+ All Categories
Home > Documents > Henderson.Hasselbalch& H.H.:&aquan

Henderson.Hasselbalch& H.H.:&aquan

Date post: 04-Apr-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
6
2/24/15 1 HendersonHasselbalch The difference between the pH of the solu<on and the pKa of the drug is the common logarithm of the ra<o of ionized to unionized forms of the drug. For acid drugs Log(Ionized/Unionized) = pH pKa, or [I]/[U] = 10 (pHpKa) Deriva’on: Ka = [H+][A]/[HA] log Ka = log([H+][A]/[HA]) log Ka = log[H+] log ([A]/[HA]) pKa = pH log ([A]/[HA]) log ([A]/[HA]) = pH pKa H.H.: a quan<ta<ve picture Most drugs are weak acids or weak bases It is not all or nothing, there are always several species at different concentra<ons pKa pH BH B pKa pH HA A = + = ] [ ] [ log ] [ ] [ log Frac<on Ionized as a func<on of pKa and pH + 0 0 Weak acid is mostly neutral in stomach A drug is a weak acid, has a pKa of 5.5. Taken orally, it is in a stomach solu<on of pH 3.5. pH – pKa = 3.5 – 5.5 = 2 For an acid, we use: ionized/unionized = 10 2 /1= 1/100 For every 1 molecule of the drug that is ionized, 100 are unionized. This drug in the stomach is highly fat soluble. Basic Drugs For basic drugs, everything is the same except that the ra#o reverses: Log(Unionized/Ionized) = pH – pKa Examples: Chlorpheniramine, chlorpromazine, ephedrine and phenylephrine, amphetamine, methamphetamine, and methcathinone, amitriptyline, imipramine, lofepramine and clomipramine, nortriptyline, desipramine, and amoxapine. pKa pH BH B pKa pH HA A = + = ] [ ] [ log ] [ ] [ log NH2+ [Cl] Amphoteric drugs Ordinary ampholytes, e.g. maminophenol pKa acidic > pKa basic . pKa A =9.8, pKa B =4.4 Increasing pH: 1. NH3+ 2. Neutral 3. O
Transcript
Page 1: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

1  

Henderson-­‐Hasselbalch  •  The  difference  between  the  pH  of  the  solu<on  and  the  pKa  of  the  drug  is  the  common  logarithm  of  the  ra<o  of  ionized  to  unionized  forms  of  the  drug.      

•  For  acid  drugs        Log(Ionized/Unionized)  =  pH  -­‐  pKa,  or        [I]/[U]  =  10(pH-­‐pKa)     Deriva'on:  

 Ka                =  [H+][A-­‐]/[HA]  -­‐log  Ka  =  -­‐log([H+][A-­‐]/[HA])  -­‐log  Ka  =  -­‐log[H+]  -­‐  log  ([A-­‐]/[HA])    pKa          =  pH  -­‐  log  ([A-­‐]/[HA])    log  ([A-­‐]/[HA])  =  pH  -­‐pKa  

H.H.:  a  quan<ta<ve  picture  

•  Most  drugs  are  weak  acids  or  weak  bases  

•  It  is  not  all  or  nothing,  there  are  always  several  species  at  different  concentra<ons   pKapH

BHB

pKapHHAA

−=⎟⎟⎠

⎞⎜⎜⎝

+

−=⎟⎟⎠

⎞⎜⎜⎝

⎛ −

][][log

][][log

Frac<on  Ionized  as  a  func<on  of  pKa  and  pH  

+   -­‐  

0   0  

Weak  acid  is  mostly  neutral  in  stomach  

A  drug  is  a  weak  acid,  has  a  pKa  of  5.5.    Taken  orally,  it  is  in  a  stomach  solu<on  of  pH  3.5.    

pH  –  pKa  =  3.5  –  5.5  =  -­‐2  For  an  acid,  we  use:    ionized/unionized  =  10-­‐2/1=  1/100  

For  every  1  molecule  of  the  drug  that  is  ionized,  100  are  unionized.    This  drug  in  the  stomach  is  highly  fat  soluble.  

