7735E+00 -0.6994E-01 -0.7155E-03 -0.5321E-01 0.1148E+00 -0.3581E-02 0.140E+02 0.8867E+00 -0.7915E-01 0.1976E-01 -0.5338E-01 0.1151E+00 -0.3588E-02 0.160E+02 0.9892E+00 -0.8804E-01 0.3070E-01 -0.5373E-01 0.1159E+00 -0.3609E-02 0.180E+02 0.1078E+01 -0.9648E-01 0.2926E-01 -0.5421E-01 0.1169E+00 -0.3640E-02 0.200E+02 0.1150E+01 -0.1033E+00 0.2879E-01 -0.5476E-01 0.1181E+00 -0.3677E-02 0.250E+02 0.1250E+01 -0.1131E+00 0.2703E-01 -0.5608E-01 0.1209E+00 -0.3768E-02 0.300E+02 0.1161E+01 -0.1050E+00 0.2439E-01 -0.5696E-01 0.1228E+00 -0.3831E-02 0.350E+02 0.1046E+01 -0.9462E-01 0.2579E-01 -0.5711E-01 0.1232E+00 -0.3842E-02 0.05 0.0 -20.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.2989E+00 0.2024E+00 0.2775E+01 0.2243E+00 -0.4249E+00 0.9436E-02 0.000E+00 -0.6004E-07 0.3013E+00 0.4781E+01 0.2208E+00 -0.4178E+00 0.1311E-01 0.200E+01 0.1161E+00 0.2191E+00 0.3645E+01 0.2192E+00 -0.4143E+00 0.1451E-01 0.400E+01 0.2369E+00 0.1677E+00 0.3007E+01 0.2176E+00 -0.4107E+00 0.1598E-01 0.600E+01 0.3616E+00 0.1305E+00 0.2599E+01 0.2143E+00 -0.4031E+00 0.1733E-01 0.800E+01 0.4912E+00 0.9761E-01 0.2268E+01 0.2113E+00 -0.3962E+00 0.1849E-01 0.100E+02 0.6240E+00 0.4780E-01 0.1675E+01 0.2077E+00 -0.3878E+00 0.1930E-01 0.120E+02 0.7528E+00 -0.1500E-01 0.8697E+00 0.2041E+00 -0.3796E+00 0.1937E-01 0.140E+02 0.8723E+00 -0.6805E-01 0.2060E+00 0.2010E+00 -0.3722E+00 0.1876E-01 0.160E+02 0.9769E+00 -0.9653E-01 -0.8973E-01 0.1959E+00 -0.3605E+00 0.1855E-01

