+ All Categories
Home > Documents > ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set...

~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set...

Date post: 11-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
217
~. COMPUTER SIMULATION OF CONTINUOUS FERMENTATION OF
Transcript
Page 1: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

~. COMPUTER SIMULATION OF CONTINUOUS FERMENTATION OF

Page 2: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Computer Simulation of Continuous Fermentation ofGlucose to Ethanol with the Use of an Expert System

for Parameter Calculations and Applications forBioreactor Control

E b Y

Q Richard Allen Miller

Committee Chairman: william VelanderChemical Engineering

(ABSTRACT)

A derivation of the Michaelis—Menton growth

kinetics model is developed to simulate batch

fermentation of glucose to ethanol using yeast,

§.a;..c.h.ac<.m.y.5«@2. ¢;..e1:.e.>1i.ä„„1„a.e. - T h E S 1 mu 1 a 1 1 ¤ ¤ d E f 1 ¤ e 5the growth rate as. a function of substrate

concentration, cell mass concentration, and product

concentration. The computer simulation also

incorporates a specific growth rate function (as a

function of pH level and temperature) and a

specific death rate function (as a function of the

product concentration). The program uses batch

data to calculate the model parameters and

simulates a continuous fermentation in two

continuous stirred tank reactors in series with a

product separator. A constant value was found to

be sufficient to model the specific death rate and

the product separator did not effect the final cell

Page 3: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

mass concentration in the reactors. Two continuous

stirred tank reactors, followed by a smaller

reactor, increases the final cell mass

concentration. The study also proposes a control

scheme for the reactor system.

Page 4: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

ACKNOHLEDGEMENTS

This thesis is dedicated to the memory of Dr.

David A. Nallis, whose faith in me made this

possible.

iv ~

Page 5: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

TABLE OF CONTENTSABSTRACT 11ACKNOWLEDGEMENTS iv

@h„§TQ.-lE.§..!l p.aq„ee.I. INTRODUCTION 1

Il. LITERATURE REVIEW 3

Historical — 3Biological 3

pH Effect 4Temperature Effect 6Substrate Concentration Effect 9Cell Mass Concentration Effect 10Product Concentration Effect 11

Modeling 12Kinetic Models 12Batch Models 17

Dimensionless Variables 24Physical Significance OfDimensionless Groups 25

Continuous Models (CSTR) 28Dimensionless Variables 31Physical Significance OfDimensionless Groups 31

Typical Parameter Values 34Specific Death Rate Function 35

Fermentation Simulation 37Euler or Tangent Line Method 37Runge - Kutta Method 39

Control Scheme 40

III. METHODS AND MATERIALS 44

Batch Simulation and Data Gathering 44Parameter Calculations 44Data Types 45

Cell Mass Concentration & TimeData 46Cell Mass Concentration,{ Substrate Concentration & TimeData 47

‘ v

Page 6: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Lag Phase 49Active Phase 49Stationary Phase 50Death Phase 51Model Of The Lag Phase 51Maximum Specific Growth Rate 58Growth Yield Coefficient 54Maintenance Coefficient &Specific Death Rate 55Saturation Constant and ~Substrate Inhibition Constant 57

Cell Mass Concentration,Substrate Concentration, Time, &Product Concentration Data 59

Maintenance Coefficient &Specific Death Rate 59pH Level and Temperature Data 61Specific Growth Rate Data 68

IV. REACTIDNS AND REACTDRS 63

Continuous Simulation and Control 63Reactors 64

Continuous Stirred Tank Reactors 64Product Seperator 66Variable Change Simulation 69pH Level Change 69

Reaction Induced pH LevelChanges 74Caustic Flow Induced pH LevelChanges 76pH Change Model 77

Temperature 78Heat Produced 78Heat Removed 79Temperature Change 88

Flow Rates 83Start — Up 86Steady — State 88Control Algorithm 88

· ‘ pH 90Temperature 93Flow Rates 94

Reactor #8 94

V. RESULTS AND DISCUSSION 98

Results 99Data Set #1 99Data Set #8 105Data Set #3 105

vi

Page 7: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Data Set #4 111Data Set #5 111Data Set #6 113Data Set #7 _ 121Data Set #8 121

Discussion 126Parameter Calculations 126Steady - State Flow Streams 128Separator Efficiency 129Control Parameters 130

VI. CONCLUSION 131

VI. RECOMMENDATIONS 132

VII. SUMMARY 134

LITERATURE CITED 135

Fäpps11¤.i.z;- 9.9.92.

A. DERIVATION FROM LEE; POLLARD¤ ANDCOULMAN 139

B. DATA FOR SPECIFIC DEATH RATE FUNCTION 142

C. HYDROXIDE ION CONCENTRATION 143

D. DATA SOURCES 144

E. DATA TYPES 148

F — 1. DATA SET FROM SOURCE #1 151

F - 2. DATA SET FROM SOURCE #2 152

F — 3. DATA SET FROM SOURCE #3 153

F — 4. DATA SET FROM SOURCE #4 154

F — 5. DATA SET FROM SOURCE #5 155

F — 6. DATA SET FROM SOURCE #6 156

_ F — 7. DATA SET FROM SOURCE #7 157

F — 8. DATA SET FROM SOURCE #8 158

v i i

Page 8: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

F — 9. DATA SET FROM SOURCE #11 159

F - 10. DATA SET FROM SOURCE #12 160

F - 11. DATA SET FROM SOURCE #13 161

F — 12. DATA SET FROM SOURCE #14 162

F - 13. DATA SET FROM SOURCE #15 163

F — 14. DATA SET FROM SOURCE #17 BATCH 164I

I DATA SET FROM SOURCE #17 CONTINUOUS 165F — 15. DATA SET FROM SOURCE #18 166

F — 16. DATA SET FROM SOURCE #19 167

G. TYPICAL VALUES FOR PH AND TEMPERATURE 168

H - 1. LISTING OF PROGRAM "PLUSED" 169

H - 2 LISTING OF PROGRAM “FITTR" 193

VITA 206

viii

Page 9: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

LIST OF TABLES

TTTa„¤„l.„@. .na1.

Specific Death Rate Values 35For Varying Ethanol Concentration

2. Model Parameters For F — 1 103 .

3. Flow Streams For F — 1 104

4. Effect Of Varying Product Seperator 106For F - 1

5. Model Parameters For F - 3 110

6. Model Parameters For F — 13 116

7. Flow Streams For F — 13 117

3. Effect Of Varying Product Seperator 113For F - 13

1X

Page 10: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

LIST OF FIGURES

$5..;..9.91:.I1.

Embden—Meyerhof Pathway 5

2. Effect of pH level on 7 .cell growth rate

3. Effect of Temperature on 8cell growth rate

4. Batch reactor 19

5. Two Continuous CSTR’s with 29 .Product Separator

6. Curve Plot Of Specific Death 36Rate Data

7. Flow Chart Of Computer — Human 43Interaction

8. Different Phases of Growth 48

9. Exponential character of the 53lag phase

10. 1 / RS versus S plot 67

11. Reactor system 68

12. Product seperator 70

13. Reactor system 72

14. Heat exchange in reactor 81

15. Graph of cell mass concentration 85versus dilution rate

16. Reactor system with operatingE

89parameters

17. Control diagram 91

18 Reactor #2 showing all 95flow streams

x

Page 11: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

19 Concentation vs time for F — 1 100

20 Log (x) vs time for F — 1 101

21 Inverse raction rate (1/Rs) 102vs Substrate for F—1

22 Concentation vs time for F — 3 107

23 Log (x) vs time for F — 3 108N

24 Inverse raction rate (1/Rs) 109vs Substrate for F — 3

25 Concentation vs time for F — 13 112

26 Log (x) vs time for F — 13 114

27 Inverse raction rate (1/Rs) 115vs Substrate for F - 13

28 Concentation vs time for F - 14 119

29 Log (x) vs time for F - 14 12030 Concentation vs time for F - 17 122

31 Log (x) vs time for F — 17 123

32 Concentation vs time for F — 18 124

33 Log (x) vs time for F - 18 125

xi

Page 12: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter I

INTRDDUCTION

The aim of this research is to create a computer

simulation of the fermentation of glucose ( sugar

solution ) to fuel ethanol in aqueous solution.

The model will be adaptive for varying feed stocks

(Carbon - 6 or sugar sources) and organisms and

will be applied within the process control schemes.

Fermentation of sugar to ethanol is commonly ’

practiced and considered basic biotechnology.

However the proposed simulation is geared toward

direct application by small industries that must

vary their feed stocks and organisms with respect

to current economic conditions. For example, as

grain prices increase these industries may use

waste candy and / or surplus corn syrup as a

supplement to, or a replacement for, conventional

grain feed stocks. With the changes in the feed

stock and organism type, rate kinetics and product

(ethanol) yield changes will occur.

The model will adjust the operating conditions

with respect to the variability of these

lparameters. The feed stock is fermented in a batch

mode initially for the purpose of estimating

1

Page 13: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

E

kinetic parameters. These kinetic parameters are

then employed in a steady state model. Since

continuous culture fermentations are desirable for

industrial production scale, this model will be

useful in predicting the performance and operating

conditions for industrial scale operations.

The adaptive system will also use artificial

intelligence to inform the operator as to how the

changes in feed stock will effect the process

operation (such as residence time, feed rate, etc).

This is the dynamic portion of the adaptive

simulation.

Due to the complex nature of living systems and

the inherent errors associated with modeling such

systems, the application of artificial intelligence

will improve the utility of the process simulation.

This occurs by feeding the batch data into the

simulation package. The model adjusts the kinetic

parameters to fit the batch data and adjust the

reactor variables with respect to the parameter

changes.

The simulation, although designed for modeling

and control of ethanol production, is applicable to

any bioreactor process control. This area is one

of the most active in the biochemical field.1*2*3*“

Page 14: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter II

LITERATURE REVIEH

E - 1 H.1-§;K.Q.13.„.1.Q„6l„.

1 5 ¤ Er h a p S b 11 E m c· 6 1:studied yeast in the literature. Over 103 strains

have been studied. It was first named by Meyen in

1838 to distinguish beer yeast from the yeast used

to ferment grape and apple juice. In 1870 it was

given a morphological description by Reess5. These

studies and descriptions were not based on pure

culture samples. Hansen in the years 1883, 1886,

and 1888 used pure cultures and expanded on the

descriptions of Reess by including the physical

characteristics of the yeast. Because of this work

on pure cultures Hansen is considered the "author

of äggghggpmyces cerevisygg". This authorship

¤ 1 a ¤ E d ä·.a.c.s_!.=.a.¤:.¤;m..¤6.¤...¤5.. s; e..„..r¤...v.1.ä.=L..·;s 1 ¤ 1:hclassof yeast.

E-E B10L..Q§..1„Q.9J-.

Of the four classes of yeast, Qsggmyggggs are

the group characterized by production of sexual

3

Page 15: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

4

spores in sacklike ascus.Ö In addition to the

C b C· V C C *1 C V C C 1 Cr 1 C t 1Cdisplaysgrowth characteristics that can be

mathematically modeled. Q. cgggglglgg metabolizes I

food via the Embden-Meyerhof Pathway or EMP (see

figure 1). For each step in the pathway specific

enzymes act upon the substrate to create the

product. This characteristic allows the overall

growth kinetics of Q. cerevisigg to be modeled as

an enzymatic growth kinetics. And as in the case

of enzymes,l Q, gg;g¥;gigg_is very sensitive to its

physical environment. Aspects of the environment

that effect the enzyme activity of Q. ggggglglgg

are the following:

1. pH level

2. Temperature

3. Substrate concentration

4. Cell (enzyme) concentration

5. Product concentration

2.2.1 gg Effect

One physical parameter that effects enzyme

kinetics and hence the kinetics of Q. gerevisiae is

the pH level. Enzymes are proteins, and like all

proteins the concentration of hydrogen ion in their

Page 16: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

5

CH;ON

ouHO

OHGlenn!-gnnpnn@|

„w®°® • H,0|·|ATPg®l·l, H,O—®1... Q. -*7, Q.

H . ,G‘i"¢****"‘**‘·¢¤l¤¤ Fruit}-qngnn

ATP/ADP„,...® .2..„.§”.Z„ ·‘

M rn- >«wn

NG,.-, ~A¤· TY. Nm

Mon Coon AT, A0, 0\¢/os®

°""'.'Z.""""" ‘°”'§"" ”"'Z""'T "°"i:.§"'_@”'2$•'Z{•_ ÄOOII NAD° NADII cql NADII NAD°

°° cf0”

E? 0 E? ° 0 EIN

EIZEEE

Figure 1: Embden-Meyerhof Pathway (From StuartJ. Baum, "Introduction to Organic &Biological Chemistry", Third Edition,Macmillan Publishing Co., New York,1982).