Basic  Drugs  For  basic  drugs,  everything  is  the  

same  except  that  the  ra#o  reverses:  

Log(Unionized/Ionized)  =  pH  –  pKa  

Examples:  Chlorpheniramine,  chlorpromazine,  ephedrine  and  phenylephrine,  amphetamine,  methamphetamine,  and  methcathinone,  amitriptyline,  imipramine,  lofepramine  and  clomipramine,  nortriptyline,  desipramine,  and  amoxapine.    

pKapHBHB

pKapHHAA

−=⎟⎟⎠

⎞⎜⎜⎝

+

−=⎟⎟⎠

⎞⎜⎜⎝

⎛ −

][][log

][][log

NH2+      [Cl-­‐]  

Amphoteric  drugs  

•  Ordinary  ampholytes,  e.g.  m-­‐aminophenol  •  pKaacidic  >  pKabasic.    pKaA=9.8,  pKaB=4.4  •  Increasing  pH:  1.  NH3+    2.  Neutral    3.  O-­‐  

Page 2: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

2  

Zwicerionic  ampholytes  

•  E.g.    Amino  acids,  pep<des  

•  pKaacidic  <  pKabasic  

Distribu<on  of  ionic  species  for  the  zwicerionic  ampholyte  labetalol.  from  A.  Pagliara,  P.-­‐A.  Carrupt,  G.  Caron,  P.  Gaillard  and  B.  Testa,  Chem.  Rev.,  97,  3385  (1997).  

Isoelectric  Point  •  pI  =  pH  =  ½  (  pKaacidic  +  pKa  basic  )  •  It  can  be  both  uncharged  and  zwicerionic  or  mul<ply  charged  

•  For  absorp<on  every  charge  counts  (not  the  total  charge)  

•  pI  is  used  for  isoelectric  focusing  (Agarose  gel  electrophoresis)  

Zwicerion  drugs:  Examples   Calcula<on  of  the  pH  of  drug  solu<ons  

•  The  drug  solu<on  itself  can  develop  its  own  pH  

•  The  pH  can  be  derived  from  its  pKa  and  concentra<on,  C  

 A  weakly  acidic  drug:  HA  +  H2O=[A-­‐]  +  [H30+]  (1-­‐a)c                      ac          ac    a  –  degree  of  dissocia<on  

a<<1    ac=[H+]      at  c  >≈ 10-­‐7M  

 Note:  this  approxima#on  

breaks  at  infinitesimal  concentra#ons.  

 

cpKpH a log21

21 −=

Ka =a2c2

(1− a)c≈ a2c

a2 = Ka / ca2c2 = Kac

[H+]= (Kac)12

− log([H+]) = − log((Kac)12 )

− log([H+]) = − log(Ka )− log(c)12

Deriva'on:  

For  the  solu'on  of  a  weakly  acidic  drug:  

Weakly  basic  drugs  •  Similarly  it  can  be  shown  that  

•  Example:  codeine  monohydrate  (317.4),  pKa=8.2  

C=0.026  M                        pH=7+4.1-­‐0.79    

cpKpHcpKpKpH

a

aw

log7log

21

21

21

21

21

++=

++=

Basic  Amine  is  charged  at  neutral  pH  

Ion  Trapping  of  an  acidic  drug  

The  same  highly  fat  soluble  drug  readily  crosses  the  stomach  membranes  and  enters  blood  plasma,  which  has  a  pH  of  7.5  

pH  –  pKa  =  7.5  –  5.5  =  2  [I]/[U]  =  102/1=  100/1  For  every  100  molecules  of  the  drug  that  are  ionized,  only  1  is  unionized.    The  drug  in  the  blood  is  not  very  fat  soluble.  

This  phenomenon  is  called  ion  trapping.  