180

0.180E+02 0.1068E+01 -0.1107E+00 -0.1776E+00 0.1907E+00 -0.3486E+00 0.1763E-01 0.200E+02 0.1143E+01 -0.1213E+00 -0.2334E+00 0.1858E+00 -0.3375E+00 0.1613E-01 0.250E+02 0.1246E+01 -0.1418E+00 -0.4033E+00 0.1732E+00 -0.3089E+00 0.1115E-01 0.300E+02 0.1168E+01 -0.1331E+00 -0.3826E+00 0.1754E+00 -0.3130E+00 0.1121E-02 0.350E+02 0.1051E+01 -0.1658E+00 -0.1072E+01 0.1141E+00 -0.1810E+00 0.3807E-02 0.05 0.0 -10.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3080E+00 0.5418E-01 0.4201E+00 0.1199E+00 -0.2350E+00 0.5684E-02 0.000E+00 -0.2454E-07 0.2696E-01 0.4277E+00 0.1260E+00 -0.2489E+00 0.7946E-02 0.200E+01 0.1194E+00 0.1448E-01 0.3994E+00 0.1306E+00 -0.2587E+00 0.9009E-02 0.400E+01 0.2438E+00 0.2381E-02 0.3852E+00 0.1445E+00 -0.2883E+00 0.1070E-01 0.600E+01 0.3729E+00 -0.8274E-02 0.4019E+00 0.1433E+00 -0.2853E+00 0.1118E-01 0.800E+01 0.5049E+00 -0.1914E-01 0.4208E+00 0.1385E+00 -0.2742E+00 0.1146E-01 0.100E+02 0.6387E+00 -0.3394E-01 0.3815E+00 0.1307E+00 -0.2565E+00 0.1147E-01 0.120E+02 0.7670E+00 -0.5281E-01 0.2707E+00 0.1221E+00 -0.2373E+00 0.1099E-01 0.140E+02 0.8812E+00 -0.7007E-01 0.1653E+00 0.1122E+00 -0.2151E+00 0.1035E-01 0.160E+02 0.9846E+00 -0.8211E-01 0.1277E+00 0.1017E+00 -0.1917E+00 0.9685E-02 0.180E+02 0.1074E+01 -0.9010E-01 0.1347E+00 0.9138E-01 -0.1687E+00 0.8680E-02 0.200E+02 0.1147E+01 -0.9686E-01 0.1373E+00 0.8176E-01 -0.1473E+00 0.7398E-02 0.250E+02 0.1249E+01 -0.1067E+00 0.1349E+00 0.5844E-01 -0.9555E-01 0.3662E-02 0.300E+02 0.1163E+01 -0.9876E-01 0.1343E+00 0.4341E-01 -0.6225E-01 -0.2498E-02 0.350E+02 0.1047E+01 -0.8826E-01 0.1348E+00 -0.2885E-02 0.3786E-01 -0.1993E-02 0.05 0.0 10.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0

181

-0.500E+01 -0.3080E+00 0.5370E-01 0.4126E+00 -0.9783E-01 0.1874E+00 -0.4158E-02 0.000E+00 0.4239E-07 0.2696E-01 0.4277E+00 -0.1260E+00 0.2489E+00 -0.7946E-02 0.200E+01 0.1194E+00 0.1448E-01 0.3994E+00 -0.1306E+00 0.2587E+00 -0.9009E-02 0.400E+01 0.2438E+00 0.2381E-02 0.3852E+00 -0.1445E+00 0.2883E+00 -0.1070E-01 0.600E+01 0.3729E+00 -0.8274E-02 0.4019E+00 -0.1433E+00 0.2853E+00 -0.1118E-01 0.800E+01 0.5049E+00 -0.1914E-01 0.4208E+00 -0.1385E+00 0.2742E+00 -0.1146E-01 0.100E+02 0.6387E+00 -0.3394E-01 0.3815E+00 -0.1307E+00 0.2565E+00 -0.1147E-01 0.120E+02 0.7670E+00 -0.5281E-01 0.2707E+00 -0.1221E+00 0.2373E+00 -0.1099E-01 0.140E+02 0.8812E+00 -0.7007E-01 0.1653E+00 -0.1122E+00 0.2151E+00 -0.1035E-01 0.160E+02 0.9846E+00 -0.8211E-01 0.1277E+00 -0.1017E+00 0.1917E+00 -0.9685E-02 0.180E+02 0.1074E+01 -0.9010E-01 0.1347E+00 -0.9138E-01 0.1687E+00 -0.8680E-02 0.200E+02 0.1147E+01 -0.9686E-01 0.1373E+00 -0.8176E-01 0.1473E+00 -0.7398E-02 0.250E+02 0.1249E+01 -0.1067E+00 0.1349E+00 -0.5844E-01 0.9555E-01 -0.3662E-02 0.300E+02 0.1163E+01 -0.9876E-01 0.1343E+00 -0.4341E-01 0.6225E-01 0.2498E-02 0.350E+02 0.1047E+01 -0.8826E-01 0.1348E+00 0.2885E-02 -0.3786E-01 0.1993E-02 0.05 0.0 20.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.2989E+00 0.2025E+00 0.2777E+01 -0.2218E+00 0.4196E+00 -0.9284E-02 0.000E+00 0.9035E-07 0.3013E+00 0.4781E+01 -0.2208E+00 0.4178E+00 -0.1311E-01 0.200E+01 0.1161E+00 0.2191E+00 0.3645E+01 -0.2192E+00 0.4143E+00 -0.1451E-01 0.400E+01 0.2369E+00 0.1677E+00 0.3007E+01 -0.2176E+00 0.4107E+00 -0.1598E-01 0.600E+01 0.3616E+00 0.1305E+00 0.2599E+01 -0.2143E+00 0.4031E+00 -0.1733E-01 0.800E+01 0.4912E+00 0.9761E-01 0.2268E+01 -0.2113E+00 0.3962E+00 -0.1849E-01

