+ All Categories
Home > Documents > > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r...

> Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r...

Date post: 25-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
49 B18 4 Annuals of Disas. Prev. Res. Inst. Kyoto Univ., No.49B, 2006 (GPV) * * * 51 GPV GPV GPV : GPV RSM 1. (1996) 1 2 1 GPV(Grid Point Value) GPV GPV GPV (1997) (2005) (1997) GPV 京都大学防災研究所年報 第 49 号 B 平成 18 年 4 月 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B, 2006
Transcript
Page 1: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

49 B18 4

Annuals of Disas. Prev. Res. Inst. Kyoto Univ., No.49B, 2006

(GPV)

* *

*

51 GPV

GPV

GPV

: GPV RSM

1.

(1996)

1 2

1

GPV(Grid Point

Value)

GPV

GPV

GPV

(1997)

(2005) (1997)

GPV

京都大学防災研究所年報 第 49 号 B 平成 18 年 4 月

Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B, 2006

Page 2: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

Table 1 the summary of RSM

items contentsAnalysis time 00, 12 UTCForcat ranges 51 hours

Horizontal grid system Lambert projectionNumber of grid points 325 × 257

Grid spacing 20kmVertical levels 40 levels

( )

( ) ( ) ( )

( ) 5

GPV

GPV

GPV

GPV

2.

2.1 GPV

GPV

(2001) GPV

GSM(Global Spectrum Model)

RSM(Regional Spectrum Model) MSM(Meso Spec-

trum Model) 2

RSM GPV RSM

Table 1 2001 3 2005 5

4 RSM-GPV

Siroyama dambasin

Kurobe dammbasin

Biwako basinSameura dam

basin

Matsubara dambasin

the location ofbasins

Fig. 1 the mesh data and location of each basin

2.2

2001 4 0.025 0.03125

( 2.5km ) 2003

5 1 1

2003 6 30 1

1

2.3

(W07-52M)

(W01-07P) (G04-56M)

( ) (

) 100m

Page 3: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

Fig. 2 correlation of mesh data and statical value

Fig.1

GPV

GPV

Fig.2

2002

0.99

3. GPV

3.1RSM 00UTC 12UTC 12

51

1 1 (3 5 )

(6 8 ) (9 11 ) (12 2 )

GPV

GPV

2.5km GPV

20km

00UTC 12UTC 48

4 12 2 24

GPV 00UTC

12UTC 48 4 12

2 24 2001

6 2005 5 4

CC(Correlation Coefficient)

RMSE(Root Mean Square Error)

(BIAS) RMSE

(COV

) COV GPV

RMSE

COV

n k

GPVk

RAPk 1 2

1 90 4

n 720 CC RMSE BIAS

COV

μR =( n∑

k=1

RAPk

)/n · · · · · · · · · · · · · · · · (1)

μG =( n∑

k=1

GPVk

)/n · · · · · · · · · · · · · · · · (2)

CC =

n∑k=1

(GPVk − μG)(RAPk − μR)/

(√√√√ n∑k=1

(GPVk − μG) ×

√√√√ n∑k=1

(RAPk − μR))

· · · · · · · · · · · · (3)

RMSE =

√√√√ n∑k=1

(RAPk − GPVk)2

n· · · · · · · · (4)

BIAS =μG

μR· · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

COV =RMSE

μR· · · · · · · · · · · · · · · · · · · · · · · · · (6)

48 4

12

CC 12

12

0.2

12 24

48

Page 4: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

CC BIAS

RMSE COV

Fig. 3 The distribution of the evaluation index

(spring)

RMSE

BIAS

12

12

Fig.3 CC

0.7 RMSE 0.5

BIAS

1

BIAS

BIAS

1

BIAS 1

BIAS

BIAS 1 RMSE

0.8 COV

CC BIAS

RMSE COV

Fig. 4 the distribution of the evaluation index (sum-

mer)

Fig.4 CC 0.7

0.5 BIAS

1 1

CC 0.5 0.7

BIAS 1 RMSE 0.6

0.7 0.8

CC BIAS RMSE

RMSE CC 0.7

COV

2.0 2.5

RMSE

BIAS 1

1 RMSE 0.8 5

Fig.5 CC

Page 5: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

CC BIAS

RMSE COV

Fig. 5 the distribution of the evaluation index (au-

tumn)