Page 3: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

3  

Absorp<on  is  quan<ta<ve  too  

•  Permea<on  rate,  RP=  P  Area  ΔC  •  Amount  absorbed  =  RP•  Time  

–  P  is  membrane  par<<on  coefficient  (related  to  LogP)  

–  Area  is  effec<ve  surface  area  of  membrane  

–  ΔC    is  concentra<on  difference  for  the  neutral  form  of  the  drug  

•  Astomach/Aileum  differ  1000  <mes.  That  means  that  even  if  the  frac<on  of  neutral  species  in  stomach  is  100  <mes  greater,  s<ll  10  <mes  more  compound  will  be  absorbed  in  the  gut.  The  effect  of  <me  comes  on  top.  

Cout  

Cin  

A=120m2  

A=0.1m2  

Drug  Salts:  Bases  

Note:  Hydrochloride  in    Drug.HCl    may  be  misleading,  it  should  be  just  chloride  (Drug+.[Cl-­‐]),  same  with  H2SO4  

   

Acid  [AH]  

Basic  Drug  [B]   +   -­‐  

Drug,  BH+  Anion  

Anionic  Salt  of  the  Drug  

plus  

Acid   Anion   Examples  

Hydrochloride  (HCl)   Cl-­‐   Pyridoxine  HCl,  Pramipexole  HCl  Chlorpromazine  HCl,  Demeclocycline  ..  Demethylchlortetracycline  Nalbuphine,      Chlorhexidine  Propafenone,  Mitoxantrone  Lincomycin,        Ro<go<ne  Vilazodone,        Naphazoline    

Sulfuric  Acid   SO42-­‐   Dextroamphetamine,  Hydroxychloroquine  

Ace<c  Acid  (acetate)   CH3COO-­‐   Leuprolide,  Goserelin,  Desmopressin,…  

cocaine  hydrochloride    

+    

Drug  Salts:    Acids  Base  B,  e.g.  NaOH  

Acidic  Drug  AH  

e.g.  R-­‐COOH   -­‐   +  Drug  

ion,  [A-­‐]   Ca<on  

Ca<onic  Salt  of  the  Drug  

plus  

OH-­‐  Base   Ca'on   Examples  

Sodium   Na+   Ecabet,  Diclofenac,  Indomethacin,  Benzoate,  Salicylate  

Calcium   Ca++   Atorvasta<n,  Calcium  Gluceptate  

Potassium   K+   Penicillin  V  Potassium,  Losartan  

Ca++  needs  two  nega<ve  charges  

Calcium  Gluceptate  

Warning:  do  not  forget  to  use  correct  molecular  weight  of  the  salt  

Salts:  summary  •  Stoichiometry:  make  sure  

that  the  total  formal  charge  is  zero  (e.g.    [D-­‐]2    Me2+    )  

•  Ambiguity  of  chemical  representa<on:  [DH+][Cl-­‐]  vs  [D][HCL],  MolWeight.  

•  Solubility  of  crystals:  usually  becer  than  non-­‐salt,  but  differs  between  different  salts.  

•  Iden#cal  in  Solu#on:  Once  the  salt  is  dissolved  it  becomes  iden<cal  to  the  non-­‐salt  form  of  the  drug  in  solu<on  

•  Resonance:    Example,  sulfate:  perfect  tetrahedron  with  total  nega<ve  charge  of  -­‐2  distributed  between  4  nega<ve  oxygens  and  one  posi<ves  sulfur.      

Salts  with  becer  solubility:  example  •  Example:    

–  Phenobarbital,  a  white  powder,  is  a  weak  acid  with  limited  solubility  in  water,    

–  the  sodium  salt  of  Phenobarbital,  also  a  white  powder,  the  salt  of  the  weak  acid,  now  water  soluble  

•     pKa  =  7.41  

     

                           

•  pH  (satur.  sol)        5                                                      ~  10.  •  Solubility:                1g/L                                                1g/10mL  

Epoprostenol.Na+  Prostacyclin  I.V.  vasodilator  in  ischemia  &  PH  

Na+  

More  examples:  Naproxen              Naproxen  Sodium    Fenoprofen  Fenoprofen  Calcium      Penicillin  G  Penicillin  G  Potassium  