Page 17: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

6

environment effects their conformation and thereby

their reactivity. The extent of the hydrogen

concentration "alters the degree of ionization of

acidic and basic groups both on the enzyme and on Vthe substrate".7 Extremes in the ion concentration

may even denature (cause a loss in all activity or

destroy) the enzyme. Therefore enzymes are active

within a narrow pH level range. The pH level in

which there is maximum enzymatic activity is the V"optimum pH level" for the enzyme (see figure 2).

Another physical parameter that severely effects

the enzymatic activity of Q. ggggvlglgg is the

temperature. U

2.2.2 [emperature Effect

The temperature of the environment of the enzyme

effects its activity in a manner similar to the

exhibited in most chemical reactions. Increases in

temperature increase the activity of the enzyme

until an "optimum temperature" is reached. Above

this optimum temperature, further increases

inversely effect the reaction (see figure 3). Even

further increases in temperature may denature the

enzymes and cause the cell to die.6 Therefore the

temperature of the environment that favors QL

Page 18: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

7

_ Maximum rate

p Reaction2 —

rate

Optimum pH (

s 7 °pi-l

Figure 2: The Effect of pH Level onEnzymatic Reaction Rate (From StuartJ. Baum, "Introduction to Organic &

' Biological Chemistry", Third Edition,Macmillan Publishing Co., New York,1 982 . )

Page 19: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

6

Mummmnu

IIIII

RwünIVIIIII I

Ommm IIIߧIIIIII {I

20 4¤ °°‘h¤pnmnCO

Figure 3: The Effect of Temperature onEnzymatic Reaction Rate (From StuartJ. Baum, "Introduction to Organic &Biological Chemistry", Third Edition,Macmillan Publishing Co., New York,1962.)

Page 20: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

9

cggevisiag is also within a narrow range. Another

physical parameter that effects the enzyme activity

is the substrate concentration.

3 - 3 - 3 Qu b._.S*= ¤·...¤*= 6. Q9..c;6s11t;.·.é1.t.}.9.:~. Ei.f._6.<;.$.As in several enzymatic reactions, excess

substrate inhibits the reaction. In the Michaelis-

Menton model for enzymatic reactions, the reaction

proceeds as follows:

k 1 ‘E + 6 <======> ES <a.1>

*< — 1

kaES -------> P + E + E (2.2)

The enzyme, E, joins with the substrate, S, and

forms the reactive intermediate ES Through the

reversible reaction 'shown above; where kl and k-l

are the reaction rate constants of the respective

forward and reverse reactions. The reactive

intermediate, ES, proceeds to form the product, P,

and releases the enzyme, E. Again the constant,

kg, is the reaction rate constant for the second

reaction. A fraction of the substrate consumed is

used for cell regeneration and hence forms more

Page 21: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

10

enzyme, E. In the presence of excess substrate a

third intermediate is formed as follows:

kaI

ES + S <=======> ESE (2.3)*<—a „

where ESE is the third intermediate and the

constants kg and k-3 are the forward and reverse

reaction rate constants respectively. The third

intermediate, ES2, is not reactive, and therefore_

blocks the production of product and the release of

the enzyme. Since this reaction is reversible the

effect of excessive substrate is reversed as the

substrate concentration decreases. The cell or

enzyme concentration also effects the reaction

rate.

2.2.ä QQLL ggg; LEnsyme) Concentration Qifggg

As illustrated by equations 2.1 & 2.2 the

enzymatic reactions are autocatalytic. Under ideal

situations (no inhibitions and ample substrate) the

cell growth is exponential. However in nature most

cells are inhibited by each other. That is, they

slow or stop their growth when they come in contact~

with another cell. This phenomenon is discussed

Page 22: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

11

further in the following sections. The final

growth inhibitor of Q. ggggg;gigg_treated in this

study is the end product concentration.

2.2.5 Product Concentration Qjjggt

The desired end product from an anaerobic

fermentation of glucose by Q. gerevislgg is ethyl

alcohol. However, ethyl alcohol is toxic to the

cells. This creates the dilemma of creating a _

product that inhibits the growth of the cells and

production of more product. At product

concentrations above the critical product

concentration the product kills the cells. The

effects of this and the previously mentioned

physical parameters on the growth kinetics of Q.

ggggglälag can be predicted and mathematically

modeled. -

Although common in nature, Saccharomyggg

gggevisiae is principally associated with the

production of beers and wines. It has been used

since biblical times and continues to be researched

and utilized.

Page 23: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

12

E ·3Several models have been proposed for biological

growth. They range from those that incorporate the

chemical potential of the mixturea to those that”

assume Langmuir—Hirshelwood or Hougen—watson

kineticsq. The emphasis of this study is to

develop a model that can be related to measurable

physical properties. The modeling process begins

with the reaction rate or kinetic models. '

2.3.1 Kinetic Qggels

To model a fermentation reaction one starts with

the basic kinetic equations as proposed by Nihtla

and Virkkunen.1o These equations define the

change in the cell mass and substrate

concentrations as followss

gg = Hx — kDx (2.4)- dt

gg = —_1_gx — mx (2.5)dt Vx/s

Page 24: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

13

where x is the dry cell mass concentration, s is

the substrate concentrationQ H is the specific cell

growth rate, Yx/S is the growth yield coefficient,

kD is the specific cell death rate coefficient and

m is the maintenance coefficient. The specific 1

growth rate, H, is expressed ideally by the Monod

kinetic model.11

H = __„)3;„s___ (2.6)KS + 5

where Hm is the maximum specific cell growth rate

and KS is the Michaelis - Menton constant or the

half saturation constant. For very small values of

s and very large cell mass concentrations the model

predicts growth rates much higher than

experimental.12 Part of the higher rate prediction

is the inability of the mathematical analysis to

calculate the instantaneous changes predicted by

equation E.#. The analysis requires assuming a

finite time step for the calculations while the

actual growth is continuous. A second problem

arises in the initial assumptions made by the

Michaelis—Menton model. The model assumes that

regardless of the substrate concentration

additional biomass will yield additional

Page 25: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

14

production. This assumption fails in living

systems because part of the substrate consumed is

used for maintenance of the cell. Also the

substrate is consumed in units (molecules). A

specific quantity of of substrate may be equivalent F

to one molecule of substrate and only sufficient

for one _cell to consume. Therefore addition cells

will see no units of substrate available for

consumption. However in this example the

maintenance coefficient will compensate and it is

unlikely that the above conditions will arise

because of the inhibitor effects of the product,

ethanol. The latter characteristic of the

Michaelis—Menton model, the assumption of

additional biomass yielding additional production

regardless of substrate concentration, is examined

in the specific growth rate function development.

The effects of ethanol concentration on the cell

growth rate are modeled by Levenspiel’s product

inhibition correction.13 He proposed that product

inhibition can be modeled as:

H = Hm (1 -Q_)“

(2.7)Pm

Page 26: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

15

where P is the ethanol product concentration and Pm

is the concentration of ethanol at which cell

growth terminates, and the superscript n indicates

the magnitude of the product inhibition.

Some authors note a non-linear growth

relationship at high cell mass concentrations, 60 -

100 g/1 of yeast1“ and propose a cell inhibition

term15, such as:

H = Hm(1 — _x_) (2.8)*m

where xm is the maximum cell concentration under _

ideal conditions. This nonlinear growth relation

was found in a continuous reaction with cell V

recycle. It is caused by the build up of

nonvolatiles in the growth medium that inhibit the

cell growth.1“ This author excludes the cell mass

inhibition term because current literature on batch

fermentation by Saccharomyces cerevisiae on glucose

shows a maximum biomass concentration of

approximately 10 g/1.16 High substrate

concentration can also be inhibiting.

Page 27: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

16

Gutpa, Kushu and Bhatnagar determined that the

optimum substrate (glucose) concentration for Q.

ggggvisigg is two (2) percent.17 To account for

substrate inhibition, the Monod model is augmented

with the terms sa/KSI in the denominator where KSI

is the substrate inhibition constant.1B Hence the

revised model for specific cell growth rate is:

R = (______Rgä_ ____)*(1 — _ß_)“ (2.9)(K5 + s + sg/KS;) Pm

The maximum specific cell growth rate, Rm, is

affected by the temperature and the pH level of the

system.17 Their effect is predicted by the

function:19

Hm )*KPH)

(2.10)

whene RMAXÜpT is the maximum specific cell growth

rate in an ideal temperature and ideal pH level

environment, T is the operating temperature, TÜpT

is the optimum operating temperature, pH is the

operating pH level, pHÜpT is the optimum operating

Page 28: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

17

pH level, KT is the temperature constant, and KPH

is the pH constant. I

The rate of product formation, ethanol

production, is stated as:15 _

gg = _;_ gg (2.11)dt Yx/p dt ‘

where Yx/p is the product yield coefficient. The

product yield coefficient is assumed constant

throughout the fermentation. This assumption is

valid over several pH levels for Qgggharomyggä

gg;gvisiae.2O Along with modeling the effects of

the physical environment on the growth, the effect

of the reactor configuration must be modeled. The

configurations used in this study are batch and

continuous.

2.3.2 ßatgg godels T

A material balance for the system is the same as

the material balance for any reactor system . That

is:

Page 29: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

18

accumulation = flow in - flow out + generation.

For a batch reactor, the material balance around

the reactor for the cell mass (biocatalyst), Rproduct and substrate (reactant) reduces to:

d(Vx) = Vrx (2.12)dt _

QLVQL = Vrp (2.13)dt

gLVs) = Vrs (2.14)dt

where V is the reactor volume and rs, rp and rx are=

the substrate, product and cell mass reaction rates

(see figure 4). By substitution of equations

(2.4), (2.5) and (2.11) into equations (2.12),

(2.13) and (2.14) one arrives at:

d(Vx) = V(Hx · kgx) (2.15)dt

Page 30: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

19

Figure 4: Batch Reactor

Page 31: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

20

g(gQL = v(_1__(ux — kDx)) (2.16)dt Vx/P

q(y;g„ = V(_;1_yx — mx) (2.17)dt Vx/s

In a liquid phase batch reactor the volume is

assumed constant, however, because of the

autocatalytic nature of the reaction, this is not

rigorously accurate. Nevertheless with this

assumption the resulting equations are: ‘

dx = Hx — kDx (2.4) °dt °

gg = 1 (Hx — kDx) (2.19)dt Vx/P

gg = —&; - mx (2.5)dt · Vx/6

By Usubstituting ‘equation (2.9) into equations

(2.4), (2.19) and (2.5), one derives :

dx = ( g¤ä_ ____)*(1 — _ß_ )x - kDx (2.19)dt (KS + 5 + sg/K5;) PM

Page 32: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

21

QB. = -.1.... (........).*;;:1;.. -;-..>*<1 ·· .E...>>< — mmdt YX/p (KS + S + 52/KSI) PM _ YX/p

(2.20)

Qg_ = -_1___ (______g¤§_ ____)*(1 — _§_)x — mx Vdt Yx/S (KS + 5 + SE/KSI) PM

(2.21)

Note that the exponential, n, applied to the

product inhibition tern is assumed unity from the

above equations onward. This assumption is

balanced by the specific death rate function’sV

strong dependence on the product concentration.

This is discussed in more detail in the Specific

Death Rate Function section of this paper. At this

point is system is indeterminate with two unique

equations ( equations (2.4) and (2.6)) and three

variables (x, s, and P). However the

characteristics of the equations enable value

determination directly from the data ( see Method

And Materials section). The system of equations

also shed light on the physical significance of the

batch fermentation model.

From the equations one may predict the extreme

physical conditions and evaluate whether or not the

predictions correspond to actual experiences. By

Page 33: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

22

reviewing equation (2.19) at its limits this

determination is made. A

The rate of cell mass concentration change is

zero (0) in two instances. The first is when the

cell mass concentration is zero and the other when _the specific death rate and the specific growth

rate are equal. The first condition corresponds to

the law of conservation of mass which states that

mass cannot be created or destroyed.E1 The second

condition corresponds to the stationary growth ephase which is characteristic of yeast (see Method

and Materials section). This growth phase occurs

when the substrate becomes the limiting growth

factor. When the limits applied to equation (2.20)

similar results are predicted.

The rate of ethanol production is zero at the

same conditions as the rate of cell mass change.

The first is also because of the law of

conservation of mass. The second corresponds to

the stationary cell growth phase. At the point

when substrate becomes limiting, cell activity is

decreased to conserve energy. Since ethanol is the

end product of substrate consumption, the rate of

ethanol production will reflect this reduction.

