+ All Categories
Home > Documents > © 2012 Lockheed Martin - University of...

© 2012 Lockheed Martin - University of...

Date post: 09-Sep-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
48
1 © 2012 Lockheed Martin
Transcript
Page 1: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

1

© 2012 Lockheed Martin

Page 2: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

2

Lockheed Martin ERA Team

Propulsion Acoustics

NAS - Environment NAS - Operations

Page 3: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

3

LM ERA – Next Generation Efficiency

• NASA’s Environmentally Responsible Aviation (ERA) Project

– Matures Dual Use (civil/military) Technologies

– Achieves Dramatic Impact on Fuel Efficiency & the Environment

• ERA Goals Compare to 1998 Reference

• ERA Program is a Significant Step Toward

USAF Energy Horizon Goals

NASA ERA USAF Energy Horizons

Fuel Burn -50% (2025) -30% (2016-20) + -2% / Year After

Noise -42dB Cum Below Stage 4 -42dB Cum Below Stage 4

Emissions -75% LTO NOx Below CAEP 6 -80% LTO NOx Below CAEP 6

Page 4: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

4

LM ERA – Dual Use Technologies

Ultra-High Bypass

Engine • Less Fuel Burn

• Noise Reduction

• Reduced Emissions

Advanced Composite Structure • Reduced Manufacturing Cost

• Less Weight = Less Fuel Burn

• Demonstrated on X-55A

Box Wing Configuration • Drag Reduction for Reduced

Fuel Burn

• Scalable from Tactical to Strategic

• Reduced Span for Compatibility

with Existing Infrastructure

Passenger Configuration

• 224 Passengers

• 8,000 Nautical Miles

Cargo Configuration

• 100,000 Pounds Payload

• 6,500 Nautical Miles

Page 5: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

5

2025 Future Scenario

Page 6: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

6

Compiled US Demand Chart Assumptions

FAA Baseline,

no major mishaps:

•No large oil price shocks

•No swings in macro-

economic policy

•No financial meltdowns

FAA Pessimistic Scenario:

•Slower net immigration

•Higher inflation

•GDP growth 0.5% lower, 0.3% higher

unemployment

FAA Optimistic Scenario:

•Population grows more rapidly due to higher

net immigration

•Lower inflation

•Faster growth, GDP 0.5% quicker than

forecast, unemployment 0.4% lower

Page 7: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

7

Fuel Prices, Noise & Emissions Standards

Jet Fuel:

High: $4.77

Low: $1.55

Ref: $3.18

Oil, USD, per barrel

2025: $105

Emissions

Anticipated Future Stage 5 Standard

• CAEP/9 Work Program studying the impacts of developing “a range of stringency options of up to 10-12 dB cumulative margin relative to Stage 4

• Starts between 2017-2020

• Non-compliant aircraft grandfathered

>> $3/gal

Cost of Fuel Increase & Harder Noise & Emissions Standards

Page 8: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

8

• Defined as the avionics equipment/software required for full

NextGen 2025 capability

– Full Avionics Suite Defined

– Operational Scenarios Vetted

NextGen 2025 “Fully Capable”

Notional Avionics Suite

Communications

Navigation

Surveillance

Functionalities Considered “Best Equipped” in 2025

Baseline 2011 Aircraft Functionality

Page 9: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

9

Flight Counts and Substitutions

2025 Conventional and PSC Substituted into BWI NGOps4

Scenario – 6 of 948 Arrivals/Departures

10 Twin Aisle 12

3 2025 Substitutions 3

Operation Model Input

481 Total Arrivals 503 Total Departures

Aircraft Substitutions - BWI

2025 NGOps4 Summary: Baltimore-

Washington Intl (BWI)

Original

JPDO/IPSA

NGOps 4 Scenario

2025 Reference

Scenario

2025 Conventional

Scenario

2025 Preferred

System Concept

Scenario

* 1998 Entry into Service (EIS) Conventional Configuration Reference Vehicle (CCRV)

