Vibrations - Åbo Akademi

Post on 10-Apr-2023

0 views 0 download

transcript

Jyväskylä 2008

VibrationsMatti Hotokka

Department of Physical ChemistryÅbo Akademi University

Jyväskylä 2008

V q fq( ) = 12

ν= f

h

− +�

��

��

� =hm

ddq

V q q E q2

2

2

28π( ) ( ) ( )Ψ Ψ

E h vv e= +ν ( )12

Ψv v vqq N H q e( ) ( ) /= −1 2 2 2α

νπ µe

f= 12

Harmonic oscillatorSchrödinger’s equationV(r)

rre

Define q = r - re

Solution:Quantum number v = 0, 1, 2, ...

Jyväskylä 2008

E h e012= ν

∆E v v h e( )+ ← =1 ν

Harmonic oscillator

Zero-point energy

Same distance between energy levels

Isotope effect: E.g.�

e(H2) = 4395 cm-1

e(D2) = 3118 cm-1

Jyväskylä 2008

Isotope effectExample: Water

4000 3500 3000 2500 2000 1500 1000 5000

100

T %

Wavenumber (1/cm)

4000 3500 3000 2500 2000 1500 1000 5000

100

T %

Wavenumber (1/cm)

H2O

D2O

Jyväskylä 2008

( )V r D eer( ) = − −1 2α

(

� �

)T V E+ =Ψ Ψ

E h v h x vv e e e= + − +ν ν( ) ( )12

12

2

Anharmonic oscillator

V(r)

r

Realistic form of potential energy curve.Many possible functions: Most popularare polynomial and the Morse potential.

If V(r) is Morse potential the Schrödingerequation can be solved analytically.

Solutions: quantum number v = 0,1,2,...

Jyväskylä 2008

∆E v v h h x ve e e( ) ( )+ ← = − +1 2 1ν ν

Anharmonic oscillator

Distance between energy levels varies

Almost the same transition energy for1 � 0but large discrepances for higher levels

Harmonic approximation is quite good forthe lowest transition and much simpler soharmonic approximaton is used.

Jyväskylä 2008

Degrees of freedom

Translations of the wholemolecule require 3degrees of freedom.

Totally 3N degrees offreedom.

Rotations require further3 degrees of freedom

Internal motions, 3N-6degrees of freedom, 3N- 5 in linear molecules

Jyväskylä 2008

Independent of each otherCommon starting level, all unexcited

Normal vibrations

Jyväskylä 2008

Independent of each otherCommon starting level, all unexcitedSymmetry adapted

Normal vibrations

Jyväskylä 2008

Independent of each otherSymmetry adaptedInvolve the whole molecule

Normal vibrations

Jyväskylä 2008

For quantum chemists: the zero-pointenergy may be quite large

E.g., CO2: normal frequencies 1340, 667 and2349 cm-1. Each contributes to the zero-pointenergy by ½ v~e. Thus we obtain

Zero-point energy

670 + 333 + 1174 = 2177 cm -1

Spectroscopy measures distances between energy levels,not absolute energies, so the zero-point energy isirrelevant.

Jyväskylä 2008

Given the stiffnesses (force constants) ofindividual bonds (valence coordinates,really) and possible interrelations,calculatehow the atoms move and what are theharmonic energy levels.

Normal coordinate analysis

Jyväskylä 2008

Use molecular mechanics calculations

Interactions

� Bond distances

� Bond angles

� Torsion angles

� 1-4 interactions

� Cross-terms

Out come harmonic (even anharmonic)energy levels and shapes of the motions

Normal coordinate analysisModern method

Jyväskylä 2008

� Use good basis sets (TZP, 6-311G(d,p) orsuch)

� There is a systematic error, apply acorrection factor to vibrational energies

� Only harmonic frequencies are available(anharmonic are very expensive tocalculate)