The rate of substrate change also reflects these

trends.

Page 34: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

23

The rate of substrate consumption, equation

(2.21) also becomes zero at zero cell mass

concentration. The second point where the

substrate rate of substrate change is zero is

where the sum of the specific growth rate divided ·by the growth yield coefficient and the maintenance

coefficient is zero. Since during the stationary

growth phase the cell is still consuming substrate

there should not be a direct correlation. The

maintenance coefficient and the specific growth Qrate are positive numbers and hence there sum can

never be zero. This relates to actual experience

since as long as the cell is alive it must have

nourishment. Another extreme to evaluate is with

respect to the substrate concentration.

The model predicts that as the substrate

concentration approaches zero the specific growth

rate function approaches zero. This is reasonable

since the cell must have substrate in order to

survive. Also as the substrate concentration

approaches infinity the specific growth rate

function approaches zero. This is also a

reasonable prediction due to the inhibitory effect

of the substrate at large substrate concentrations.

To further predict growth characteristics from the

Page 35: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

equations, they are expressed in their

dimensionless form. _

2.3.2.1 Qigggsionless yariables _

To reduce the above equations to dimensionless

variables, the following variables are defined.

Let:

x* = --5-- P* = -E- 5* = -s-VX/S50 • Fn • so

¢+ = tßnnxopr Ks+ = äs KSI+ = üsi— SO 50

wmf = Kg kp* = Lp, m+ = eiixisHMAXOPT • HMAXOPT • HMAXOPT

_ YX/P+ = Euixla5oVx/S

Page 36: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

E5

E - 3 - E - EQi..Q.r;9.Q.as

The physical significance of the dimensionless

groups chosen for the batch equations, in some

instances, will also be applicable to the ‘

continuous models’ dimensionless groups. A brief

description of the batch dimensionless group’s

significance follows.

The dimensionless dry celln mass concentration,

xT, indicates the extent of reaction. ·

Specifically, the fraction of dry cell mass

produced if all the substrate present initially was

used for cell growth. For this term a value of one

(1) indicates complete reaction of initial

substrate to cell mass. Since part of the

substrate is used for cell maintenance, xT can only

approach a value of one (1).

The dimensionless product concentration, PT,

indicates the fraction of product in solution. At

PT equal to one (1) the product concentration is

equivalent to the maximum product concentration

allowable for cell growth.

The dimensionless term ,sT, is the fraction of

the substrate remaining in solution or the extent

Page 37: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Eb

of the substrate reaction. A value of zero (O) for

this term signifies complete substrate reaction.

The term t+ is the dimensionless time.,KST, is the dimensionless half saturation

constant. If KST has a value that is greater than Vone - half (1/E) then the initial concentration of

the substrate is less than the concentration need

to achieve the maximum specific growth rate under

batch reactor conditions.

The term KQIT, is the dimensionless substrate.

inhibition constant.

The dimensionless term HMT, is the dimensionless

maximum specific growth rate. This term indicates

the variance of the maximum specific growth rate at

the operating conditions from the maximum specific

growth rate at the optimum temperature and pH

level. RMT equal to one (1) indicates that the

maximum specific growth rate at the current

operating conditions is equivalent to the maximum

specific growth rate at the optimum conditions. A

list of the optimum conditions is found in the

appendix.

The dimensionless term kD+, is the dimensionless

specific death rate. A value of one (1) for this

term signifies the absence of cell growth for the

Page 38: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

27

microorganism. Therefore, in practice, this value

is less than one during the growth phases.

The dimensionless maintenance coefficient m+, is

the ratio of the substrate used for cell growth and

the maximum specific growth rate at optimum _

conditions. This ratio is weighted by the cell

growth yield coefficient.

The final dimensionless term for the batch

system, Yx/p+, is the dimensionless product yield

coefficient. This term represents the ratio of the _cell mass concentration at the maximum product

concentration and the fictitious cell mass

concentration if all of the initial substrate were

used for cell growth.

After substitution of the dimensionless terms

into the batch equations, the resulting

dimensionless equations are: '

ggf = (________g„jgj _____)*(1 — P+>x+ — kD+X+dt* (xgf +

5+(2.22)

ggf gmfsf _____>»(1 - P+>x+ — ggjgfgtf vx/pf (xgf + 5+„(2.23)

Page 39: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

28

dt* (KS* + 5* + 5*E/KSI*)(2.24)

E - 3 -3For continuous operations, the rate equations

are similar . Steady state conditions are assumed.

Performing a material balance around the reactor

yields the following:

g(!xl_ = Foxo — Fx + Vrx (2.25) ·dt

Ad(VsL = Foso — Fs + Vrg (2.26)dt ·

d(VP) = FOPO — FP + Vrp (2.27)dt

where Fo and F are the volumetric flow rates and

the subscript 0 signifies the initial or inlet

conditions (see figure 5). Substituting equation

(2.9) into equations (2.25), (2.26) and (2.27) in a

method similar to Lee, Pollard and Coulman with a

slight derivation (see Appendix A)15 yields:

Page 40: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

E9

Figure 5: Two Continuous Stirred Tank Reactorswith Product Separator

Page 41: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

30

X = ÄQ + so — s — gg (2.22)Y..x-1.S.................bus( __l__ + m„_ )

Vx/s Vx/s

P = Yx/p(>< * MO) + PO (E.E‘?)

D = .....t£¤.€;l.-.-..;E’LE1e1.2.„>.&- .... · .!s„¤.>1(x — xO)(KS + s + sg/KS;) (x - xo)

(2.30)

where D, the dilution rate, is F/V.

Note the use of .two CSTR’s in series yielded

predicted improvements in productivity over a

single CSTR by #0 to 50 percent15. Therefore two

CST2’s in series will be used in this study.

Page 42: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

31

E-3-3·1 Qimsmäigmlesä Maxiaglgs

To express the continuous equations in their

dimensionless form the following variables are

defined.

Let:

*0+ = ..i0-- P0+ = Bo Vt = V1 T V2Vx/S50 pn

V1+ = V; D+ = ..E.- D = E DT = ..9--V: VVMAXOPT V Pnnxopr

2.3.3.2 Physical Significance Qj QimgnsioolggäGrougs

The physical significance of the dimensionless

terms for the continuous system are discussed

below. As stated previously, some of the terms

from the batch dimensionless terms such as, KST,

KSIT, YX/p+, Rm+, s+, m+, PT, and kD+ are used inthe continuous dimensionless equations. These

terms are not defined again in the following

section.

Page 43: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

32

The dimensionless term x0+, is the dimensionless

initial cell mass concentration. It represents the

ratio of the initial cell mass concentration and

the fictitious cell mass concentration if all the

substrate were used for cell growth.

The dimensionless initial product concentration,

PDT, varies from zero (O) to one (1) where zero (O)

is the condition where no product is in the feed

stream and one (1) is the situation where the

initial product concentration is that of the

maximum product concentration obtainable through

fermentation.

The dimensionless volume for reactor #1 VIT,

represents the fraction of the total volume of the

reacting system present in reactor #1. A similar

term for the reactor volume fraction for reactor #2

is not listed but is defined and calculated

similarly. -

The term DT, is the dimensionless dilution rate.

This term, under stable steady — state conditions,

is less than one (1). It represents the ratio of

the dilution of the system and the maximum dilution

rate at optimum pH level and temperature. Y

e° Therefore, after making the proper

substitutions, the resulting equations are:

Page 44: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

33

¤+ = .aaI.....:---ll„;all.... (2.31)<-l- · -m:.lVx/s Vx/s

P+ = ll.;laIl · .aIaI. — llagiai + P„*YX/P+ Yx1P+D+ Vx/P+D+

(2.32)

¤+(x+- x°+)(KS+ + 5+ + s+E/KSI+)

(X(2.33)

E-3-# lxglgallßaaamglga Malaga ·

The simulation will initially plot growth,

product and consumption rate curves for a batch

fermentation using äagcharomgcgg ggrevisiae on a

defined medium with glucose as the principle carbon

50 LI T C E •

{he optimum pH and temperature for äagghaggmvggä

gerevisiag growing on glucose are 6.0 and 30°C

respectively17*19. Hence the typical values for

equation (2.10) are 6.0 and 30°C for the

corresponding values of pHÜpT and TÜPT.

Page 45: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

34

A typical value for the theoretical ethanol

yield ( with respect to substrate) Yp/S is 0.51 g-

P/g—sEE. A typical maximum specific growth rate is

the average of the values reported by Mehaie and

Lee. This is .23 hr'1. 'Similarly for the substrate saturation constant,

KS, and the maximum product concentration, PM,

values reported by Lee15 are used. These values are

1.6 g/l and 90 g/1 respectively.

2.3.4.1 Qgecific Qggtu Rugg function ‘

The specific death rate function, kD, is derived

using a modified Arrhenius equationaa.

kD = T{gB + exp(Q§ - 6H)} (2.34)h R RT

where T is the temperature in absolute Kelvin, 65

is the change in entropy, 6H is the change in

enthalpy, kB is the Bo1tzmann’s constant, R is the

gas constant, and h is Plank’s constant. Using the

data presented by 5a—CorreiaE“ a curve fit for kD

at 30°C (303K) is generated for the variance of

ethanol concentration (see Table 1). Curve fitting

yields the equation (see figure 6):

Page 46: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

35

TABLE 1

SPECIFIC DEATH RATE VALUESFOR VARYING ETHANDL CONCENTRATIDN _

„..„.!5p...!‘.„...l.9.Z.L§L°.!<.!S.ÜÄ.}-.?..„.ÜÜ.3 ..S..25 n..Y.!.Y)...€.§_|1é.¥1Ql·.,.ii-.-hp-..S„h.!;:}..2„. .P...Q.!.lÄ-...i.

ÄÖÄf].'.“..._...«;·.<29._....;.-„-_..;z„£<.i§iÄZ»i§ÄÄ1ħ§Ä___._._.„..l9.9_„-..__i......„.l.é»......._......i.._...l..L..-...l„...9.L.L3...--....i A.................„.‘§._.......l.......l.£+.......S2s..Ll.„-L.L.._.„.....„.lQ....„i.....l.9..„_..._..„L.......L...L..Q:.$@„--§-„.__-__.„_.._.__..Q_.......L.„.....„.B.Z..i_€?e.‘€[email protected]§.

* Data form Sa-Correiaag* Assumes constant density of media in reaction

tank is 1 g/1

Page 47: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

36

GRAPH OF kD VERSUS PRDDUCT CONCENTRATION

2220181614

kp <m-*1) 12SPECIFIC 10 '

DEATH 2RATE64 · ‘

2'

0.06 0.08 0.1 «3_1;= 0.14

P (Q / 1) ETHANÜL CÜNCENTRATIÜN

Figure 6: Plot of Specific Death Rate versusProduct Concentration

Page 48: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

37

RD = P4·“9exp(11.59) <2.as>

The constant in the specific death rate function,

exp(11.59) is used as a starting point value forV

the parameter calculation.

2.4 EERMENTATION QLMULATIQQ

The final form of the kinetic rate equations

prohibit solution by analytical means. Therefore

two methods are used to numerically integrate the

equations. The first method, Runge—Kutta with the

Kline predictor corrector algorithm is the

preferred method of the author and will be compared

with the Euler method. ‘

2.4.1 Euler gg Tangent Line Method

The Euler Method is one of the simplest

numerical integration methods for solving initial

value problems. This method solves the initial

value problem in the form:

Page 49: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

38

y = f(x,y), y(xO) = Yo (2.36)

Because the initial values are known the slope of

the tangent line at the initialconditions,=

f(x°,yO), is known25. By assuming a uniform step

size, h, between points the following values for x

and y can be predicted by:

and

yn+1 = yn + hf(xn,yn)(xn+1 - xn) (2.39)

= ojlla •••

The Euler method of numerical integration is

accurate only for very small values of h E9. And at

these small values the computer time required for

compilation is relatively long. However as a test

of the accuracy of the initial computer simulations

this method should be sufficient.

Page 50: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

39

E - 4 · E R.m.0_Qs. !r;.g..§.$„a P!e5.b.¤.1.<;!.

A more accurate and quick method for numerical

integration is the Runge—Kutta method. This method

is based of the use of a Taylor expansion of the ·derivative and evaluation of the function on

intervals of the independent variable27.