** 2025 Entry into Service (EIS) Conventional Configuration Vehicle (CCV)

*** 2025 Preferred System Concept Vehicle

FU

N+XTw

in A

isle

Wid

ebod

y

Airc

raft

Standard

Standard

Non

-Tw

in A

isle

Wid

ebod

y A

ircaf

t

CU

2025 PSC***

Standard Standard Standard

Standard Standard Standard

Scenario

Airc

raft

Cat

egor

y

1998 REF* 2025 CCV**

1998 REF* 1998 REF* 1998 REF*

1998 REF* 1998 REF* 1998 REF*

Determine How Advanced Concepts Affect

Environmental Parameters at Selected Airports

Noise (DNL metric)

Landing/Takeoff Nitrogen Oxides (NOx) Emissions

Particulate Emissions (PM 2.5)

CO2 Emissions (Fuel)

Page 10: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

10

2025 PSC

1998 Reference

10 nm range rings

Single Event Noise Level (SEL)

Noise Exposure Color Legend

2025 CCV

10 nm range rings

10 nm range rings

Color Min

Level Max Level

RED 75 infinity

PINK 70 75

ORANGE 65 70

YELLOW 60 65

GREEN 55 60

CYAN 50 55

BLUE 45 50

PURPLE -infinity 45

SEL for Arrival & Departure (BWI)

Page 11: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

11

2025 Future Scenario Conclusions

• NG Benefits will be Larger if More PSC Aircraft are Inserted into

the Scenario

– MEM with Larger Aircraft Substitutions Confirms

• PSC Would Seem to have Little Effect on 2025 Operational Traffic

– LTO Speeds and Profiles are Consistent with Envisioned 2025

OPD Procedures

• Analysis can be Scaled to Assess Larger System-Wide Benefits to

Evaluate the Impacts of Greater PSC Aircraft Fleet Penetration

into the Operational Scenarios

– Existing Sized/Class PSC, or

– Other Sized/Classed PSC Variants

Page 12: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

12

Aircraft Sizing, Performance

& Design

Page 13: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

13

ERA Missions

3

1

11

6

12

14

15

8

10

13

16

4

To

Reserve

Mission

Block Time & Fuel

Flight Time & Fuel

2

Still Air Range, 8000nm Pax or 6500nm Cargo

5

Mission Range: 8,000nm (Pax) or 6,500nm (Cargo)

Payload: 224 Passengers 50 Klb or 100,000lb (Cargo)

Crew: 2 Flight Deck, 7 Flight Attendant (Not For Cargo)

Cruise Speed: M0.85

Zero Wind

10Kft

1.5Kft

9 7

Mission Range: 200 nm

Payload: 224 Passengers, 50 Klb or 100,000lb Cargo

Crew: 2 Flight Deck, 7 Flight Attendant

Cruise Speed: LRC

Zero Wind

3

1

6

7

4

2

5

Still Air Range, 200 nm

Primary

Reserve

Page 14: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

14

1998 Baseline 3-View

211 ft

181 ft 3 in

RR Trent 800

Aluminum Primary

Structure

Page 15: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

15

2025 Advanced Conventional 3-View

223 ft 6 in

181 ft 3 in

Adv Turbofan

Composite Primary

Structure

Laminar Flow Systems

Page 16: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

16

PAX Payload Range: 1998 vs. 2025

60

50

40

30

20

10

0

Range, 1,000’s NM

Pa

ylo

ad

, K

lb

0 4 6 8 14 16 2

Includes ERA Reserve Mission Fuel

With Center Wing

Tank

No Center Wing

Tank (Baseline)

With Center Wing

Tank Option

10 12

224 Passengers,

8,000nm

Limit Load 2.5g

Page 17: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

17

2025 Preferred System Concept 3-View

171 ft

181 ft 3 in

Composites Primary

Structure RR UHB Engine

Laminar Flow Systems

Page 18: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

18

2025 PSC PAX Payload-Range

No Center

Wing Tank

Required

Range, 1,000’s NM

Paylo

ad

, K

lb

Includes Reserve Mission Fuel

Limit Load 2.5g

With Center Wing

Tank

224 Passengers,

8,000nm

2 4 6 8 10 12 14 0

60

50

40

30

20

10

0

Page 19: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

19

Configuration Comparison

Specifications 2025 PSC 2025

Conventional

1998

Baseline

Mis

sion

Range / Speed 8,000 nm / M0.85 8,000 nm / M0.85 8,000 nm / M0.85

Passengers / Flight

Attendants / Crew 224 / 7 / 2 224 / 7 / 2 224 / 7 / 2

Payload (Pax + Baggage)