More  anions  for  basic  drugs  •  Base      Salt/Conjugate  Acid  •  Diphenhydramine  Diphenhydramine  HCL    •  Glucosamine      Glucosamine  sulfate    •  Epinephrine        Epinephrine  sulfate  •  Ephedrine                      Ephedrine  HCl    •  Atropine                      Atropine  sulfate    •  Tetracycline    Tetracycline  HCl  

•  Most  of  these  drugs,  as  you  can  tell  by  their  name,  are  "amines",  which  means  they  are  weak  bases    

•  Acetate  CH3COO−  (ace<c  acid)  •  Carbonate  CO3  

2−  ,carbonic  acid)  •  Chloride  Cl−  (hydrochloric  acid)  •  Citrate  HOC(COO−)(CH2COO−)2  (citric  acid)  •  Cyanide  C≡N−  (hydrocyanic  acid)  (toxic)  •  Nitrate  NO3

−  (nitric  acid)  •  Nitrite  NO2

−  (nitrous  acid)  •  Phosphate  PO4

3−  (phosphoric  acid)  •  Sulfate  SO4

2−  (sulfuric  acid)  Sodium-­‐nitroprusside,  -­‐  vasodilator  

Page 4: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

4  

Solubility  and  Permeability  

Two  opposite  requirements:  •  Solubility  is  good  for  charged  compounds  with  mul<ple  polar  groups  (e.g.  pep<des)  

•  Permeability  is  good  for  hydrophobic  and  apolar  compounds  

Two  solu<ons:  •  Be  exactly  in  the  middle  with  the  same  chemical  structure  (minority)  

•  Be  able  to  change  via  enzyma<c  ac<va<on  (prodrug)  or  adopt  alterna<ve  charged  forms  

Solubility,  LogP,  and  LogD  

•  Not  all  uncharged  compounds  are  insoluble  

•  Not  all  polar  or  charged  compounds  can  not  permeate  a  membrane  

•  It  is  a  quan#ta#ve  macer  •  Three  measurable  quan<<es  are  used  to  characterize  a  drug  substance:  LogSw,  LogP  and  LogD  

water  

membrane  

Drug  Solubility:  defini<on  •  Water  (aqueous)  solubility  (SW)  is  the  maximum  amount  of  a  substance  that  can  dissolve  in  water.  SW  depends  on  P,T.      

•  Sw  is  in  moles/L  (M).  Watch  for  mg/L  or  mg/dL  !  

•  LogSw  (or  LogS  )  =  Log(Sw)  

Sucrose  

Succinylcholine  >10M!  But  not  fat  soluble   Mitotane:    0.1  mg/L  

Solubility  and  Gibbs  energy  

•  Solubility  is  defined  by  a  difference  between  the  free  energy  in  the  crystal  form  (primarily  enthalpy)  and  the  dissolved  form  (solva<on,  different  entropy  terms)  

•  The  entropy-­‐of-­‐mixing  contribu<on  to  dissolu<on  (and  rigid  body  rota<on/transla<on)  does  not  depend  on  chemical  type  and  interac<ons.  The  main  difference:    –  the  number  of  freed  rotatable  bonds,  hydrophobic  surface,  (ΔS);  

–  intermolecular  interac<ons  in  the  crystal  vs  water,    ΔH  

water  

µ 0aq + RT lnSW = µ 0crystal

Polymorphism  •  Compounds  can  crystallize  as  different  polymorphs  (different  molecular  conforma<on  and  packing,  cell)  

•  Polymorphs  can  have  drama<cally  different  solubility,  mel<ng  point,  <me  of  dissolu<on,  habits  

A

AA

AA

AAA

A

AA

A

A

A

AA

AA

AAA

A

AA

A

A

A

A

A

A

A

AA

A A

AA A

A AA

AAA A

AA A AA

A

A

A

A

A

AA

A A

AA A

A AA

AAA A

AA A AA

G

AA

AAA

AAA

G

G

G

GGG

A

A

A

GG

AG

G

AA

AAA

AAA

G

G

G

GGG

A

A

A

GG

AG

C-A+

C- C-C-

C- C-C-C-

A+

A+

A+A+

A+

A+A+

A+C-

A+C- C-C-

C- C-C-C-

A+

A+

A+A+

A+

A+A+

A+

Salts  

Co-­‐crystals??  