Specifically, the forth—order Runge—Kutta method of

numerical integration is used. In this method as

in the Euler method the initial value of the

function; f(xO,yO), is known. A rigorous

definition of the theoretical basis of the Runge-

Kutta method is presented by Jenson and Jeffreys

and is so referenced for the reader E8. In summary

the function will be evaluated as:

xn+l = xn + h (2.37)

and

_ yn+l = yn + _l_(kl + 2kg + 2k3 + kq) (2.40)6

where

kl = hf(xn;Yn) (2.äl)

Page 51: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

40

ka = hf(xn + _I_h,yn + _l_k1) (2.42)2 2

kg = hf(xn + _l_h,yn + _I_ka) (2.43)2 2

kg = hf(xn + h,yn + kg) y (2.44)

and as in the Euler method, h, is the step size.

Certain problems arise in using either the Euler

method or Runge—Kutta method when the step size, h,

is too large. To alleviate these problem the step

size will be reduced by 50 percent each time the

change in the slope is greater than, say five

percent for a given iteration. Previous experience

with fermentation simulation proves that this will

be an effective method for this type of

simulationaa.

2.5 QQQIROL SCHEME

The IBM PC (or industrial compatible) is used to

record manually inputted data from a batch reactor

and use this data with typical and calculated model

values to control a simulation of a series of

continuous stirred tank reactors. The system uses

an updating software program that incorporates

Page 52: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from
Page 53: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

42

the flow chart shows the divisions of the problem

statement (see figure 7).

Page 54: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

43

f___———%Ä BEGIN Ä

DATA ADATA

ANALYSIS “FITTR“

HARD ÜUTPUT GRTIURESULTSEND

·INTERACTIUE SYSTEM

Figure 7: Flow Chart of Computer — HumanInteraction

Page 55: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter III

!E.I.!;LQ!‘ä (MQ !f!.9l§.B.L€•..!„.‘-ä

3 · 1 BMP. QBTIB. G.B.I!:LEB.l.N§. V

In this portion of the process the computer

generates a growth curve based on manually inputted

batch data. From this data a prediction of the

optimum operating conditions for a continuous

fermentation in two continuous stirred tank

reactors is computed. This represents an ideal

bioreactor fermentation. The program performs an

analysis of the data to predict continuous

fermentation operating parameters. To perform the

data analysis the system will manipulate the data

to "back out" the actual fermentation parameters.

3.1.1 Parameter Qglculations

The data analysis is not a strict data

regression. The program creates a growth curve

based on the actual data. Since portions of this

44

Page 56: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

#5

curve represent particular growth phenomena, those

values are "picked" directly from the plot.

The flexibility of the software is demonstrated

by the choices of data types the user must provide. U

Increasing the data types and points increases the

accuracy of the model parameter calculations.

3 · 1 - 3 Q„9.Lä..LuE.s

As stated previously the environmental factors.

the effect the growth kinetics of the fermentation

reaction are:

1. pH Level

E. Temperature

3. Substrate Concentration

#. Cell Mass (enzyme) Concentration

5. Product Concentration.

These are the data types requested by the program

to be chosen by the user. The equations employed

that relate to each combination of data types

chosen are discussed in the following sections.

The "Specific Growth Rate" and "Time" are also

listed as data choices. The simulation allows the

Page 57: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

#6

user to input any combination of the data types

however, it is required that "Time" and "Cell Mass

Concentration" are chosen. Unless the "Product

Concentration" and "Substrate Concentration" are

among the data types chosen, the model will only Wcalculate the parameters for a batch reactor and no

continuous simulation with control data will be

calculated. Beginning with the minimum data types

required and hence the simplest of the simulations, .

the steps for the data analysis follows.

3 - 1 - 3 - 1 .§.sl.L Use.; §.m<;„ é lies 1Z?s.1=.;

with the minimum number of the data types, the

"Cell Mass Concentration" and "Time", the software

analyzes the data and returns the parameters for

the basic Monod model,"

_ Q; = Hx — kgx (2.#)dt

where H - kg is treated as a constant, HOVERALL.

This is not an accurate model but will give the1

user with limited data the ability to plot his /

her data and receive a crude model. For the data

Page 58: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Q7

types of "Time", "Substrate Concentration" and

"Cell Mass Concentration" the simulation uses a

more rigorous model.

3 - 1 - E - 3 ’i§.q.m..;.e1*•4=.c.a.t.i.9..¤ ä Tim; Data.

when given "Cell Mass Concentration", "Substrate

Concentration" and "Time" data the simulation

calculates the parameters for the specific growth

rate, specific death rate and maintenance

coefficient. These calculations are performed by

reviewing the data and locating the periods of the

data that represent the lag growth phase, active

(or logarithmic) growth phase, stationary phase and

death phase (see figure B). The system uses a

portion of the model to find when significant

changes in the growth rate occur and records the

location. At this point a review of the growth

curve and its significant portions is required

beginning with the lag growth phase.

Page 59: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

#8

Maximum stationary phaaa

3 u' Pu. Daanh phasPlum of axponaiuial mum

I

3Tlma ——•

Figure 8: Microbial Growth Phases (From James E.Bailey and David F. Ollisa"Biochemical EngineeringFundamentals", Second Edition, McGraw-Hill Book Company, New York, 1986).

Page 60: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

49

3 - 1 - E - E -

1Thelag growth phase is found by locating where

the initial growth rate changes to a higher rate.

Specifically, it is found by using the left side of

the equation (2.19):

dx = ( gus _;__)*(1 — _ß_ )x — kDx (2.19)dt (K5 + 5 + sa/K5!) PM

in the form of:

........1 91.2; = ci!.-;>g..<...>s.)- <3 - 1 >x dt dt

and analyzing where the initial change in value is

greater than sixty (60) percent. At this point the

lag phase has terminated and the active growth

phase begins.

3.1.2.2.2 Active Phase

As in the analysis for the lag phase, the system

uses the left side of equation number (2.19) to

review the data. In this instance, however, the

Page 61: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

50

program checks for a change of sixty percent in the

negative direction (a sixty percent decrease in the

slope). This point signifies the end of the active

growth phase and the beginning of the stationary

growth phase. _

3- 1 -E-E-3 f5„.ta.1=1.¤..¤a.¤f.x E!!:•.a.s.s

After locating the active growth phase the

system reviews each point of the remaining cell Qmass concentration data to assess when the

stationary growth phase is completed. Unlike the

previous phases, the program is searching for the

point where the cell mass concentration drops

considerably. If this does not occur it is assumed

that the data received covers only the first three

phases ofi growth and the parameters are calculated

accordingly. Data past this phase are not required

for operation and are not weighted heavily in the

parameter calculations. If the cell mass

concentration drops significantly, this point is

recorded as the end of the stationary phase and the

beginning of the death phase.

Page 62: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

51

3 - 1 - E - E -

‘+Thedeath phase, the final phase, is assumed to

last from the end of the stationary phase

throughout the remaining cell mass concentration _

data points. However, during the death phase there

can be considerable cell lysis which may provided

nutrients for the remaining cells and create

misleading data. The left side of equation number

(2.19) is used to review the data. In this ~instance when a positive change in the death

greater than sixty percent is encountered it is

assumed that the death phase has ended. The_

remaining data are not used for any parameter

calculations.

Although other authors have suggested fifth and

sixth growth phases, a second active growth phase

during which the substrate is limiting and a lag

phase preceding itao, this author feels the model

will perform within the accuracy of the data.

3.1.2.2.5 Model Qi [gg ggg Rgggg

Since this phase is not modeled by the Monod

equation a simple curve fit of these data is

Page 63: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

52

performed. Although this is not the active phase,

this growth phase is exponential (see figure 9).

Therefore it will be modeled based on the

following assumptions:

1. The length of the lag phase in not dependent

on the size of the inoculum.

2. During the lag phase there an abundance of

substrate.

3. The lag phase is not substrate inhibited. _

4. During the lag phase there is not sufficient

product to cause any inhibiting effects.

5. The lag phase can be modeled as a function of

time only._

AHence the lag phase is modeled in a manner similar

to the method for a system with only two data types

(see Cell Mass & Time Data).

3.1.2.2.6 Maximum Qggcific Qgggtg ßgjg

The system begins its parameter calculations

with the calculation of the maximum specific growth

rate. Again the program uses the left side of

equation number (2.19) to search for the largest

Page 64: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

53

LOS ( CELLHASSCDNCENTRATION)

”L

LAG GROWTH PHASE _

ß Z

LTIME ——>

Figure 9: Exponential Character of the Lag' Growth Phase

Page 65: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

5#

growth rate, dLog(x)/dt, within the active growth

phase of the data set. This value is recorded as

the maximum specific growth rate, HM, for the

organism. With this parameter calculated the

program proceeds to calculate the growth yield 'coefficient. _

' 3 - 1 - 3 - 3 - 7 1..;...1•;·.:•_.ä

The growth yield coefficient is calculatedby'

summing (the ratio of the cell mass concentration

over the substrate concentration) from the active

growth phase data through the stationary growth

phase data and averaging the calculated value. In

practice this value is not constant due to the

utilization of substrate for growth and maintenance

of the cell. By including a separate maintenance

coefficient in the kinetic model, the inaccuracies

encountered by averaging the growth yield

coefficient are diminished. Next another constant,

the maintenance coefficient is calculated.

Page 66: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

55

3 - 1 - E - E -9For

the data choices of Cell Mass Concentration,

Substrate Concentration, and Time there is no data

on the product concentration given. Therefore itR

is assumed that no product of interest is formed.

In this instance the growth rate equation becomes:

dx = ( En§_ ____)*x — kDx (3.2)dt u<S + 5 + ·§E”1•<SI> ‘

Similarly the equation for substrate consumption

is:

dä = —_1__( Ens ____)*x — mx (3.3)dt YX/5 (KS + S + 5 /KSI)

To solve for the maintenance coefficient and

specific death rate function, a few assumptions are

made.

1. Unlike the function definition for the specific

death rate stated previously, in the absence of

Page 67: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

56

product data the specific death rate isassumed constant throughout the fermentation.

E. The maintenance coefficient is a constant.3. During the stationary growth phase the specific

growth rate and the specific death rate areequal.

With the above assumptions the steps for the

calculation of the maintenance coefficient and the

specific death rate constant are as follows.

1. Assume a constant value for the maintenance

coefficient. m.

E. Calculate an average value for the specific

growth rate over the active growth phase using

the relation:

m + _1_gä = ‘HAVG (3.4)x dt

3. Using the average specific growth rate,

calculate the specific death rate constant over

the active growth phase using the relation:

•}·lAVG 'kD (3.5)x dt

Page 68: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

57

4. Using equation number (3.4), calculate the

average specific growth rate over the

stationary phase of the growth curve.

5. Compare the value of the specific growth rate Vover the stationary phase of the growth curve

to the calculated value of the specific death

rate constant.

6. If the values correspond within a specified

tolerance then proceed, if not record the

values, increment the current value of the

maintenance coefficient and return to step

number 2.

Once the values for the maintenance coefficient

and the specific death rate are calculated, the

program addresses the constants lumped within the

specific growth rate, the saturation constant and

the substrate inhibition constant.

3.1.2.2.9 Saturatggg_Qggstant ggg QgggjggggInhibitiqg Qpnstant

The saturation and substrate inhibition

— constants are contained within the specific growth

rate function. The saturation constant is

Page 69: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

58

calculated first. This is accomplished by assuming

that the specific growth rate can be modeled by the

simplest form of the Monod equation. That is:

H = _gms__ l(2.6) ”

KS+s

The saturation constant is solved by rearranging

equation number (2.6) and using equation (3.4) to

calculate a specific growth rate. The saturation

constant is calculated at each point along thel

active growth phase and averaged. To calculate the

substrate inhibition constant, equation number

(2.6) is again used, however it is augmented with

the substrate inhibition terms, sa/KS}, to form:

H = ______gms_ _____ (3.6)KS + s_+ sg/KS;

Because the substrate inhibition terms contains a

term raised to a power it can exhibit a large

effect over the entire growth curve. Equation

(3.6) is solved for K5} and the data from the

active phase through the death phase are used in

the manner stated above in calculating KS to

calculate KS;. Calculations similar to those above

Page 70: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

59

are used when "Cell Mass Concentration", "Substrate

Concentration", "Time", and "Product Concentration"

data are given.

3 · 1 - 3 - 3 @$..1-1. §g.l;.s.t=.:.a.t„a. °‘

when the "Cell Mass Concentration", "Substrate

Concentration", "Time", and "Product Concentration"

data are given a more rigorous model is obtained. °

The values for the maximum specific growth rate,

saturation constant and substrate inhibition

constants are calculated in the same manner as in

the preceding section. The changes occur in the

calculation of the specific death rate, maintenance

coefficient, and the product and growth yields.