50,000 lb 50,000 lb 50,000 lb

Weig

hts

MTOW (with HLFC) 365,900 lb 364,500 lb 550,400 lb

Fuel Wt 124,500 lb 123,900 lb 250,500 lb

Engin

e

Engine Type RR UFE RR Adv Turbofan RR Trent

Thrust per Engine 63,600 lb 68,100 lb 76,400 lb

Bypass Ratio 5X Baseline 2X Baseline Ref

Perf

orm

ance Cruise SFC -22% Baseline -17% Baseline Ref

Cruise L/D +16% Baseline +21% Baseline Ref

Max Cruise Altitude 47,000 ft 45,000 ft 39,000 ft

Fuel Burn Goal of 50% is Achievable

Fuel Burn Goal Configuration Neutral

Application of Critical Technologies is Key

Page 20: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

20

• Fuel Burn – Exceed Requirement

• > - 30 dB Below Stage 4 (3deg)

• > - 35 dB (6 deg)

• Exceed Requirement by >10% to

CAEP/6 (UFE)

1998 Baseline

• Fuel Burn – Exceed Requirement

• > - 25 dB Below Stage 4 (3 deg)

> - 30 dB (6 deg)

• Miss Requirement by < 10% to

CAEP/6 (ATF)

Skunk Works® Technology Innovation

2025 PSC (UltraFan)

2025 Conventional (ATF)

Page 21: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

21

Propulsion

Page 22: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

22

1998 Baseline Engine - Trent 800

• Certification was achieved in January 1995

• The first Boeing 777 with

Trent 800 engines flew in

May 1995, and entered service

with Cathay Pacific in April 1996.

• The Trent 800 family thrust ratings

spanning 75,000 to 93,400 lbf

(330 to 415 kN).

• Technology level supports

ERA 1998 EIS Aircraft baseline engine

The Trent 800 is a three-shaft high

bypass ratio engine.

6:1 BPR

Takeoff Fn = 76,400 Lbf

Fan diameter: 102 inches* Excellent 1998 Technology

Representative Engine

© Rolls-Royce North American Technologies

Page 23: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

23

2025 Advanced Turbofan Engine (ATF)

NextGen VHBR, High OPR, Direct Drive, Turbofan Engine

© Rolls-Royce North American Technologies

50% in OPR

7” in Fan Diameter

15% T41

2x BPR

Takeoff Fn = 68,100 Lbf

-68% Below CAEP/6

-16 EPNdB

17% SFC Reduction

10

9” F

an

Dia

mete

r

Cruise Thrust

SF

C 17%

10,000 lb 5,000 lb

Baseline

Adv. Turbofan

Page 24: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

24

Cruise Thrust

SF

C 17%

10,000 lb 5,000 lb

Baseline

Adv. Turbofan 22%

UFE

2025 PSC UltraFan Engine

3 Shaft

Turbofan

174” Fan

Diameter

NextGen UHB, High OPR, Geared, Turbofan Engine

© Rolls-Royce North American Technologies

50% in OPR

72” in Fan Diameter

15% T41

5x BPR

Takeoff Fn = 63,600 Lbf

-89% Below CAEP/6

-25 EPNdB

22% SFC Reduction

Page 25: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

25

UltraFan Engine Comparison

© Rolls-Royce North American Technologies

5x BPR

174”

2x BPR

109”