RMSE BIAS

RMSE BIAS

RMSE BIAS

Fig.6 CC 0.6

BIAS

CC

RMSE

CC BIAS

RMSE COV

Fig. 6 the distribution of the evaluation index (win-

ter)

RMSE COV

COV

GPV

RSM

5

3.2( ) ( )

( ) ( ) (

) 5

3

Page 6: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

CC

time

3h-integration siroyama CC time-series

mamjja

sondjf

RMSE

00.20.40.60.8

11.21.41.61.8

2

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration siroyama RMSE time-series

mamjja

sondjf

scattering diagram

0123456789

10

0 1 2 3 4 5 6 7 8 9 10

GPV

RAP

siroyama djf 3h-18 scatter

15h-18h18h-21h

the result of theadoption of RCC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration siroyama RCC time-series

mamjja

sondjf

Fig. 7 siroyama dam basin (precipitation of 3 hours

average)

Fig.7 mam jja son djf

Fig.7 6 12

CC

0.4 0.5

RMSE 0.2

CC

GPV

18 21 15 18

4

3mm/h

15 18

15 18 4

18 21 CC

3

CC RMSE

RCC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration siroyama RCC time-series

mamjja

sondjf

RMSE

00.20.40.60.8

11.21.41.61.8

2

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration siroyama RMSE time-series

mamjja

sondjf

BIAS

0.5

1

1.5

2

2.5

3

0 3 6 91215182124273033363942454851

BIA

S

time

3h-integration siroyama BIAS time-series

mamjja

sondjf

Fig. 8 siroyama dam basin (precipitation of 3 hours

average)

CC RMSE

(RCC ) RCC

GPV

RCC

Fig.7

CC

RCC

RCC RMSE BIAS

2001 6 2005

5 4 3 3

5

Page 7: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

RCC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration kurobe RCC time-series

mamjja

sondjf

RMSE

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration kurobe RMSE time-series

mamjja

sondjf

BIAS

00.5

11.5

22.5

33.5

44.5

55.5

66.5

0 3 6 91215182124273033363942454851

BIA

S

time

3h-integration kurobe BIAS time-series

mamjja

sondjf

Fig. 9 kurobe dam basin (precipitation of 3 hours av-

erage)

RCC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration biwako RCC time-series

mamjja

sondjf

RMSE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration biwako RMSE time-series

mamjja

sondjf

BIAS

0.5

1

1.5

2

2.5

3

0 3 6 91215182124273033363942454851

BIA

S

time

3h-integration biwako BIAS time-series

mamjja

sondjf

Fig. 10 biwako dam basin (precipitation of 3 hours

average)

Fig.8

RMSE

RCC 0.5 0.6

RMSE RCC

Fig.9

RCC 0.6 0.7

BIAS RMSE

RCC

RCC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration sameura RCC time-series

mamjja

sondjf

RMSE

00.20.40.60.8

11.21.41.61.8

22.22.42.62.8

3

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration sameura RMSE time-series

mamjja

sondjf

BIAS

0

0.5

1

1.5

0 3 6 91215182124273033363942454851

BIA

S

time

3h-integration sameura BIAS time-series

mamjja

sondjf

Fig. 11 sameura dam basin (precipitation of 3 hours

average)

RCC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 91215182124273033363942454851

RC

C

time

3h-integration matsubara RCC time-series

mamjja

sondjf

RMSE

00.20.40.60.8

11.21.41.61.8

2

0 3 6 91215182124273033363942454851

RM

SE

time

3h-integration matsubara RMSE time-series

mamjja

sondjf

BIAS

0

0.5

1

1.5

2

2.5

0 3 6 91215182124273033363942454851

BIA

S

time

3h-integration matsubara BIAS time-series

mamjja

sondjf

Fig. 12 matsubara dam basin (precipitation of 3

hours average)

BIAS

RCC 42 0.6 0.4

Fig.10

3 RCC0.8

RMSE CC

BIAS 1

Page 8: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

Fig.11

BIAS RCC

BIAS

1 RCC

Fig.12

RMSE 1.0

RCC

3 RCC RMSE BIAS

BIAS

RMSE

RCC

RCC

RCC 0.6

GPV

4.