182

0.100E+02 0.6240E+00 0.4780E-01 0.1675E+01 -0.2077E+00 0.3878E+00 -0.1930E-01 0.120E+02 0.7528E+00 -0.1500E-01 0.8697E+00 -0.2041E+00 0.3796E+00 -0.1937E-01 0.140E+02 0.8723E+00 -0.6805E-01 0.2060E+00 -0.2010E+00 0.3722E+00 -0.1876E-01 0.160E+02 0.9769E+00 -0.9653E-01 -0.8973E-01 -0.1959E+00 0.3605E+00 -0.1855E-01 0.180E+02 0.1068E+01 -0.1107E+00 -0.1776E+00 -0.1907E+00 0.3486E+00 -0.1763E-01 0.200E+02 0.1143E+01 -0.1213E+00 -0.2334E+00 -0.1858E+00 0.3375E+00 -0.1613E-01 0.250E+02 0.1246E+01 -0.1418E+00 -0.4033E+00 -0.1732E+00 0.3089E+00 -0.1115E-01 0.300E+02 0.1168E+01 -0.1331E+00 -0.3826E+00 -0.1754E+00 0.3130E+00 -0.1121E-02 0.350E+02 0.1051E+01 -0.1658E+00 -0.1072E+01 -0.1141E+00 0.1810E+00 -0.3807E-02 0.05 328.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 15.0 7.0 0.0-0.500E+01 -0.3140E+00 0.2799E-01 0.1728E-02 0.7704E-08 0.4366E-08 -0.9096E-10 0.000E+00 0.0000E+00 0.1055E-02 0.1674E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.200E+01 0.1222E+00 -0.9855E-02 0.1438E-01 -0.2767E-08 -0.2208E-08 0.5058E-10 0.400E+01 0.2492E+00 -0.2160E-01 0.7454E-02 -0.8889E-08 0.2516E-08 -0.1054E-09 0.600E+01 0.3793E+00 -0.3402E-01 -0.3889E-02 -0.7599E-08 -0.8943E-08 0.3458E-09 0.800E+01 0.5120E+00 -0.4697E-01 -0.1825E-01 -0.2033E-07 0.9691E-08 -0.3499E-09 0.100E+02 0.6460E+00 -0.5971E-01 -0.2538E-01 -0.3312E-07 0.2838E-07 -0.7916E-09 0.120E+02 0.7735E+00 -0.7083E-01 -0.1484E-01 -0.2848E-07 0.9935E-08 -0.3882E-09 0.140E+02 0.8867E+00 -0.8004E-01 0.5642E-02 -0.4062E-07 0.2866E-07 -0.9540E-09 0.160E+02 0.9892E+00 -0.8892E-01 0.1673E-01 -0.2650E-07 -0.8508E-08 0.1298E-09 0.180E+02 0.1078E+01 -0.9734E-01 0.1557E-01 -0.3353E-07 0.8890E-09 -0.1576E-09 0.200E+02 0.1150E+01 -0.1042E+00 0.1544E-01 -0.2487E-07 -0.2242E-07 0.6461E-09