Further UltraFan Engine Nacelle Optimization Needed

2025 Adv. Turbofan

2025 UltraFan

Page 26: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

26

Propulsion Conclusion

• Propulsion is a “Key” ERA Vehicle Technology

• Driving to Extreme BPR is Best Path to Show

“Simultaneous” Compliance with NASA ERA Goals

– Low FPR & UHB Architectures

• Advanced Core Technology – High OPR

• LFC to Reduce Installed Nacelle Drag

• Further Optimization to Find Best Compromise

between BPR, Nacelle Drag and Fan Weight may

Result in a Lower BPR

Page 27: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

27

Acoustics

Page 28: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

28

1998 Baseline Certification Trajectories

• Approach trajectory maintains a 3 degree glide slope at a 28% power setting

• Cutback occurs at 20,000 ft and power setting is reduced to 53%

• Sideline observer is 16,228 ft from brake release, per FAR 36 (984 ft altitude)

0

0.2

0.4

0.6

0.8

1

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

Po

we

r S

ett

ing

Alt

itu

de

(ft

)

X-Position (ft)

Cutback - ALT

Sideline - ALT

Approach - ALT

Cutback - PS

Sideline - PS

Approach - PS

(300 m) 3o glide slope

“approach” Sideline

Cutback

Page 29: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

29

1998 Baseline Calibrated Results

CUM Margin to Stage 4 - 7.2dB

• Calibrated results match expected values well

• Increases at cutback and approach observers relative to similar

aircraft due to low-speed performance

Effective Perceived Noise Level (dB re 20 µPa)

Cutback Sideline Approach

Overall System 91.9 95.1 100.2

Stage 3 Limit 98.5 101.3 104.6

Margin to Stage 3 6.6 6.2 4.4

Page 30: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

30

Airframe Noise Reduction Technologies

• Continuous moldline flaps

• Landing Gear Fairings

• Quiet Slat gap filler

• Shape memory alloy serration on chevrons (Rolls-Royce)

• Total Reduction ≈ 22 dB

Perforated fairings for gear

(AIAA Paper 2008-2961) Continuous moldline link

(AIAA Paper 2009-3144) Slat gap filler

Page 31: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

31

2025 Conventional Trajectories

• Cargo configuration ~7% heavier TOGW, same engine

• Approach Power Setting: 30%- 40%

• Cutback Power Setting: 40% - 55%

3o glide slope

“approach” Sideline

Cutback

Cargo

PAX

6o glide slope

Page 32: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

32

2025 Conventional Noise Levels

CUM Margin to Stage 4 -27.0dB - 34.9dB

Passenger Effective Perceived Noise Level (dB re 20 µPa)

Cutback Sideline Approach

(3 deg.)

Approach

(6 deg.)

Overall System 79.3 88.6 94.1 86.2

Stage 3 Limit 96.1 99.7 103.2 103.2

Margin to Stage 3 16.8 11.1 9.1 17.0

Cargo Effective Perceived Noise Level (dB re 20 µPa)

Cutback Sideline Approach

(3 deg.)

Approach

(6 deg.)

Overall System 80.8 89.1 94.5 86.8

Stage 3 Limit 96.5 100.0 103.5 103.5

Margin to Stage 3 15.7 10.9 9.0 16.7

CUM Margin to Stage 4 -25.6dB - 33.3dB

Page 33: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

33

2025 Conventional Noise Reduction

1998 EIS Stage 4

Limit

2025 EIS Stage 4

Limit

NASA Goal

Relative to

PSC TOGW

Page 34: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

34

2025 PSC Trajectories

• Two Approach Trajectories were Considered:

– Three Degree Glide Slope Power Setting: 25%-35%

– Six Degree Glide Slope Power Setting: 15%-25%

• Cutback Power Setting: 40% - 50%

-5000

-4000

-3000

-2000

-1000

0

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

Alt

itu

de

(ft)

X-Position (ft)

CUTBACK - PSC PASSENGER

SIDELINE - PSC PASSENGER

APPROACH - PSC PASSENGER

CUTBACK - PSC CARGO

SIDELINE - PSC CARGO

APPROACH - PSC CARGO

3o glide slope Sideline

Cutback Cargo

PAX

6o glide slope

Page 35: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

35

2025 PSC Noise Levels

CUM Margin to Stage 4 -32.6dB - 39.2dB

Passenger Effective Perceived Noise Level (EPNdB re 20 µPa)

Cutback Sideline Approach

(3 deg.)