GPV

GPV 1

3 GPV

BIAS 1

BIAS 1

BIAS

BIAS

BIAS CC 1

BIAS

BIAS

12

BIAS

48

12 BIAS

BIAS 1.2 0.8

GPV

1

GPV

GPV

1 GPV

9

3 5 7 3

5 7

GPV

12

12

BIAS

( )

BIAS

Fig.13 Fig.15 Fig.17

Fig.13 ( ) RCC, CC,

RMSE

top3 3

GPV

12

ave9 9

raw

3 12

RCC raw

0.65 0.4

0.7

CC 0.1 RMSE

top3 12

Fig.14

raw top3 top5 12

7mm/h

top3 top5

5mm/h

3mm/h

top3 top5 raw

RMSE top3 raw

Page 9: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

RCC

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RC

C

time

sameura RCC mam 12h time-series

rawtop3top5top7ave9

CC

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

CC

time

sameura CC mam 12h time-series

rawtop3top5top7ave9

RMSE

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RM

SE

time

sameura RMSE mam 12h time-series

rawtop3top5top7ave9

Fig. 13 RCC ,CC and RMSE of Sameura dam basin

(spring)

0123456789

1011121314

0 1 2 3 4 5 6 7 8 9 1011121314

GPV

RAP

sameura mam 12h-48 scatter

rawtop3top5

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

GPV

RAP

sameura mam 12h-48 scatter

rawtop3top5

Fig. 14 Sameura dam basin (spring), the relation of

the past record and forecast of precipitation

Fig.15 ( ) RCC, CC,

RMSE

RCC CC RCC 0.2

CC 0.1 RMSE

raw top5

12 Fig.16

top5 raw

0mm/h

2mm/h

RCC

RMSE

Fig.17 ( ) RCC, CC,

RMSE

CC

top5 top7

Fig.18

RCC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RC

C

time

sameura RCC jja 12h time-series

rawtop3top5top7ave9

CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

CC

time

sameura CC jja 12h time-series

rawtop3top5top7ave9

RMSE

11.11.21.31.41.51.61.71.81.9

22.12.22.32.42.5

0 12 24 36 48

RM

SE

time

sameura RMSE jja 12h time-series

rawtop3top5top7ave9

Fig. 15 RCC, CC and RMSE of Sameura dam basin

(summer)

0123456789

101112131415161718

0 1 2 3 4 5 6 7 8 9101112131415161718

GPV

RAP

sameura jja 12h-12 scatter

rawtop3

0

1

2

3

4

5

0 1 2 3 4 5G

PV

RAP

sameura jja 12h-12 scatter

rawtop5

Fig. 16 Sameura dam basin (summer), the relation of

the past record and forecast of precipitation

raw CC0.2

top5

BIAS

GPV

BIAS

( ) ( )

Page 10: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

RCC

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RC

C

time

sameura RCC son 12h time-series

rawtop3top5top7ave9

CC

00.10.20.30.40.50.60.70.80.9

1

0 12 24 36 48

CC

time

sameura CC son 12h time-series

rawtop3top5top7ave9

RMSE

1.51.61.71.81.9

22.12.22.32.42.5

0 12 24 36 48

RM

SE

time

sameura RMSE son 12h time-series

rawtop3top5top7ave9

Fig. 17 RCC, CC and RMSE of Sameura dam basin

(autumn)

02468

10121416182022242628

0 2 4 6 8 10121416182022242628

GPV

RAP

sameura son 12h-12 scatter

rawtop3

0123456789

1011121314

0 1 2 3 4 5 6 7 8 9 1011121314

GPV

RAP

sameura son 12h-12 scatter

rawtop5

Fig. 18 Sameura dam basin (autumn), the relation of

the past record and forecast of precipitation

Fig.19 Fig.20 (

) 12 RCC

12 RCC 0.1

0.3 bot5 0.8

12

12 Fig.21

12 bot5

1 1

12 12 raw

bot5 raw

1 1

12 RCC raw

bot5 ( )

bot5 raw RCC

CC RMSE

12

12 Fig.22

3mm/h

RCC

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RC

C

time

biwako RCC djf 12h time-series

rawave9bot7bot5bot3

CC

0.6

0.7

0.8

0.9

1

0 12 24 36 48

CC

time

biwako CC djf 12h time-series

rawave9bot7bot5bot3

RMSE

00.10.20.30.40.50.60.70.80.9

1

0 12 24 36 48

RM

SE

time

biwako RMSE djf 12h time-series

rawave9bot7bot5bot3

Fig. 19 RCC, CC and RMSE of Biwako basin (win-

ter)