183

0.250E+02 0.1250E+01 -0.1139E+00 0.1479E-01 -0.2552E-07 -0.2709E-07 0.6431E-09 0.300E+02 0.1161E+01 -0.1057E+00 0.1342E-01 -0.1689E-07 -0.3895E-07 0.1129E-08 0.350E+02 0.1046E+01 -0.9525E-01 0.1568E-01 -0.3030E-07 -0.1511E-08 -0.7884E-10

184

Appendix B.1: Equations of Motion s-function

function [sys,x0,str,ts] = EOM(t,x,u,flag,J_inertial,mass,g,x0)%%Parameters% J(1) = Jxx;% J(2) = Jyy;% J(3) = Jzz;% J(4) = Jxz;% mass = ; %slugs or kg% g = ; gravity%States% Xe(N) = x0(1);% Ye(E) = x0(2);% Ze(D) = x0(3);% Phi = x0(4);% Theta = x0(5);% Psi = x0(6);% U = x0(7);% V = x0(8);% W = x0(9);% P = x0(10);% Q = x0(11);% R = x0(12); %#define GD=32.17; % ft/s %% The following outlines the general structure of an S-function.%switch flag, %%%%%%%%%%%%%%%%%% % Initialization % %%%%%%%%%%%%%%%%%% case 0,%% call simsizes for a sizes structure, fill it in and convert it to a% sizes array.%% Note that in this example, the values are hard coded. This is not a% recommended practice as the characteristics of the block are typically% defined by the S-function parameters.%

185

sizes = simsizes; sizes.NumContStates = 12;sizes.NumDiscStates = 0;sizes.NumOutputs = 12;sizes.NumInputs = 6;sizes.DirFeedthrough = 0;sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes); %% str is always an empty matrix%str = []; %% initialize the array of sample times%ts = [0 0];%% initialize the initial conditions%Xe = x0(1); %units of linear distanceYe = x0(2); %units of linear distanceZe = x0(3); %units of linear distancePhi = x0(4); %radiansTheta = x0(5); %radiansPsi = x0(6); %radiansU = x0(7); %units of linear distance per secondV = x0(8); %units of linear distance per secondW = x0(9); %units of linear distance per secondP = x0(10); %units of radians per secondQ = x0(11); %units of radians per secondR = x0(12); %units of radians per second nav_dot=[0 0 0]';euler_dot=[0 0 0]';vel_dot=[0 0 0]';omega_dot=[0 0 0]'; % end mdlInitializeSizes

186

%%%%%%%%%%%%%%% % Derivatives % %%%%%%%%%%%%%%% case 1, %InputsFx = u(1);Fy = u(2);Fz = u(3);l = u(4);m = u(5);n = u(6);%statesXe = x(1); %units of linear distanceYe = x(2); %units of linear distanceZe = x(3); %units of linear distancePhi = x(4); %radiansTheta = x(5); %radiansPsi = x(6); %radiansU = x(7); %units of linear distance per secondV = x(8); %units of linear distance per secondW = x(9); %units of linear distance per secondP = x(10); %units of radians per secondQ = x(11); %units of radians per secondR = x(12); %units of radians per second v_cm_e = [U V W]'; %Velocity components Force = [Fx Fy Fz]'; %Foce InputMoment = [l m n]'; %Moment Inputomega = [P Q R]'; %Body Rates %Inertial Matrix - %From Stevens and Lewis pg.45 equation 1.5-7Jxx = J_inertial(1);Jyy = J_inertial(2);Jzz = J_inertial(3);Jxz = J_inertial(4);%Inertial MatrixJ = [ Jxx 0 -Jxz;... 0 Jyy 0; ... -Jxz 0 Jzz]; %Direction Cosine Matrix - Navigation Frame with respect to Body Frame