Normal coordinatesQuantum chemical methods

Jyväskylä 2008

Wilson’s GF matrix method

Requires a good force constant matrix

Requires carefully defined valencecoordinates

Normal coordinatesThe traditional method

Jyväskylä 2008

Force constant matrixExample: Kim Palmö, HU, 1987

CC

CH1

CH2

CH3�

CH4

H1CH2

H3CH4

CH1,2

CH3,4�

CC 9.3881 0.0683 0.0683 0.0683 0.0683 -0.2697 -0.2697 0 0�

CH1 0.0683 5.0844 0.0273 0 0 0 0 0 0�

CH2 0.0683 0.0273 5.0844 0 0 0 0 0 0�

CH3 0.0683 0 0 5.0844 0.0273 0 0 0 0�

CH4 0.0683 0 0 0.0273 5.0844 0 0 0 0�

H1CH2 -0.2697 0 0 0 0 0.6786 0.0177 0 0�

H3CH4 -0.2697 0 0 0 0 0.0177 0.6786 0 0�

CH1,2 0 0 0 0 0 0 0 1.1113 0.1930�

CH3,4 0 0 0 0 0 0 0 0.1930 1.1113

C CH2

H1

H3

H4

Jyväskylä 2008

� Out come

� Exact motions

� Correctsymmetries

� Vibrationenergies

� (The selectionrules wereanalyzedseparately)

Normal coordinatesWilson’s method

o o

o

o

o

o

o o

o

o

o

o

o o

o

o

o

o

o o

o o

o

o

o

o

o o

o

o

o

o

o o

o

o

o

o

o o

o

o

o

o

o o

o

o

o

o

o o

o o

oo

Ag Ag Ag Au

R 1623 R 3019 R 1342

B1g B1g B1u B2g

R 3272 R 1050 IR 949 R 943

B2u B2u B3u B3u

IR 3105 IR 995 IR 1443 IR 2989

Jyväskylä 2008

� Basically all vibrations involve all atoms inthe molecule

� However, some vibrations are mostlyconcentrated in a certain functional groupof the molecule => group frequencies

Group vibrations

Jyväskylä 2008

� Full stop. Here comes an animation usinga separate program.

Normal vibrations

Jyväskylä 2008

� Copy from character tables the characters of the xyztranslations, �

xyz.

� For each class of symmetry operations, count thestationary atoms, Nstat.

� Multiply the lines �

xyz and Nstat => �

tot.

� Subtract the translations of the whole molecule, �

xyz.

� Subtract the rotations of the whole molecule, �

rot.

� Reduce the resulting representation with characters �

vib.

Symmetry of the vibrations

Jyväskylä 2008

Symmetry of the vibrationsExample: equilaterial triangle

D3h E 2C3

h 2S3 3C2 3 �

vA1' 1 1 1 1 1 1A2' 1 1 1 1 -1 -1 RzE’ 2 -1 2 -1 0 0 (x,y)A1" 1 1 -1 -1 1 -1A2" 1 1 -1 -1 -1 1 zE” 2 -1 -2 1 0 0 (Rx, Ry)�

rot 3 0 -1 2 -1 -1

xyz 3 0 1 -2 -1 1Nstat 3 0 3 0 1 1�

tot 9 0 3 0 -1 1

- �

xyz -3 0 -1 2 1 -1- �

rot -3 0 1 -2 1 1

vib 3 0 3 0 1 1

aA1' = 1/12(3+0+3+0+3+3)=1aA2' = 1/12(3+0+3+0-3-3)=0aE' = 1/12(6+0+6+0+0+0)=1aA1" = 1/12(3+0-3+0+3-3)=0aA2" = 1/12(3+0-3+0-3+3)=0aE” = 1/12(6+0-6+0+0+0)=0

vib = A1' + E’

Jyväskylä 2008

Γ Γ Γ Γstatev v

MvM= ( ) ( ) ( )1 2

1 2 �

� No vibration is excited: totally symmetrical

� One vibration excited: the vibrational statehas the symmetry of the excited state

� Generally: Let the vibrations have thesymmetries �

1, �

2, ...