RCC

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

RC

C

time

kurobe RCC djf 12h time-series

rawave9bot7bot5bot3

CC

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48

CC

time

kurobe CC djf 12h time-series

rawave9bot7bot5bot3

RMSE

00.10.20.30.40.50.60.70.80.9

11.11.2

0 12 24 36 48

RM

SE

time

kurobe RMSE djf 12h time-series

rawave9bot7bot5bot3

Fig. 20 RCC, CC and RMSE of Kurobe dam basin

(winter)

bot5

GPV

Page 11: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

0h-12h precipitaionof 12 hours average

0

1

2

3

4

5

0 1 2 3 4 5

GPV

RAP

biwako djf 12h-12 scatter

rawbot5

36h-48hpreticipation of 12

hours average

0

1

2

3

4

5

0 1 2 3 4 5G

PV

RAP

biwako djf 12h-48 scatter

rawbot5

Fig. 21 Biwako basin (winter), the relation of the

past record and forecast of precipitation

0h-12h preticipationof 12 hours average

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

GPV

RAP

kurobe djf 12h-12 scatter

rawbot5

36h-48hpreticipation of 12

hours average

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

GPV

RAP

kurobe djf 12h-48 scatter

rawbot5

Fig. 22 Kurobe dam basin (winter), the relation of

the past record and forecast of precipitation

GPV

BIAS 1

GPV

( )

GPV

BIAS 1

GPV

Biwako(autumn)

0123456789

1011

0 1 2 3 4 5 6 7 8 9 10 11

GPV

RAP

biwako son 3h-9 scatter

1st latest4th latest

Sameura(winter)

0123456789

10

0 1 2 3 4 5 6 7 8 9 10

GPV

RAP

sameura djf 3h-3 scatter

1st latest4th latest

Fig. 23 the case of good CC and RMSE of the fore-

cast value of early initial time compared with

that of the latest forecast value

5. GPV

5.1GPV

12

12 GPV

GPV

4 5

3 12

RCC RMSE

(

0h 3h) ( 3h 6h) ( 3h 6h)

Fig.24 ( )

CC RMSE (1st latest )

2 (2nd latest

) RCC

4mm/h

1 3mm/h

2nd latest

2mm/h

( ) 14mm/h

6mm/h

2nd latest 2mm/h

( ) 11mm/h

3mm/h 2nd

Page 12: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

Biwakobasin(autumn)

0123456789

10

0 1 2 3 4 5 6 7 8 9 10

GPV

RAP

biwako son 3h-3 scatter

1st latest2nd latest5th latest

Sameura dambasin(autumn)

02468

10121416182022242628

0 2 4 6 8 10121416182022242628

GPV

RAP

sameura son 3h-6 scatter

1st latest2nd latest4th latest

Matsubara dambasin(autumn)

0123456789

10111213

0 1 2 3 4 5 6 7 8 9 10 11 12 13

GPV

RAP

matsubara son 3h-6 scatter

1st latest2nd latest4th latest

Fig. 24 the comparison of the time of good RCC and

the time of good CC and RMSE

latest

5.2

RCC CC RMSE

GPV

2

GPV

Table 2 2

RCC RCC

1-2 1st latest 2nd latest

RCC 1st latest

0.01 0.02 0.03

0.02

1st latest

1st latest

1st latest

RCC

RCC

RCC 0.03

Fig.25 ( ,6h-9h)

2 RCC

( 1st latest+3rd

latest)

3mm/h

2

1mm/h

2mm/h

1mm/h

RCC

CC RMSE

CC 0.6244 0.5729 RMSE 0.56

0.59

RCC

Fig.26 ( ,0h-3h)

0mm/h

10mm/h 4mm/h

1 2mm/h

1mm/h

CC RMSE

Page 13: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

Table 2 the time that the average of two forecast value is better than the latest forecast value

Siroyama Kurobe Biwako Sameura Matsubaraspring 0h-3hspring 3h-6h 1-2 1-3spring 6h-9h 1-2 1-2 1-2spring 9-12h 1-3 1-2summer 0h-3h 1-2 1-4summer 3h-6h 1-2 1-2 1-3 1-2summer 6h-9h 1-2 1-2 1-3 1-2summer 9-12h 1-2 1-2 1-3 1-2autumn 0h-3h 3-5 1-3 1-2 1-4autumn 3h-6h 1-2 1-3 1-3 1-2 1-2autumn 6h-9h 1-2 1-4 1-2 1-2 1-3autumn 9-12h 1-3 1-2 1-2 1-3winter 0h-3h 1-3 1-2winter 3h-6h 1-2 1-2winter 6h-9h 1-2winter 9-12h 1-2 1-2 1-2 1-3