187

%From Stevens and Lewis pg.26 equation 1.3-20% Direction Cosine Matrix from navigation frame to body frameDCM_b_n = [ cos(Theta)*cos(Psi) cos(Theta)*sin(Psi) -sin(Theta);... (-cos(Phi)*sin(Psi)+sin(Phi)*sin(Theta)*cos(Psi)) (cos(Phi)*cos(Psi) + sin(Phi)*sin(Theta)*sin(Psi)) sin(Phi)*cos(Theta);... (sin(Phi)*sin(Psi)+cos(Phi)*sin(Theta)*cos(Psi)) (-sin(Phi)*cos(Psi) + cos(Phi)*sin(Theta)*sin(Psi)) cos(Phi)*cos(Theta)]; % Cx=[1 0 0; 0 cos(Phi) -sin(Phi); 0 sin(Phi) cos(Phi)]; %roll% Cy=[cos(Theta) 0 sin(Theta); 0 1 0; -sin(Theta) 0 cos(Theta)]; %pitch% Cz=[cos(Psi) -sin(Psi) 0;sin(Psi) cos(Psi) 0; 0 0 1]; %yaw% % % DCM_b_n=Cz*Cy*Cx; %yaw,pitch,roll % Direction Cosine Matrix from body frame to navigation frame DCM_n_b = inv(DCM_b_n); %Specific Force Equ - Translational Velocity (Body Frame) %From Stevens and Lewis pg.52 equation 1.5-22d vel_dot = (1/mass)*Force - (cross(omega,v_cm_e)) + (DCM_b_n*[0; 0; g]); %From Stevens and Lewis pg.27 equation 1.3-22ah_dot = [1 tan(Theta)*sin(Phi) tan(Theta)*cos(Phi);... 0 cos(Phi) -sin(Phi);... 0 (sin(Phi)/cos(Theta)) cos(Phi)/cos(Theta)]; %Kinematic Equ - Euler Angle Rates (Body Frame)%From Stevens and Lewis pg.52 equation 1.5-22ceuler_dot = h_dot * omega; %Moment Equ - Angular Acceleration (Body Frame)%From Stevens and Lewis pg.52 equation 1.5-22e%omega_dot = J\ (Moment - cross(omega,J*omega));omega_dot = inv(J)*(Moment - cross(omega,J*omega));%Navigation Euqations - Inertial Velocity (Navigation Frame)%From Stevens and Lewis pg.52 equation 1.5-22bnav_dot = DCM_n_b * v_cm_e; %Form the state rate vector

188

%--------------------------------------------------------------%sys = [Udot;Vdot,Wdot;Phidot;Thetadot;Psidot;Pdot;Qdot;Rdot;Xedot;Yedot;Hdot];sys = [nav_dot;euler_dot;vel_dot;omega_dot];%--------------------------------------------------------------------------%-----------% end mdlDerivatives %%%%%%%%%%% % Outputs % %%%%%%%%%%% case 3, sys = x; %%%%%%%%%%%%% % Terminate % %%%%%%%%%%%%% case {2, 4, 9}, % sys=mdlTerminate(t,x,u);sys=[]; %do nothing %%%%%%%%%%%%%%%%%%%% % Unexpected flags % %%%%%%%%%%%%%%%%%%%% otherwise error(['Unhandled flag = ',num2str(flag)]); end

189

Appendix B.2: forces_moments.m

function [ output_args ] = forces_moments( input_args )

x_e = input_args(1);y_e = input_args(2);z_e = input_args(3);

phi = input_args(4);theta = input_args(5);psi = input_args(6);

u = input_args(7);v = input_args(8);w = input_args(9);

p = input_args(10);q = input_args(11);r = input_args(12); % delta_right_ail = input_args(13);% delta_left_ail = input_args(14);% delta_rud = input_args(15);% thrust = input_args(16);delta_ail = input_args(13);delta_elv = input_args(14);delta_rud = input_args(15);thrust = input_args(16);

delta_right_ail = delta_elv - delta_ail;delta_left_ail = delta_elv + delta_ail;

if delta_right_ail < -45 delta_right_ail = -45;else if delta_right_ail > 45 delta_right_ail = 45; endend

if delta_left_ail < -45 delta_left_ail = -45;else if delta_left_ail > 45 delta_left_ail = 45;