Approach

(6 deg.)

Overall System 78.4 85.4 92.7 86.1

Stage 3 Limit 96.1 99.8 103.2 103.2

Margin to Stage 3 17.7 14.4 10.5 17.1

Cargo Effective Perceived Noise Level (EPNdB re 20 µPa)

Cutback Sideline Approach

(3 deg.)

Approach

(6 deg.)

Overall System 80.2 85.3 93.1 86.4

Stage 3 Limit 96.5 100.0 103.4 103.4

Margin to Stage 3 16.3 14.7 10.3 17.0

CUM Margin to Stage 4 -31.3dB - 38.0dB

Page 36: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

36

2025 PSC Noise Reduction

NASA Goal

Relative to

PSC TOGW

PSC

Stage 4 Limit

1998 EIS

Stage 4 Limit

Page 37: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

37

Acoustics Conclusion

• Noise Goal of -42dB below Stage 4 is “tough”

Challenge

• PSC with UHB UltraFan Engine and 6 degree Glide

Slope get within 3dB of Goal

• UHB Engine Contributes to Half of Goal

• Reduced Weight, Higher Approach Path &

Suppression Technologies Contribute “other” Half

Page 38: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

38

STV Development

Page 39: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

39

PSC vs. STV Comparison

Parameter PSC STV

MTOW (lbs) 365,910 162,500

Empty

Weight (lbs) 189,540 86,070

Fuel Weight

(lbs) 124,500 27,650

Fuselage

Length (ft) 181.3 125.0

Span (ft) 168.5 99.2

Thrust (lbs) 127,200 45,600

50% Scale NASA Objective

Page 40: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

40

STV Concept of Operations

• Two Person Manned Flight Station with Partitioned Fully

Upgradable Open Architecture Mission System

– Supports Spiral Avionics and Future Autonomous Capability

• Assembled & 1st Flight at LM Aero Facility

• 20-year and 10,000 hr Projected Useful Life

– New Components from Existing Supply Chains

• Spirals

– UFE Engine

– Autonomous Ops

– Subsystems

• Post Flight Test

– Available for Special Use

STV is Venue to Elevate Vehicle & Technologies to TRL 6

Page 41: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

41

NASA ERA Conclusion

Phase 1 Executed Successfully

NASA ERA Goals Reachable

41

Page 42: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

42 2011 Copyright Lockheed Martin

NASA/LM N+2 Supersonic

Validations Program

N+2 Is a Supersonic Systems Level Validations Opportunity

Towards 2025 Performance and Environmental Goals

• LM Interest is for Collaborative Research and Development of Innovative

Concepts, Technologies, and Approaches Towards a System Level

Solution

• 18 Month Integrated Testing and Validations Program

– Test focused program rolled up to systems validations

– Integrated airframe and propulsion validations

• Strategic Partnerships

– GE –Nozzle/Low noise validations

– RRLW –Nozzle/Low noise validations

– Stanford University – Low boom adjoint methods

Page 43: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

43 2011 Copyright Lockheed Martin

System Level Validations to meet N+2

goals

N+2

Supersonic Transport

Goals (2018-2020)

Environmental Goals

Sonic Boom 65-70 PLdB

Airport Noise

(cumulative below stage 3)

10-20 EPNdB

(targeting 20+ below S3)

Cruise Emissions (g/kg fuel) <10 EINOx

Performance Goals

Cruise Speed Mach 1.6 – 1.8

Range (nm) 4000

Payload

(passengers)

35-70

(up to 100 for LM N+2 Effort)

Fuel Efficiency

(passenger-miles per lb of fuel)

3.0

• Initiate a validation of the tools and technologies for integrated

supersonic vehicle design that is traceable to a full scale N+2 vehicle

class.