3.1.2.3.1 Mainteqgggg Coefficlggg Q Sgggljlg QeatgBa}.;

In this mode, the assumption that the specific

death rate is constant is not taken. It is assumed

that the specific death rate can be modeled by the

equation:

Page 71: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

60

kDAlso,the full growth rate equations are used (see

Literature Review). As in the previous section,

the values for these parameters are solved using an '

iterative process. In this instance, the value for

kD is assumed according to equation (2.35).

However by solving equations number (2.19) and

(2.20) for the specific death rate, it is found

that the left side of the equations, the side ‘

opposite the specific death rate, differs in value

by only the pseudostoichiometric constant YX/p.

The value for Yx/p is found in the manner stated

above, so the value of the specific death rate

constant is varied and calculated over the active

growth phase until equations (2.19) and (2.20) are

equal within a specified tolerance.

After solving lfor the specific death rate

function, the maintenance coefficient is

calculated. Once more an initial value of one (1)

is assumed for the maintenance coefficient and the

program iterates until equation (2.21) is equal to

equations (2.19) and (2.20) within the tolerance.

The value for the product inhibition term is

calculated similarly. Equation (2.19) is solved

Page 72: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

61

for PM by using the average values of the

variables, calculated over the active and

stationary growth phases.

Several secondary checks are performed on the

parameters to fine tune the model. A different set _

of equations are used when "pH level" or

"Temperature" data are entered.

3.1.2.A gg ggggl ggg_Temgerature Qgta

Nhen pH level and / or temperature data are

given, the system calculates the parameters for the

equations

Hm’(2.10)

Based on the organism type entered by the user, an

optimum temperature and pH are assigned to the data

( see Appendix G for values). The maximum specific

growth rate under operating conditions, optimum

temperature constant, and optimum pH level constant

values are calculated from the active growth phase

of the growth curve. If no pH or temperature data

Page 73: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

62

are given the program assumes that the data were

obtained from a batch fermentation that operated at

the optimum temperature and / or pH. Another data

type that invokes equation (2.10) for parameter

calculations is the specific growth rate data. Q

3 - 1 · 3 · 5 §2„¢.=L;.i.f..L$. §J:..@3=.-*.1 B..é$..s Q.a.i=.s.

With these data the system calculates the

parameters in a manner similar to those in the

previous sections. Values for the maximum specific

growth rate and the saturation constant are picked

directly from the data. Depending on the

additional data supplied, the remaining parameters

are calculated in one the fashions mentioned

previously.'

Using basic chemical engineering reactor design

techniques, the program will predict the optimum

operating conditions for the continuous reactor

configuration based on the batch data.

Page 74: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter IV

B„§.£•..Q.I.I„Q„¥!.§ BER R§!iQfLQB.ä

‘*· 1 Q.Q.UlLN.Q.Q!.S. §„.L!i1LJ.1„..€•.I.LQ!! &!§!.Q Q,QHlBQ.L

After completion of the batch analysis of the

data, the user will direct the program to enter the

continuous mode of operation. In this phase the

computer will simulate a start up the fermentation

and bring it to the optimum phases predicted by the“

batch data. The system will then adjust the set

points (pH, flow rate, feed rate, etc) and

calculate the reaction rate. with the goal at

achieving the maximum product yield and growth

rate, with growth rate being the principal goal,

the system will search in a systematic manner for

the corresponding set points. When one optimum

point is found, say for the pH, the computer

program will choose another variable and search for

the optimum. At all times during the search the

program maintains a limited controlled (oscillating

within the critical control region) process. The

program will cease to search when movement from the

set points show no improvement in the growth rate

or yield. At this point the program will control

63

Page 75: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

64

the fermentation simulation until the feed is

diminished. Possible interest will be the effect

of a rapid change in the feed concentrations on a

"controlled" fermentation. One begins with the _

simulation of the reactor system.

‘•· E B.§.¢ä.QLQ.F$.‘§. ·

The reactor system consist of two continuous

stirred tank reactors (CSTR’s) in series separated

by a product separator. Based on observations by

Lee, Pollard and Coulman the CSTR’s are of unequal

size with the larger CSTR preceding the smaller

CSTR.15 In this arrangement the maximum

productivity of ethanol can be obtained, where

productivity (DP) is the dilution rate times the

product concentration.

4.2.1 Qpntinuous Btirred Tank Reactors

Based on the batch data the program calculates

the space — time for each of the CSTR’s. This is

Page 76: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

65

accomplished by using basic reactor design

principles. Beginning with equation (2.5), one

has:

Q; = —_l_ Mx — mx (2.5) V

dt Vx/6

By setting the right side of the equation equal to

RS one obtains:

_ Q; = R5 (#.1)dt

where R5 is — Mx — mx. By plotting — _; versusVx/s Rs

S and integrating to find the rectangular area

bounded by the curve and the horizontal axis, the

space - times for the CSTR’s are calculated. The

space — time for the first larger reactor is the

rectangular area bounded by the initial substrate

concentration, substrate concentration at the

maximum specific growth rate, the horizontal axis

and the inverse rate curve. The second reactor

space — time is bounded by the first reactor’s

Page 77: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

66

space — time on the right and the substrate

concentration at which the death phase begins on

the left. The vertical boundaries for the

rectangle are the horizontal axis and the inverse

rate curve (see figure 10). The other vessel r

simulated is the product separator.

‘•- 1 - E P..v;¤..¤1.u.<;.$. §;·.2.a..¤:.«2.t2.v;

A product separator is located between the

reactors (see figure 11). The user must specify

the efficiency of the separator or a value of

.thirty percent is assumed. Since the kinetic

equations for the continuous reactor systems are

not coupled (see Literature Review), a simple mass

balance models the separator. Also, the initial

batch model used to- calculate the reactor space —

time assumes no product separation, hence no

changes in the space - times are necessary. The

volume of the separator is assumed negligible. The

mass balance for the separator is:

P1 = FE + E (#.2)

where P1 is the outlet stream from reactor #1, FE

Page 78: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

67

rs -

0.1 0.5 0.99

l 3

Figure 10: Inverse of the Substrate ReactionRate (1 / RS) versus the SubstrateConcentration (S). _

Page 79: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

68

P1 P2F1

E

Figure 11: Fermentation Reaction System

Page 80: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

69

is the feed stream to reactor #2 and E is the

separated stream of pure product leaving the

separator (see Figure 12). The separator is

assumed an ideal separator and only product is

separated. The quantities P1, F2, and E have the Uunits of liters per hour. within each reactor,

changes in the physical environment are occurring

during the fermentation. One physical parameter

undergoing such changes is the pH level.

# · 2 YBEÄIAE.-.2 Q.!vß1.~J§.§. $.1 !‘1.U.....!-.6.IAJ.N.

#-2-1 ab gsxal Qhange

During the fermentation the pH level is changed

by the reaction products. The mechanism of this

change is discussed below. It is assumed that

during the fermentation procedures, both batch and

continuous, the pH level is controlled by the

addition of buffers. In the batch fermentation

scheme, the buffers are supplied in the initial

broth at a level that maintains a set pH level

throughout the fermentation. In the continuous

fermentation scheme, buffers are constantly added

to the system via the feed stream. To simulate

Page 81: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

70

Figure 12: Product Separator

Page 82: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

71

changes in the pH level and test the controlling

aspect of the system, a model of a uncontrolled pH

system is simulated (see figure 13).I

The system is based on the following assumptions:

1. All of the substrate (glucose) consumed is

converted to ethanol and carbon dioxide by the

reaction:

CÖHIEOÖ Egäxnää ECaH5OH + ECOE + Energy

(4.3)

E. Only CO2 in solution effects the pH level of

the solution.

3. Buffer is added in the feed stream until

reactor #1 is eighty (B0) percent full.

4. The buffer in the reactors is sufficient to

maintain a constant pH level for one space -

time. That is fresh media without buffer

completely replaces the buffered media after the

time period required to fill the reactors a

second time.

Page 83: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

72

CAUSTI CTANK

REACTOR#2

ISEPARATOR

REACTOR# l '

”Figure 13: Reactor System

Page 84: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

73

5. The reactor pressure is atmospheric.

6. The addition of C02 into the reactors can be

modeled as a function of the ethanol produced.

7. Mass transfer effects are negligible based on

the assumption of ideal CSTR’s. _8. The maximum acidic pH level obtainable is that

of carbonated water, pH 3.7

The pH level change is caused by the reversible

reaction:

002 + H20 <=====> HECÜB _<=====> HT + HC02

(4.4)

The latter half of the reaction equation:

HECÜQ <=====> HT + HC02' (4.5)

at 2B° C has an equilibrium constant, KEQ, of 2.5 x10"“

mol / liter.15

In the first half of the reaction:

Page 85: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

74

*<1HECÜ3 <=====> CO2 + H20 (#.6)

*<-1

at 25° C, the forward reaction has a reaction V

constant of 20s’1, while the reverse reaction has

a constant of 0.03 s'1·

Therefore the first half of the reaction in

equation number (4.4) is the slow step in the

reaction. Using the above assumptions, the pH °

level change caused by the fermentation is modeled

below.

4 · E - 1 · 1 B„s.é.s.t..L9.!.•. .1„nd.¤1s..s..d. ad l„„sy.s_L Ql;.;1•.9s.·ä

For the model, assume .03 / 20 or .15 percent of

the carbon dioxide in solution becomes carbonic

acid. And of the carbonic acid in solution10'“

moles are in the form of H+ ions. From Bailey and

Dllis, and Atkins the Henry’s constant for CDE at

moderate temperatures in water is in the order of

10°5 mol per liter/mmHg.15*29 Therefore assume that

at 1 atmosphere pressure, 10°3 mol of CO2 produced

Page 86: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

75

remains in solution while l mol evolves as overhead

vapor.

The relationship between the ethanol production

rate and the rate of addition of H+ ions into

solution is:

g[H+l = gg *(1O‘3)*(1O‘“)*(.O015) (#.7)dt dt

= KHg‘I_f'_ (#.8)dt

where KH = 1.5 x 1O“1O. By solving the

differential with the initial boundary conditions:

at P = Po, [H+] = [H+o] = 1O“pHo, where PD is the

initial product concentration, [H+OJ is the initial

H+ ion concentration and pH° is the initial pH

level of the solution, the resulting relation is:

EH+] = 1O'pH° + KH(P-PO) (#.9)

Initial, in this instance, corresponds to the

— time and conditions present in the reaction system

at the initiation of the variable change simulation

Page 87: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

76

(see Start - Up section). To balance the pH level

changes caused by fermentation, the addition of

caustic into the reactor is modeled.

Qsgsiis Elsa Lodges; ab gsxsl.Qngn9es

To counter the change in pH level caused by the

reaction, a 0.1 M ammonium hydroxide solution is

added to the broth. In the model for this addition

the only variable is the volumetric flow rate of

the ammonium hydroxide to the reactor. For each

liter of ammonium hydroxide solution added to the

reactor, 1.3 x 10'3 mol of hydroxide ions are added _

(see Appendix C for calculations). The resulting

relation is:

[OH'] (4.10)Vs0L~

where VSÜLN is the volume of the reacting solution

in liters, VBASE is the volumetric flow rate of the

ammonium hydroxide solution in liter / hr, and EOHT

J is the concentration of the hydroxide ions in the

Page 88: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

77

reaction solution. The pH level change model uses

both of the above change aspects.

#-2-1-3 ad Qbsmgs Mage;

The change in pH level is modeled by combining

the effects of the reaction and addition of caustic

into the system. The assumption made here is that

for the addition of each mole of hydroxide ion, one

hydrogen ion is reduced to produce water. The

result of the combination of equations number (4.9)

and number (4.10) yieldsz

cH+1 = 1o·¤HO + xH(P — PO) — [OH'] (4.11)

Hence, by applying the definition of pH as the

negative of the log of the hydrogen ions

concentration yields for pH:

pH = 1og[(10“PHO + KH(P — Po) — VBAgE*1.§*10'3)'1]Vsopu

(4.12)

Page 89: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

78

By applying the above techniques to the

temperature, a similar model is developed.

4.2.2 Tgmggrature

A heat balance around the reactor is performed

to model the temperature changes during a

fermentation reaction . The reactor is assumed

adiabatic and the remaining components, the heat

produced and heat removed are separated and

modeled. Beginning with the heat produced the

model is developed as follows.

4.2.2.1 ßeat ßggduced

To simulate the heat generated during the

fermentation, the assumption of the reaction of the

substrate proceeding as in equation number (4.3) is

made; The energy released during this reaction,

with the substrate in an aqueous state, is 56000

Btu / (lbmole sugar) or 30000 cal / (mol sugar).3O

This equates to approximately 340 cal / (g ethanol

produced). It is the aim of this treatment to

Page 90: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

79

* relate the heat produced to the product.