190

endend

if delta_rud < -25 delta_rud = -25;else if delta_rud > 25 delta_rud = 25; endend

% if thrust < 0% thrust = 0;% else if thrust > 25*4.448222 %4.448222 lbf = newtons% thrust = 25*4.448222; %4.448222 lbf = newtons% end% end

%delta_rud=0;

% delta_ail = input_args(13);% delta_ele = input_args(14);% delta_rud = input_args(15);% delta_thrust= input_args(16);

%************************************Vt = sqrt(u^2+v^2+w^2);if u~=0alpha = atan2(w,u);beta = asin(v/Vt);else alpha = pi/2;beta = 0;end

tableID=1;%create thrust force vectorF_thrust_b = [thrust 0 0]';%altitude = -H = -z_e;deltadeg = [delta_right_ail,delta_left_ail,delta_rud,delta_rud,0,0];omega = [p q r]';rho = 1.229; %kg/m^3 1.229bref = 2.3240; %mSref = 1.2517; %m^2

191

cbar = .6347; %m

%this has been changed because the for005 file is setup in VINF m/s sos = 340.29;% 340.29 m/s at sea levelalphadeg = alpha*180/pi;betadeg = beta*180/pi;

%aerodynamic forces[tau, f] = datcomderive(alphadeg, betadeg, H, deltadeg, Vt, omega, tableID,bref,cbar,Sref,sos,rho);F = f + F_thrust_b;T = tau;output_args = [F(1) F(2) F(3) T(1) T(2) T(3)];

return

192

Appendix B.3: datcomderive.m

%calculate the Forces and Moments

function [tau, f] = datcomderive(alphadeg, betadeg, H, deltadeg, Vt, omega, tableID,bref,cbar,Sref,sos,rho)

% mach numbermach = Vt / sos;

% dynamic pressureqbar = 0.5 * rho * Vt^2;

% Scale dynamic derivativeslat_scale = 0.5 * (bref) / Vt; long_scale = 0.5 * (cbar) / Vt;omega_scale = omega.* [lat_scale; long_scale; lat_scale];

% Call DATCOMTableMexIndVariables = [alphadeg, mach, H, betadeg, deltadeg]; % Vector for input into Action

2[DepDeltaIncrements, Derivatives_Stab, DepBaseIncrements] =

DATCOMTableMex(2,tableID,IndVariables);% calculate coefficients% alpha and mach effects for nominalC_norm = DepBaseIncrements; %components: [N, M, A, Y, ln, ll]% Scaling the Stability derivative coefficientsC_scale = Derivatives_Stab .* omega_scale([2 2 2 3 3 3 1 1 1])'; %component: [CNQ,

CMQ, CAQ, CYR, ClnR, CllR, CYP, ClnP, CllP]% Form base contributions to moments and forcesC_BAE = C_norm + C_scale(1:6) + [zeros(1,3), C_scale(7:9)]; %components: [N, M,

A, Y, ln, ll]% delta contributions to moments and forcesC_delta = DepDeltaIncrements; %components: [N, M, A, Y, ln, ll]% % output moments and forces%MFoutput = qbar * (Sref) * [p.bref; p.cbar; p.bref; -1; 1; -1] .* (C_BAE([6 2 5 3 4 1])' +

C_delta([6 2 5 3 4 1])'); %components: [L, M, N, X, Y, Z]tau = qbar * (Sref) * [bref; cbar; bref] .* (C_BAE([6 2 5])' + C_delta([6 2 5])');

%components: [L, M, N]f = qbar * (Sref) * [-1; 1; -1] .* (C_BAE([3 4 1])' + C_delta([3 4 1])'); %components:

[X, Y, Z]