M. Let vibration nbe excited to state vn. The the totalvibrational state has the symmetry

Vibrational states

Jyväskylä 2008

� Vibrational motions belong to A1' and E’

� Ground state, none excited: �

state = A1'

� Fundamental excitation, A1' excited 1 � 0: �

state = A1'

� Fundamental excitation, E' excited 1 � 0: �

state = E'

� Overtone, E' excited 2 � 0: �state = E' �E’ = A1'+[A2']+E’ =

A1'+E’ (N.B. Special rules for powers of E!)

� Combination band, both A1' and E' excited 1 � 0: �

state =A1' �E' = E’

Vibrational statesExample: Equilateral triangle

Jyväskylä 2008

ν1 ν2 ν3

Possible transitionsCarbon dioxide

v=0

IR667 cm-1R1340 cm-1 IR2349 cm-1

Fundamental: 2349 cm-1

Overtone: 2001 cm-1

Combination band: 2007 cm-1

Jyväskylä 2008

Vibrational transition take place betweenvibrational states.

! Usually fundamental transition: initial state is thetotally symmetrical ground state and final statehas the same symmetry as the vibration

Two measuring techniques

! Infrared spectroscopy– Absorption; use the dipole operator

! Raman spectroscopy– Use the polarizability operator

Selection rules

Jyväskylä 2008

Ψ Ψ Γ Γ Γf i f O iO|"

| #⊗ ⊗

Selection rulesExample: the equilateral triangle

D3h E 2C3

$

h 2S3 3C2 3 $

vA1' 1 1 1 1 1 1 X2+y2, z2

A2' 1 1 1 1 -1 -1 RzE’ 2 -1 2 -1 0 0 (x,y) (X2-y2, xy)A1" 1 1 -1 -1 1 -1A2" 1 1 -1 -1 -1 1 zE” 2 -1 -2 1 0 0 (Rx, Ry) (xz, yz)

D3h A1 A2 EA1 A1 A2 EA2 A1 EE A1+[A2]+E

Infrared Vibration A1': Ground state A1', excited state A1'%

x: A1' &E’ &A1'=E’; not allowed%

y: the same%

z: A1' &A2" &A1'=E’; not allowedVibration E': Ground state A1', excited state E’%

x: A1' &E’ &E’=A1'+A2'+E’; ALLOWED!%

y: the same%

z: A1' &A2" &E'=E’; not allowed

Evaluate the symmetry of integral

Operator O is % for infraredspectroscopy and ' for Ramanspectroscopy.

If there is a totally symmetricalcomponent in the product, thetransition is allowed.

Jyväskylä 2008

Selection rulesExample: the equilateral triangle

Raman Vibration A1': Ground state A1', excited state A1'(

x2+y2: A1' )A1' )A1'=A1'; ALLOWED!(

z2: the same(

x2-y2: A1' )E’ )A1'=E’; not allowed(

xy: the same(

xz: A1' )E” )A1'=E”; not allowed(

yz: the sameVibration E': Ground state A1', excited state E’(

x2+y2: E’ )A1' )A1'=E’'; not allowed(

z2: the same(

x2-y2: E’ )E’ )A1'=A1'+A2'+E’; ALLOWED!(

xy: the same(

xz: E’ )E” )A1'=A1"+A2"+E”; not allowed(

yz: the same

SUMMARY:Excitation of vibration A1'- not allowed in infrared spectroscopy- allowed in Raman spectroscopyExcitation of vibration E’- allowed in infrared spectroscopy- allowed in Raman spectroscopy

Jyväskylä 2008

Selection rulesExample: Water

Jyväskylä 2008

ν1 ν2 ν3

Fermi resonanceExample: Carbon dioxide

v=0

IR667 cm-1R1340 cm-1 IR2349 cm-1

First overtone 1334 cm-1 hastwo components,*

u

+ *

u=

,

g++ -

g. The firstinteracts with the .

1 linebecause the symmetry is thesame.

Jyväskylä 2008

Fermi resonanceExample: Carbon dioxide

Raman spectra. No line at 1340 cm-1. Both lines have changed position.Both lines have approx the sameintensity so the overtone has borrowedintensity from the allowed fundamental.

G. W. Bondarenko, J. Appl. Spectrosc., 45 (1986) 1573.