Therefore:

QPRÜDUCED = 34O6P*VS0LN (4.13)

where 6P is the positive change in product

concentration, VSOLN is the active volume of the

reactor (volume of the reaction medium), and

QPRÜDUCED is expressed in the units cal / hr. The

positive nature of the energy terms indicate that

this heat is being added to the system. The

removal of heat from the system is model below.

4.2.2.2 Heat Bgmgved

To model the heat removed from the reactor the

following assumptions are made:

1. 'The heat can be removed directly from the

reactor. Heat transfer is assumed to occur

instantaneously.

2. All of the fluid in the tank is at the same

temperature at all times. This is based on the

ideal CSTR assumption.

Page 91: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

B0

For simplicity, the only model variable is the

cooling fluid’s flow rate (see figure 14). The

cooling fluid is water entering at 500 F and

exiting at 700 F. This leaves an approach W

temperature of 200 F to the typical optimum reactor

temperature of 900 F (see Appendix G). The heat

capacity of water is assumed constant at 1 Btu /

(lbm*0F). The heat removed is the product of the

mass flow rate of the cooling, heat capacity of the -cooling fluid and the temperature change of the

cooling fluid. Which in equation form is:

QREMOVED = · M*CpST (#.10)

Ol" QREMDVED = • M*5000 (‘+.l‘I·)P•

where M is the mass flow rate of the cooling fluid

(water) in lbm / hr, Cp is the heat capacity of the

cooling fluid in cal / (lbm*0F) , and 6T is the

temperature change of the cooling fluid in 0F. The

constant 5000 is the product of the heat capacity

of water and the temperature difference of 200 F.

The quantity QREMÜVED -in equation (4.14)A is

expressed in the units cal / hr. The negative sign

Page 92: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

81

O

Figure 14: Heat Exchange in the Reactor System

Page 93: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

BE

indicates that the energy is being removed from the

system. As in the model for pH level change, the

model for the temperature change also is a

combination of fermentation and mechanical effects.

#-2-2-3 Ismgsgaigge Qnangs

The heat capacity of the reacting fluid is ~

assumed to be that of water, 1 Btu /(lbm *OF).

The temperature change of the solution is modeled

by the equation:

OTSOLN = QBRODUCED.i..QREMDMED <#·15)*h¤*Vs0LN*CPs¤Lu

where STSOLN is the temperature change of the

reaction fluid, rho is the density of the reaction

fluid (assumed the density of water), VSQLN is the

reacting volume, and CpSgLN is the heat capacity of

the reacting fluid (also assumed the heat capacity

of water).

GTSDLN = QQOSP — ß(EOOEl (#.16)Vh¤*CPsoL~ OOOVSOLN

Page 94: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

_ 83

The flow rate will also appear as a variable

quantity.

‘+- 2 - 3 !i„l.<.:.·.•:e. Batzsä

The initial flow rates are based of the ideal

reactor operating condition obtained from the batch Y

data. The system will operate in that mode through

the first two space - time periods. However,

following these period the flow rates will vary

throughout the simulation in order to achieve the

desired final product concentration and the

intermediated conditions. The intermediate

condition is the cell mass concentration exitingthe first reactor. The system examines the exiting

stream from the first reactor, to determine if the

cell mass concentration is that of the cell mass

concentration corresponding to the maximum specific

growth rate from the batch data. If below this

concentration, the system slows the flow rate

exiting reactor #1. If this concentration is above

this concentration, the system varies the flow rate

to find a new maximum. In a similar fashion the

Page 95: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

stream exiting reactor #2 is examined for productconcentration and cell mass concentration. Sincethe product concentration is the principalvariable, the system will vary the exiting flowrate to find the maximum product concentration.Note that the maximum dilution ratio, D (F/V), is

V

assumed equal to the maximum specific growth rateor in equation form:

DMAXwhereDMAX is the maximum dilution rate. This is4the upper limit of flow in both reactors (see

figure 15). Beyond this point wash - out occurs.

Hash — out is the condition at which the only

steady — state solution to the kinetic equations isat the cell mass concentration, x, equal to zero.15

The system will avoid values near this point

because of the high sensitivity (instability) ofthe system at these conditions. The simulation

models the entire fermentation. The first aspect

of the continuous fermentation is the start—up.

Page 96: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

85

6 _ _- , _ _ 0.6J , AS E; Zs - Egl 04; _1 E

äQ 2 g. O.:

ä

°0 0.2 0.4 0.6 0.0 .0 °u

Dilutkm nu. D.h°‘

Figure 15: Cell Mass Concentration versusDilution Rate (From James E. Baileyand David F. Dllis, "BiochemicalEngineering Fundamentals", SecondEdition, McGraw—Hill Book Company,New York, 1986).

Page 97: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

B6

‘»- 3 QR

Based on the batch data recorded for the

species, the system will simulate start — up of the

fermentation. The user is requested to input the V

initial operating conditions. These parameters are

initial flow rate (the reactor volume is sized

based on this value) in liter / hr, the inoculum

size in grams, the initial operating temperature in

degrees Centigrade, the substrate concentration

inthefeed in gram / liter, the initial product

concentration in the feed in grams / liter, and the

_ pH level of the feed. If any of these values are

not given, the system assumes typical values (see

appendix).

Although the operating pH level and temperature

are requested, unless batch data for these values

were included initially, the simulation calculates

the maximum specific growth rate based on the

typical values for the organism and the function

presented in equation number (2.10). lf the user

has not entered batch pH and / or temperature data

but wishes to insert specific values for the

optimum pH and / or temperature, this change can be

made when prompted for such information by the

program. Ütherwise the tabulated values are used.

Page 98: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

97

The program uses eighty (BO) percent of the reactor

volume as the active reaction volume for the

simulation. This restriction is based on the

foaming characteristics of most fermentation broths

and the vortex caused by agitation of the CSTR’s. VThe program therefore oversizes the reactors by

twenty (20) percent during its reactor volume

calculations.

The start — up simulation begins by filling

reactor #1 to eighty (BO) percent full. The

reactions begin immediately. when the reaction

rate reaches its maximum value reactor #2 is filled

to eighty (BO) percent full. Reactors #1 and #2

are filled at the rate specified by the user,

however there may be a delay in the filling of

reactor #2 based on the above conditions. Once

both reactors are full, the simulation proceeds at

the specified flow rates. This continues for one

space — time (the time required to fill reactor #1

for a second time at the rate specified by the

user}. The system then reports the cell mass,

substrate and product concentrations of the flow

streams. The pH level and temperature of the

reactors are also reported. This point is titled

the initial steady - state conditions. Following

start-up, the steady state simulation begins.

Page 99: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

BB

4 · 4 )$.I.€B..Q.Y. §.I&I.§

The simulation following the start — up, will

begin to simulate changes in the operationl

environment. The system will simulate sampling at

thirty (30) minute intervals. These values are ’

recorded and used by the control algorithm to

assess the control direction. This simulation

continues for three days or until six hours pass_

the first twenty-four hours pass with no

significant change in the sample composition.

4.5 Qgßlßgg QLGORITHQ

The controlling algorithm for the simulation

will strive to control the pH levels in the

reactors, flow rates into and between the reactors

and ·temperatures within the reactors. By

controlling these variables it indirectly controls

the product concentration, cell mass concentration,

substrate concentration and reaction rate (see

figure 16).

Page 100: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

B9

VG1 (G2) ·

° C1 (C2)

(Q2)P1 (P2)

Figure 16: Reactor System with Parameters

Page 101: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

90

4.5.1 gg

A control algorithm taken from Shinskey is used

to control the pH level in each reactor (see figure A17)31. Based on the dynamics of the simulated

system the control parameters are calculated

accordingly.

The process gain is calculated based on the pH

change model discussed previously. From this model

and equation number (4.12), Kp, the process gain

is:

1-äälgläälgglslKn =-gg =-Qaä- = L--- --------Zsgcu--------.----- >

dm dVBASE (10-pROVSOLN

- (4.17)

Hhene c is the control output and m is the

manipulated variable. Figure 16 shows an

interaction PID ( proportional, integral and

derivative action) controller. For this type of

control the parameters are calculated accordinglyz

Page 102: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

91

· .+ •

P + * '•n^ '

¤7;

Figure 17: Control Diagram (From F. G. Shinskey,"Process-Control Systems: Application/ Design / Adjustment", SecondEdition, McBraw—Hill Book Company,New York, 1979).

Page 103: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

92

PGAIN = 1OÜXKp (#.18)

mn = 100x(en - KDER(cn — yn)) + bn (#.19)

Yn = Yn—1 + €$...1E..1..§.n,-.-T,.Xn—1„). (#-20) bSt + DEFF/KD

bn = bn-1 + (#.21)61; + IEFF

where St is the sampling time, 1 s ( one second),

IEFF is the effective integrating time and is equal

to the sum of the integrating time ( I ) and the

derivative time ( D ), DEF; is the effective

derivative time and calculated by:

DEF}: = ____}_____; (#.22)1/I + 1/D

KD is the derivative gain limit (assumed 10), f is

the feedback, b is the lagged value of the

feedback, the subscripts nl and n-1 are the nth

values.

Page 104: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

93

Equations (4.19) through (4.22), taken from

Shinskey , represent a position control algorithm.

The system calculates values for the reactors

assuming Kp equal to 1 (one), The integrating time

equal to Kpxöt, the dead time is 1 s (CSTR

assumption) D = I = 2x(dead time)/n.

4.5.2 Temperature

For control of the temperature , the same

approach as used in the pH control is taken. In

this instance the process gain, Kp, from equationl

number (4.16) is:

Kn = QL; = 5.2 = -...;.5.9..... <‘+-E3)l dm dM rhO*vSOLN

Because of the predictable nature of the

temperature a simple proportional controller is

used. The parameters are predicted as above only

for the single mode controller.

Note that for the pH level and temperature control

systems each tank is controlled independently and

no overall algorithm is proposed.

Page 105: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

94

4 - 5 - 3 ELQ! 8.€1lE.‘-ä

One of the major problems of biological systems

is the effect of contamination on the reaction.

Since the disturbance of contamination on the

system flows downstream and can shut down an entire

operation, the flow rates are controlled such that

the reactors can be isolated. This is accomplished

by controlling from the exit stream to the raw feed

stream ( opposite the direction of flow). In this

fashion the down stream deviations are limited and‘ those upstream are increasedaa.

Because of the upstream controlling scheme, one

begins with reactor # 2.(see figure 18)

4.5.8.1 Reactor #2 .

The material balance around reactor #2, using

the assumption of constant volume is:

FE + C2 = PE + G2 (4.24)

where F2 is the reaction media feed to reactor #2

in liters per hour, Ca is the caustic feed into

Page 106: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

95

G2F2 C2

P2

Figure 18: Reactor # 2

Page 107: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

96

reactor in l/hr, PE is the is product stream from

reactor #2 in l/hr and GE is the CO2 vented from

reactor #2. It is assumed that the caustic flow

rate into the reactor is negligible. This

assumption reduces equation (4.24) to:

FE = PE + Ga (4.25)

A further assumption is that that gaseous CO2

vented from the tank can be modeled by the method

proposed in the pH Changes section of this writing.

From that model, approximately all CO2 produced by

equation (4.3) evolves as gas and is vented from

the reaction vessel.

Also assume that the CDE produced leaves the

reaction mass instantaneously and has no effect on

the reaction volume. Hence equation (4.25)

becomes:

FE = P2 (4.26)

Utilizing this equation the control of the flow

rate keeps the dilution ratio below the specific

growth rate and near the optimum rate predicted

Page 108: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

97

from the reaction rate data (see Flow Rate section

under Continuous Simulation and Control).

An analogous approach is used for reactor #1.

Page 109: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter V

B..E.§„L!.Ll§„.„&!!l2..-„M.$.§.LL$.$..L9„b!.

I 5 - 1 B.E..I.5iJ.LI§„ __

The results of the simulation are divided into

sections according to their respective data sets.

Data sets with sufficient data types, cell mass

concentration, product concentration, and substrate —concentration are fully analyzed with continuous

production predictions. Each data analysis

includes graphs of the data. A results sheet for

each data set is included in the appendix. The

headings on the data sheet of "Three Data Types"

etc, indicate that the data used contain cell mass,

product and substrate data. "Two Data Types"

indicates that cell mass and substrate data were

used. And "One Data Type" indicates that cell mass

data were used. When the data used are sufficient

to perform an analysis, the analysis is undertaken.

Therefore a data set containing cell mass,

substrate and product data is analyzed in three

methods.

The Euler —Method was used exclusively in the

development of the model equations. The model was

99 I

Page 110: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

99

deemed operable when the data from data set #1 were

matched through the stationary phase by the model.