Polymorphs  Same  API  Same  Ac've  Moiety    

Different  API  

Where  Do  Co-­‐Crystals  Fit?    

Is  a  New  Regulatory  Class  of  Solids  Needed?  

       

Adopted  from  the  presenta<on  of    FDA-­‐Div-­‐Director  Dr.  Andre  S.  Raw  

API:  Ac<ve  Pharmaceu<cal  Ingridients  

Crystal  habits  of  drugs  •  The  same  symmetry  group  may  lead  to  

different  size  and  shape  of  a  crystal  •  Crystal  habits  (and  size)  may  influence  

–  injec<on  (plates:  easy,  needles:  difficult),        –  tablexng  (easy  for  compression)  –  rate  of  dissolu<on  

•  Habits:    –  Acicular  (needle-­‐like)  –  Prisma<c,  pyramidal,  tabular,      equant,  

columnar  an  lamellar  types  •  Habit  determinants:  

–  Solvent  –  Temperature  –  Concentra<on  of  impuri<es  

Page 5: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

5  

Snow  flakes  &  drug  crystals  

•  Snow  flakes  are  a  very  well  known  example,  where  subtle  differences  in  crystal  growth  condi<ons  result  in  different  geometries.    

Par<cle  size  and  the  rate  of  dissolu<on  

•  Consider  the  surface  of  the  fixed  amount  of  compound  as  the  func<on  of  linear  micro-­‐crystal  size,  d,  and  the  total  volume  V  

•  For  non-­‐cubic  shapes,  calculate  the  Area  as  a  func<on  of  total  volume  and  shape.  

dVd

dVA 66 23 ==

d  

For  simple  cubic  shape  the  total  area  of  microcrystal  surface  is  inversely  propor<onal  to  the  crystal  size  

Log  D  and  Membrane  permea<on  

•  To  get  inside  the  cell  a  drug  need  to  get  inside  the  membrane  first  

•  Par##oning  between  water  and  a  membrane  is  characterized  by  LogP    for  hard  drugs  and  LogD  for  ionizable  drugs  

•  Nega<ve  LogD:  too  polar  •  Large  posi<ve  LogD:  –  too  hydrophobic  

The  quan<ta<ve  octanol/water  model.  Molecule  Does  not  Change:      LogP  

wat

oct

CCP loglog =

OH

O

OH

Owater   octanol  

•  P  means  Par<<on  •  Octanol  ~  membrane  •  Free  energy  difference  

HOH  

RTCCP

CRTCRT

ow

w

o

ooww

3.2loglog

lnln00

00

µµ

µµ

−==

+=+

oo

ww

CC,

,0

0

µ

µ drug  in  water  drug  in  octanol  

Benzoic  Acid:    LogP  =  1.87  

The  octanol/water  model:  LogD  

wat

oct

AHAHP][][loglog =

OH

O

OH

Owater octanol

watwat

octoct

AAHAAHD][][][][loglog

+

+=

O

O

O

O

LogD  is  the  apparent  par<<on  coefficient  

LogD  depends  on  LogP  of  the  neutral  form  and  pH-­‐pKa  

wat

oct

AHAHP][][loglog =

OH

O

OH

O

logD = logP - log(1 + 10pH-pKa) for acids ≈ logP – (pH – pKa) (for pH> pKa+1, charged form dominates)

water octanol

watwat

octoct

AAHAAHD][][][][loglog

+

+=

O

O

O

O

logD = logP - log(1 + 10-(pH-pKa)) for bases ≈ logP + (pH – pKa) (for pH < pKa-1, charged form dominates)

LogD  is  apparent  LogP  

pKa  =  4.2;    LogD  (pH=7.2)  ≈    1.87-­‐  3  =  -­‐1.13  

Page 6: Henderson.Hasselbalch& H.H.:&aquan

2/24/15  

6  

Our  body  is  watching  the  lipophilicity  of  xenobio<cs  

Kidneys  take  care  of  the  polar  Liver  takes  care  of  the  hydrophobs  

•  Polar  and  charged    molecules  –  renal  clearance  (fast).  *Probenecid  (OAT  inh.)  increases  excre<on  of  uric  acid  but  blocks  renal  excre<on  of  and  other  drugs.  