• Low boom wind tunnel testing in Ames 9’x7’ (2 entries)

• Nozzle testing in NATR facility at Glenn Research Center

• MDAO system level assessments

Integration of Multiple

Disciplines into a Single

Platform to meet N+2 goals

Page 44: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

44 2012 Copyright Lockheed Martin

Objective and Scope

PHASE 1 – Base Program (complete)

• Sonic Boom Testing

– LM1 Hardware Validation (risk reduction)

– LM2 Spiked Nacelle Sonic Boom Validation

– LM3 Low Boom Validation Model

• Inlet Testing (unfunded)

• Propulsion Variable Cycle Development

– Rolls Royce Nozzle Acoustic Test

– GE Nozzle Acoustic Test

• Optimization with Stanford University

• Vehicle System Integration Analysis

PHASE 2 (Option Year 2)

• NASA Parametric Retest

• LM4 Low Boom Refinement and Tech Integration

• GE Nozzle Modeling and Refinement

• Optimization with Stanford University

• Vehicle System Integration Analysis and Tech Integration

Validation of Capability for Successful Supersonic Transportation System

Focus on Test Validation of System Components

−Low Sonic Boom

−Propulsion Airport Noise

Page 45: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

45 2012 Copyright Lockheed Martin

Low Boom Design Development

45

30

15

QR3 (Feb 2011)

15 30

45

QR4 (May 2011)

0

49

Stretched-Prisms / CFD++

Better shock persistence

SSGN/FUN3D Adaptation

• CAD automatically

linked to CFD-boom

solution

• Direct area redesign,

DOE and response

surface parametric

investigations

• Stretched-prism grid 5x

faster with better

resolution but requires

alignment

• Full Carpet Low Boom

Average 79 PLdB with

L/Dcruise impacted < 10%

Full Carpet Low Boom Achieved with High Performance

Page 46: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

46 2012 Copyright Lockheed Martin

LM3 Low Boom Design Test • Aft shock emphasis and dual model support

• SEEB-ALR Calibration

• Low Variability Orifices

• Spatial Averaging

• Before vs. After Ambient Reference Measurements

• Extreme Humidity Control and Higher Pressure

• Oil Flow Visualization and Model Trip Discs

N+2 WT Model Mach=1.6

Re=2.55/ft CL=0.142

Turbulent

Laminar

Laminar and Turbulent CFD

Prediction

Flow fully attached like turbulent—no reason

to expect difference with CFD predictions

Mach = 1.6, Re = 4.5M, CL =0.142

Wind Tunnel

Blade & Sting Model Supports

Page 47: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

47 2012 Copyright Lockheed Martin

Phase II Optimization

Baseline Mesh

Mesh Deformation

pyCAPRI

Geometry Engine

CHIMPS++

Signature extraction Ae Calculation

ADjoint Solver

Gradient Module

SU2 CFD Input File

flow solution

adjoint solution

design parameters

cost/constraint functions

• Stanford University low boom design optimization using high-

fidelity tools in a multi-disciplinary design environment

– Adjoint-based sensitivities for Boom, Lift, Drag, Cm

– CAD geometry linkage

– Response surface optimization including slopes

Page 48: © 2012 Lockheed Martin - University of Torontogoldfinger.utias.utoronto.ca/IWACC3/IWACC3/Program_files/... · 2012. 5. 14. · RED 75 infinity PINK 70 75 ORANGE 65 70 YELLOW 60 65

48 2012 Copyright Lockheed Martin

NASA’s N+2 Environmental Targets and

Performance Goals

N+2 Small Supersonic

Airliner (2020) NASA's Initial Goals LM's Target LM's Phase I Status

Environmental Goals

Sonic Boom (PLdB) 65 - 70 ≤ 78 Threshold, ≤ 73 79

Airport Noise

(cum below Stage 3) 10 - 20 EPNdB 25 - 30 EPNdB 22 EPNdB (predicted)

Cruise Emissions

(g/kg fuel) < 10 EINOx < 10 EINOx < 10 EINOx

Performance Goals

Cruise Speed Mach 1.6 - 1.8 Mach 1.6 - 1.8 Mach 1.6

Range (nm) 4000 4000 - 5500 5000+

Payload

(passengers) 35 - 70 70 - 100 82

Fuel Efficiency

(passenger-nm per lb fuel) 3.0 > 3.0 3.1

Phase II continues refinement of low boom and airport noise with

technology integration expected to further improve efficiency


Recommended