5 - 1 - 1 Q.; $a..„’=äs.12..--.=i1

Data set #1 is the data from source #1 from

appendix E and a listing of the data is supplied in gappendix F — 1.

The program initially plots the concentration

versus time data for the data found in appendix F —

1 (see figure 19). A plot of the

dlog( cell mass concentration) (dlog(x)) or

1(cell mass concentration) d(time)

(1/x)dx/dt is then produced (see figure 20). In

this mode, three data types, a plot of the negative

inverse substrate reaction rate versus the

substrate concentration (1/RS versus S) is also

produced ( see figure 21). A table of the model

parameters calculated for each mode used is

produced (Table #2), a model of the process streams

concentration at steady — state (Table #3) and a

table of the effects of varying the separator

Page 111: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

100

52 so mmmu us mz m mmm mmsSubstrate,QEteääulgiss,8.Concentration I( g / 1)

eu0.9 20.7 41.8. 62.7 83.6 104.58 — TIE (151185)

Figure 19: Concentration versus Time Plot forData Set F — 1

Page 112: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

101

0.51 '

Ä. I

.2Äß . „0.0 20.9 41.8 62.7 83.6 104.5

. TIE —

Figure EO: Log (cell $assDc:nc;n:r;tio?) versusTime Plot or a a e —

Page 113: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

102

2571/RsUERSlI5C0!4UERS10N· (11.1.-0.15¤

(hr•1 /g-S)-2.86*

I-.-

-11.00 · .0.0 0.2 0.4 0.6 0.8 1.0

CUMERSIOIQ ·

Figure 21: Inverse of the Substrate ConsumptionRate (1 / RS) versus SubstrateConversion (S) for Data Set F - 1.

Page 114: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

103

TABLE B

Model Parameters for Data Set F — 1

Results of Paraneter Calculation FollowszUsing three uf datanaxinm spec; 10 growth rate (1/hr) : 0.107half satu‘atu;n_constant (g-S/1) : 0.002 _suhstrate mhibition constant 1g-S/1) : 1238.665naaginm product concentration (g-P/1) : 18.000 Tnaintenance coefficient tg-S/9-ce11¥1·r) : 1.482growth yield coefficient g-cell/3-S) = 0.061 3product vield coeffic;ent_ g-cell g-P) =_ 0.152— specific death rate fmct 1on constant (liter/hrltg-P^4.49) : 24.503E·15space ve1oc;tv for reactor no. 1 (hr) : 28.929space velocity for reactor no. 2 (hr) = 19.167Using two tvpes of data .naxinuw specific growth rate (1/hr) = 0.107half satu·at1on_constant tg-S/1) : 0.0üsihstrate 1rh1bit;on constant (9-5/1) : 1238.665naintenance coeffxcxent (TS/g-cell¥1·r) : 1.250growth_v1e1d coefficxent g-ce1l%5) = 0.061specific death rate constant (1 ) = 0.016Using one data_tvpeaverage specific growth rate 11/hr) : 0.028 _

I

Page 115: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

104

TABLE B

Flow Streams for Data Set F — 1

PREDICTED CDHCENTRIITIUNS IN STREMS (Q/l)FEED TO PRIDUCT 4 PRIDUCT FEB) TO PRIDUCTL REQCUR FRI]! FRUI REQCTOR FRI}!M. l RERCTIR SEPARRTUI M.2 REQCTIR EM. 1 M. 2

CELL MSS 0.0% L555 0.000 l.5S5 2.044PRMUCT 0.000 9.% 2.366 6.687 9.90lE SMSTRNE *3.000 22.0W 0.000 22.000 ll.000

Page 116: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

105

efficiency (Table #4) are produced. The

significance of these graphs and tables is

discussed in the discussion section of the chapter.

5.1.2 Qéta Set #2

Data set #2 is the data from source #3 of

Appendix E. A listing of the data is found in

Appendix F — 3.

The next source of batch data is source F — 3.l

This calculation proceeded as in the previous

section but encountered difficulties because of the

lack of a stationary growth phase (see figures 22 &

23), and large fluctuations in the substrate

consumption rate (see figure 24). The parameter

values calculated (Table 5) are analyzed in the

discussion section. -

5.1.3 Data Set #3

Data set # 3 in the data from source #8 in

Appendix E.

Page 117: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

106.

TABLE A

Effect of Varying Product SeparatorEfficiency for Data Set F - 1

EFFECT IF WNIN3 PRIDUCT SFPNIFIIIR EFFICIENCY U1 FIM CII1CENTR11I101(SEFFICIENCY CELL M35 PRIDUCT SIBSIRRTE( Z) 9/111eI* 9 /I_11er 9/ hier10.000 2.044 11.812 11.00020.000 2.044 10.856 11.000 ‘30.000 2.044 9.901 11.00040.000 2.044 . 8.946 11.00050.000 2.044 - 7.990 11.00060.000 2.044 7.035 11.00070.000 2.014 6.079 11.00080.000 2.044 5.124 11.00090.000 2.044 4.169 11.000 _

Page 118: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

107

HNO CÜHCEPITRQTIÜNUSTIPE FÜR FERIENTQTIÜN PRÜCESS ··

Substrate;Cell Mass,&ProductConcen ra iongt! E) 63.64 ‘ _

6.76 Ä

„ „ L1° I4!0.0 1.7 3.3 5.0 6.6 3.3

_ T11! (HMS)

° Figure E2: Concentration versus Time Plot forData Set F - 3

Page 119: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

108

'mv VLOG (CELL ‘

V

°•TI!

Figure 23: Log (cell mass concentration) versusTime Plot for Data Set F - 3

Page 120: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

109

I‘ I

1 1 RS 0.33 ° '“(hr·1 / g-S) ·

I II· _

0.0 0.2 0.4 0.6 0.8 1.0CUNERSIO1!

Figure 24: Inverse of the Substrate ConsumptionRate (1 / RS) versus SubstrateConversion (S) for Data Set F - 3.

Page 121: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

110

Page 122: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

111

The batch data set F — 3 was not in a form that

allowed it to be used in the analysis. However a

growth yield, Yxgy of .57 g cells produced per g

glucose consumed was extracted from the source for

use in later comparisons of parameter values for Ä. Igamgggstgig fermentation on glucose medium.

5 · 1 ·

4Data set ## is the data from source # 10 in

Appendix E.

The batch data form source F - 10 was not used ‘

because CDE is not a parameter in the derived

model.

5 - 1 - 5 9;;; .5;; #..5. -

Data set #5 is the data from source # 13 in

Appendix E. A listing of the data is found in

Appendix F - 13.

The batch data from F - 13 was analyzed as in

the prior sections. The concentration versus time

plot shows an extended stationary phase (see figure

E5). From the dlogtx) versus time plot several

Page 123: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

112

228.80Substrate, 1 1 1 1 1 iCell Mass,z.Product Q ' Q Q Q EConcentration f‘ f ; Q s E1 9 ’ 1*

‘11"·‘*°§0.0— 4.8 9.7 14.5 19.4 24.2TIIE (MRS) ··

Figure 25: Concentration versus Time Plot forData Set F - 13

Page 124: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

113

growth phases are clearly evident (see figure E6).

The 1/RS versus conversion of S plot illustrates

the erratic aspect of the data (see figure E7).

The Parameter Calculation Table, Concentration Of

Process Streams Table, and Effect Of Varying VSeparator Efficiency Tables are discussed in the

following section (Tables 6, 7, and B).

5-1-6 .Q.·ä-1=.a iäst. *16 V

Data set #6 is the data from source # 16 in

Appendix E. A listing of the data is found in

Appendix F — 16.

The batch data from source F — 16 was analyzed

as in the previous examples. The concentration

versus time plot is unique in that cell mass

concentration continues to increase while substrate

is exhausted and product concentration decreases

(see figure EB ). The plot of dlog(x) versus time

shows a two dlog growth curves separated by a

V stationary growth phase (see figure E9).

Page 125: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

114

(LOG (CELLlJ4(MASS) ä é ä ä ä 4

·°°“81•418 917 14.5 1914 24.2E TIE

·Figure 26: Log (cell mass concentration) versus

Time Plot for Data Set F — 13

Page 126: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

115

1 1 RS

rr V 1

•.••;20.00.2 0.4 0.6 0.8 1.0

_ CMERSI1]4

Figure 27: Inverse of the Substrate ConsumptionRate (1 / RS) versus SubstrateConversion (S) for Data Set F - 13.

Page 127: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

116

TABLE 6

Model Parameters for Data Set F — 13

Results ot Paraneter Calou1ationFollous: °Usia;9 three tgpes ot‘ datanaxiiun spec; ic grouth rate 11/tr) = 0.661half SITlI‘Q1l¢]'t_01]‘1S1'I|‘\‘Ü (9-S/I) : 0.000sabstrate inhibitaon constant (9-5/1) : 0.000naiguui product concentration (9-P/1) : -0.000naintenapce coetficient ts-S/9-ce1l¥|·r) : 33.332wcuth yield coefficient s-cell/$5) : 0.031product yield coet‘t‘1cient_ 9-cell 9-P) :_ 0.64 ·specific degth rate Fmction cmstant (liter/hrlo-P^4.49) : 25.82611-16space veloc;ty For reactor no. 1 (hr) = 2.50space velocity for reactor no. 2 (hr) : 25.667Usir;9 tvo types otdatanaxinuaspec;t‘1c youth rate tl/hr) = 0.6611tIlÜSI1'1.I‘§11(]'I_1}1]‘E1'I|1‘1 (9-S/1) = 251.000s1t;st1·ate 1rh1h1t;oa; cmstant (9-S/D =0.0001

‘= .mi"‘“2im$aiéa2„*r‘t“"°ii$"§t" ‘ . äa1°‘Mariä mai. rate ooiastgaäeti/1,1:) = -0.ara 1

Us' dat tIVg‘2;!SP€01$i0§N11\Pl1!(l/Öl') = am y _

Page 128: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 1 7

TABLE 7

Flow Streams for Data Set F — 13

PREDICTED CIIICEIITRATMS IN STMHS (9/I1FEED 10 PRIIJUCT PREDUCT FEED 10 PRGJUCTMCM FRII1 FRU1 MCM FRG1ID. 1 MCM SEBARAM N1. 2 MCM

ml l „ ml 2l

CELL 1'A55 0.000 1.379 0.000 1.379 2.2%PRIDUCT 0.000 8.1% 2.66 5.731 21.169SWSMTE 260.000 200.000 0.000 200.000 100.000

Page 129: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 1B

TABLE 6

Effect of Varying Product SeparatorEfficiency for Data Set F — 13

EFFECI U WIYIII1 PRIDUCI SEPANCR EFFICIEIICY {I1 FIM CIIICENINIIIISEFFICIENCY CEL1. MSS PRIDUCI SEINE„ (Z) 9/hier 9/hier ?/hier _10.% 2.2% 22.% %.%20.000 2.2% 21.987 1%.%E 30.% 2.2% T 21.169 1%.% E40.% 2.2% 20.350 1%.0%50.% 2.2% 19.51 1%.%60.% 2.2% 18.712 100.%70.% 2.2% 17.893 1%.%80.% 2.2% 17.75 1%.%1 90.% 2.2% 16.256 1%.0%

Page 130: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

119

Substrate, éA

_ ÜS1 ( - ‘ .

Cell Mass, & g W § § § § ·Prod ct E-——JPé-·————%-**—*-********’*** ‘Concäntration '

( g 1 1)

,;ßjsf".S é'“'”-Ü::?*‘*"-"l

‘ ATIIE (MRS)

Figure EB: Concentration versus Time Plot forData Set F - 14

Page 131: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

120

1.2s1.06

(CELL 0.87Ä gmass 1 T Q Y ·

.•glI.! 2.2 4.4 6.6 8.8 11.0TIE

Figure 29: Log (cell mass concentration) versusTime Plot for Data Set F — lk

Page 132: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

121

5 - 1 -

'7Data set #7 is the data from source # 17 in

Appendix E. A listing of the data is found in

Appendix F — 17. V

The data from source F — 17 was analyzed as

before. The concentration versus time curve shows

the cell mass concentration and the product

concentration increasing after the substrate

concentration is zero (O) (see figure 30). The log

(x) versus time curve shows several log growth

regions (see figure 31).

5-1-5 !?.a.t.@. ää. §!.§.

Data set #8 is data from source # 18 in Appendix

E. A listing of the data in found in Appendix F —

18.

The data from source F · 18 was submitted to the

analvsis. The concentration versus time curve was

irregular although it followed the expected trends

(see figure 32). The log (x) versus time curve

likewise is irregular but follows established

trends (see figure 33).