•  BBB  blocks  the  polar  and  charged  compounds  

•  Hydrophobic  compounds  are  made  into  polar  ones  by  metabolism.    Cyp450s  modify  hydrophobic  compounds,    

Lipophilicity  –  a  determinant  of  pharmacokine<cs  

•  LogD,  pH=7.4  (from  Shalaeva,  ““New  Technologies  to  Increase  Drug  Candidate  Survivability”,  Philadelphia,  2002)  

•  <  0    Too  polar.  Intes<nal  and  CNS  permeability  problems.  Suscep<ble  to  renal  clearence  

•  0  to  1  A  good  balance  between  permeability  and  solubility.  At  low  values,  (more  polar),  CNS  permeability  may  suffer  

•  1  to  3  Op'mum  range  for  CNS  and  non-­‐CNS  orally  bioavailable  drugs.  Low  metabolic  liabili'es,  generally  good  CNS  penetra'on  

•  3  to  5    Solubility  tends  to  become  lower.  Metabolic  liabili<es.  

•  Above  5    Low  solubility  and  poor  oral  bioavailability.  Erra<c  absorp<on.  High  metabolic  liability,  although  potency  may  s<ll  be  high.  

0  

1  

2  

3  

4  

5  

LogD  

Cytochrome  P450    •  R-­‐H  +  O2  +  2e    =>    R-­‐OH  +  H2O        (uses  NADPH)  •  Adding  One  Oxygen:      monooxygenase  •  R-­‐OH  is  further  modified  by  solubilizing  sulfate  or  sugars  •  bergamoxn,  dihydroxybergamoxn,  and  paradicin-­‐A  in  

grape  fruit  juice  (and  other  juices)  have  been  found  to  inhibit  CYP3A4  ,  -­‐  overdose  

•  Saint-­‐John's  wort  induces  CYP3A4,  but  also  inhibits  CYP1A1,  CYP1B1,  and  CYP2D6,  -­‐  no  ac<on  

•  Tobacco  smoking  induces  CYP1A2,  ..  

4-­‐hydroxy-­‐tamoxifen  in  the  estrogen  receptor  pocket  

Cytochrome  P450  2B4  with  paroxe<ne  

Problema<c  permeability  

•  Natural  products  (big  and  polar)  – permeability  a  major  problem  

•  Pep<domime<cs  (long  and  polar)  – permeability  a  major  problem  

•  RNAi  •  CNS  targets  (<ght  barrier)  – Blood-­‐brain  permeability  a  major  problem  

Solubility/Permeability  gate  •  Permeability  – PSA  >  140-­‐200  Å2  is  problema<c  for  systemic  distr.  – PSA  >  75  Å2  is  problema<c  for  CNS  delivery  

•  Solubility  – Solubility  <  5-­‐20  µg/mL  is  problema<c  

•  Poor  permeability  is  worse  than  poor  solubility  -­‐  no  easy  formula#on  fix  exists  

•  Intra-­‐molecular  H-­‐bonds  improve  permeability  with  minimal  affect  on  solubility.    

Pro-­‐drugs  to  improve  solubility  

NH

Cl

OO

O-Na+O

O

ClOH

O2N

NH

Cl

OH

O

ClOH

O2N

O-Na+O

O

OH

Esterase

or Water

Chloramphenicol Succinate

Chloramphenicol

Sodium succinate

Drug OPromoiety

OOH Promoiety

Promoiety ODrug

O

Drug OH

O

Promoiety OH

OOH Drug

or

+

+ Enapril  +H2O  

Nutrasweet  


Recommended