Fig.27 ( ,3h-6h)

1mm/h

1mm/h

CC

Fig.28 ( ,9h-12h)

5mm/h

0mm/h

6mm/h

1 2mm/h

CC RMSE

Fig.29 ( ,6h-9h)

1mm/h

6mm/h

1mm/h

1mm/h

1mm/h

CC RMSE

CC RMSE

RCC

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

GPV

RAP

biwako jja 3h-9 scatter

latest,shiftlatest

comb,shiftcomb

0

1

2

3

0 1 2 3

GPV

RAP

biwako jja 3h-9 scatter

latest,shiftcomb,shift

Fig. 25 Biwako basin(summer,6h-9h), the validation

of the latest forecast value and the average

of two forecast value

0123456789

10

0 1 2 3 4 5 6 7 8 9 10

GPV

RAP

biwako son 3h-3 scatter

latestcomb

latest,shiftcomb,shift

0

1

2

3

4

0 1 2 3 4

GPV

RAP

biwako son 3h-3 scatter

latest,shiftcomb,shift

Fig. 26 Biwako basin(autumn,0h-3h), the validation

of the latest forecast value and the average

of two forecast value

2 RCC

RCC

RCC

Page 14: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

GPV

RAP

kurobe son 3h-6 scatter

latestcomb

latest,shiftcomb,shift

0

1

2

3

0 1 2 3

GPV

RAP

kurobe son 3h-6 scatter

latest,shiftcomb,shift

Fig. 27 Kurobe dam basin(autumn,3h-6h), the val-

idation of the latest forecast value and the

average of two forecast value

0123456789

101112131415

0 1 2 3 4 5 6 7 8 9 101112131415

GPV

RAP

sameura son 3h-12 scatter

latestcomb

latest,shiftcomb,shift

0

1

2

3

0 1 2 3

GPV

RAP

sameura son 3h-12 scatter

latestcomb

latest,shiftcomb,shift

Fig. 28 Sameura dam basin(autumn,9h-12h), the

validation of the latest forecast value and the

average of two forecast value

0123456789

10

0 1 2 3 4 5 6 7 8 9 10

GPV

RAP

matsubara son 3h-9 scatter

latestcomb

latest,shiftcomb,shift

0

1

2

3

4

5

6

0 1 2 3 4 5 6

GPV

RAP

matsubara son 3h-9 scatter

latest,shiftcomb,shift

Fig. 29 Matsubara dam basin(autumn,6h-9h), the

validation of the latest forecast value and the

average of two forecast value

CC RMSE

6.

GPV

2

GPV

GPV 2

1

GPV

GPV

2 GPV 12

51

GPV

GPV

Page 15: > Å ¿: ' C à » (GPV) w w - $ U  · \ q x s X |GPV s 8 | ¥ q ` o w ; ` É µ Â ï ¬ O p r þ S ô X b s r ' ñ + b Þ Ã ç w Q ó ô \ q t O : U T o M { \ t x | ÿ Ò (1997)

: - -.

:

, 1996.

, , , :

, ,

Vol.268, pp.83-90, 1997.3.

.

Validation of JMA numerical prediction data (GPV) by statistical analysis

Kenji YAMADA*, Shuichi IKEBUCHI, Kenji TANAKA and Kazuyoshi SOUMA* Graduate School of Engineering, Kyoto University

Synopsis

It is important to predict rainfall with high accuracy in dam basins because rainfall prediction isnecessary to control and operate dams properly. Major methods for prediction are kinematic or physical.Japan meteorological agency (JMA) numerical forecasting is one of physical prediction methods.Gridpoint value (GPV) is output of JMA numerical forecasting. Its resolution is insufficient to reproducephenomena unique to mountainous regions. Therefore, downscaling by another high-resolution rainfallforecasting model is a major method to advance accuracy in a lot of researches. In this study, it isexamined how accurate GPV is, and formulated how to take advantage of GPV efficiently.

Keywords : GPV,rainfall prediction,RSM,dam

,316,56-60 2005

Tarek Merabtene

(MSM)GPV

. ,47,91-96 2003

: GPV

, ,273,40-46 1997.5.


Recommended