Page 133: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

122

MSubstrate, ‘

Cell Mass, Z-QProductQ ·\ QConcentration Q S

( g / 1) 2 12‘“·°°&°

622.0020.00

Q .2

0.0 _ 5.3 10.6 15.8 21.1 26.4THE (PIIRS)

' Figure 30: Concentration versus Time Plot forData Set F - 17

Page 134: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

123

*

MASS ) E ä T é L é T

***1 1*126.4

_ TI!

Figure 31: Log (cell mass concentration) versusTime Plot for Data Set F — 17

Page 135: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

124

21.66;LI5 Ta E;

Q

IProduct Q ? \ g 6 IConcentration § 1 \ Q é ä I‘

°’" 10781

‘°'°°•.•26.1 62.0 79.2 106.6 162.06 111: 111011161

Figure 32: Concentration versus Time Plot forData Set F — 18

Page 136: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

125

IIIII1.06 <cE1.L 1,12 I"“SS ’ Ä-.-

1-.----u-I

26.4 52.8 16.6 132.0

Figure 33: Log (cell mass concentration) versusTime Plot for Data Set F - 18

Page 137: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

126

5 - E Q...l,.§„Q!§.§„L¤„N

The simulation package contains a batch

simulation using the Runge — Kutta method.

However, the system only models batch growth when ·the operation pH and / or temperature are different

from that of the batch data given. This requires

that pH and / temperature data are given in the

initial data sets.

5 - E — 1 E.a.¤:.·=1.m.¢=;„.i¤.•;.c Qslc ¤..1..a..1=.-i9_usa

The system performed well when data containing

all growth phases was given. In data set #1, the

system calculated all the parameters for the

proposed model. In this example the parameters

calculated are close to those used by the data’s

author. For example, the data source’s specific

growth rate is .15 hr—1 and the system calculated

.11 hr—1 (see Appendix D for reference).

The two mode parameter calculations, under

similar conditions, gave parameter values that

corresponded well with the three mode calculations.

However, when insufficient data are given the model

attempts to force fit the data to the model. This

attempt is not very successful.

Page 138: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

127

with source F — 3, there is no stationary growth

phase. This resulted in values of zero for the

parameters contained in the specific growth rate

function (KS, KS} and PM). To compensate the

maximum specific growth rate and the maintenance

coefficient were artificially high. Although the

yield coefficients were correct the parameter

calculations were inaccurate for both the three

data and two data modes. In this case the only

accurate parameter calculation is that for the one

data type mode.

Hith data source F -13 the fluctuations in the

substrate data caused problems. Once more the

model program attempted to force fit the data. The

same approach as above was used and the same

results achieved. The only accurate parameter

calculation again is that for the one data type

mode. -

with data source F - 14, an attempt was made to

check the limitations of the model. As stated in

the literature review the model encounters problems

at low substrate concentration. This attempt shows

that limitation to be valid. This data also show a

change of substrate when the initial substrate is

depleted. The proposed model does not contain any

parameters for switching of substrate. This

Page 139: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

188

demonstrates one of the limitations of the!Wonod

model.

With source F — 17, the data show growth beyond

the depletion of the substrate. This however does

not illustrate switching of substrate since the

product also continues to rise. This represented

an attempt to model a microbial growth system that

defied the basic conservation of mass laws. The

system failed to produce any parameter

calculations.‘ with source F — 18, the data show rapid

fluctuations in the cell mass concentration and

substrate. Also a two data type input. The system

was not (able to force fit the data to the model.

The data show four (4) distinct logarithmic growth

phases. The system is designed to pick three

growth curves. This represents another outer limit

of the model and no parameter values were

calculated.

5 - E -E; [email protected]!.z z €—§1=„a„§..e F.l..s:1.v; 5..t.1;e9„¤As

Steady — state conditions were predicted for two

of the data sources. These conditions were based

on the steady — state equations at the optimum

reactor conditions based on the batch data.

Page 140: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

129

with data source F -1, the steady — state cell

mass concentration is less than the batch

concentrations at the maximum growth rate. This

results because the maximum substrate consumption

rate does not correspond to the maximum cell growth

rate. There is substantial growth of cells and

increase in product in the second reactor, which

was the desired results.

With source F -13, although the substrate

consumption rate fluctuated greatly in the batch

data, a continuous simulation was obtained. In

this case the cell mass concentration was well

· below the maximum as quoted from the batch data.

The results here is also desired. The second

reactor increased cell mass concentration and

product.

5 - 3 - 3 $§„E.ä.‘T..é.§.QI. Eitl ;..;-„La.v1s.x

In all setting for the separator efficiency, the

efflciency showed no effect on the final cell

concentration of the second reactor. This is the

result of the operating the second reactor in the

stationary growth phase. The simulation is

~ designed to hold the fermentation reaction at its

maximum in the first reactor and to take the

Page 141: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

130

fermentation reaction through its stationary growth

phase in the second reactor. During the stationary

growth phase cell mass concentration is constant

and shows very little change with respect to

substrate and product concentration. The effect of

substrate and product_concentration on the cell

mass concentration is great during the death phase,

hut the system is designed to keep the reaction out

of the death phase.

5 - E -‘> 9.9..0;.:9..1- P„a..r.am.ä„s.¤.;s.

The control parameters were not tested in the

simulation. These should be tested in further

studies (see Recommendations).

T 4

Page 142: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter 6

Q.Q.h!„Q„l„.L!§..I..„Q.h!.

The proposed model performs well on smooth data

that display all stages of growth. The limitations

of the model are organisms that switch substrates

and organisms that display more than three growth

phases (the stationary growth phase is included in

the three).

The continuous model produces the expected

results. A large reactor followed by a smaller

reactor increases the cell mass concentration and

product concentration in the final product stream.

The product separator did not effect the final

cell mass concentration because the second reactor

contains cells in the stationary growth phase (see

Discussion).

The specific death rate function varies little

with changing product concentration. A constantl

value for the specific death rate is sufficient.

1 3 1

Page 143: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter VII

RE.Q„.QP'!T.U.§.NT.Q£%IT_l-„QThe

study suggest additional subject areas which”

need to be addressed. These shortcomings are

mentioned in the Discussion and Conclusion sections

of this paper. The areas in need of a path forward

direction are the control, and batch simulation.

The control algorithm was not tested in this

study. Further study should test the algorithm.

·In both algorithms the constant, KP, will vary with

respect to the reaction volume and thereaction.Actual

test should be performed to verify this

relation. Other types of data should also be

tested.

This study held the pH level and temperature

constant. The original thrust of the study was to

allow the batch fermentation to proceed initially

to completion holding no variables constant. This

would allow the program to "learn" the batch

fermentation system and control the continuous

system. This concept should be investigated

further.

132

T V

Page 144: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

133

Since there are several small industries that

could benefit from this and other similar studies,

a joint study, wherein the industry supplied the

hardware and laboratory and the investigator

supplied the programming, should be pursued.

Page 145: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Chapter VIII

5 |„|„§MH.B)i.

A model of the fermentation of glucose to

E t h a¤¤ 1 ¤ S 1 ¤ 9 S §.EE..D.ä.LQ.!91.§§.‘ä qe.r.¤;x3..ä19.¢. 1 S ¤ r E S E ¤ t Edin this study. The model incorporates a separate

function to simulate the specific death rate. A

computer program uses batch data to calculate the

model’s parameter values. These values are used in tthe model to simulate a continuous fermentation in

two continuous stirred tank reactors in series with

a product separator between them. The simulation

also provides for varying feed stock and organisms.

A control algorithm is presented to be used with

continuous fermentation. The simulation test the

effect of varying the efficiency of the product

separator on the final cell mass concentration.

134

Page 146: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

LITERATURE CITED

1. A. E. Humphrey, T. L. Donaldson, "Introductionto Session V: Future Trends in Biotechnology",

Q.11 B..1...Q„1..e.C.b.n.Q-.1.9.91 F QJQn n W 1 1 ev 8- SQ ne , New vo 1- k ,19869 P, 649.

2. D. Williams, P. Yousefpour, and E. M. H.Wellington, "Dn-Line Adaptive Control of Fed-B Q 1 C n F Q 1 me n 1 Q 1 1 Q n Q 1 5.Q.1;.C.?1..§.c-Q.m.x..C..e.§.

»·andVol.XXVIII, Pp. 631-645, John Wiley & Sons,Inc., 1986.

3. Liang-Heng Chen and Hsueh-Chia Chang, "GlobalStabilization of a Biological Reactor byLinear Feedback Control", Qngnigal_Enginee;lngQgnnnniggtigns, Vol. 27, pp 231-254, Gordon ‘

and Breach, Science Publishers, Inc., 1984.

4. D. Martin Comberbach and John D. Bu’Lock,"Automatic On-line Fermentation Headspace GasAnalysis Using a Computer - Controlled GasC h r Q m a 1 Q Q ¤‘ a Q h '° ,13..1.gggggnginggnlngVol. XXV, Pp. 2503-2518, JohnWiley & Sons, Inc., 1983.

5 - J · LQ d d er » lbs. §f..e.a„.e1=.= 6. I..é..äQl'!9.Q.i..§c $.1..11.91. » Sec Q ndRevised And Enlarged Edition, North—HollandPublishing Company, London, England, Pp 596-979 1971.

6. Michael J. Pelczar, Jr., E. C. S. Chan, andNoel R. Krieg, nigngngnlggy, Fifth Edition,McGraw-Hill Book Company, New York, 1986, p.344.

7 · ßtuar 1; J . Baum , ;.1¤.1:.1‘.Q.g1;C.1..1.Q.n QrtQe111.Q 61.119..E!-1..Q„1.Q9.1.;a..1. Qb_e.m.„1-s..t.1:.x » Er d Ed 1 1 1 Q n

·MaC n 1 1 1 an

Publishing Co.,Inc., New York, 1982,p. 152.

8. Rodney P. Jones and Paul F. Greenfield, "RoleOf Water Activity In Fermentations",

Vo 1 . x x v 1 1 1 ,Pp 29-40, 1986.

9. James E. Bailey and David F. Ollis, Qiocheniggl.E.nQ.1..¤1ee.1‘.111Q E.Q..n.d.e.m.e.n;e.1._e , sec 1, nd Ed 1 1; 1 O n , Q105, McGraw-Hill Book Company, New York, 1986.

135

Page 147: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

136

10. Markku Nihtila & Jouka Virkkunen, "PracticalIdentifiability Of Growth And SubstrateC¤“5UmPti°“ Mddala"- Bigkaanngldgx. andälgénganganing, Vdl- XIX, pp 1831-1850, 1977.

11- J- M¤n¤d· ann- Ran- Maanaa1a1,, v¤1. 2, P 371,1949.

12. Brian W Mar, " Challenge Of Michaelis—MentonC¤na1anta"· laghnagaa Napaa- pp. 1119*1117,Oct. 1976.·

13. Octave Levenspiels, Bioteghnglggg andgiganginaaning, Val- 88, pp 1671, 1980-

14. G. R. Cysewski and C. R. Wilke, BigteghnglggyBigengiggerigg, Vol. 19, p 1125, 1977.

15. J. M. Lee, J. F. Pollard and G. A. Coulman,"Ethanol Fermentation With Cell Recycling:Ü°mP¤t€V 81m¤1at1¤n"• gignagnnnlggx angBiggngiggering, Vol. XXV, Pp 497-511, 1983.

16. Mohamed A Mehaia and Munir Cheryan, "EthanolProduction In A Hollow Fiber Bioreactor UsingSaggnangnxgaa Qanaxiaaaa", épgixadmigngniglggx ang Bignagnnglggx, Val- 80, Pp100-109, 1984.

17. K. G. Gutpa, Kamini Kushu and LakshmiBhatnagar, "Effect Of Some Physical AndChemical Factors On The Biomass And Sterols OfQangaga v1annana;nia» Q- paagggnnggigalxa....andäaganangnxgaa.ganaxiaiaa", Lngaan Jag;naL Exa-Bigl, Vol,. 11, Pp 584 — 86, November 1973.

18. Gary C Gray, "Mathematical Modeling Of The_ Acetone—Butano1 Fermentation For The Proposes

Of Bioreactor Design", Master’s Thesis,Virginia Polytechnic Institute And StateUniversity, Blacksburg, Va., May, 1983.

19. Conversations With Dr. David A. Wallis,Virginia Polytechnic Institute Institute AndState University, Blacksburg, Va., 1985.

20. A. S Aiyar and Robert Luedeking, "A Kinetic

Page 148: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

137

Study Of The Alcoholic Fermentation Of GlucoseBy Sagshacdmxeee Derexieiae", BiaehgineenipdAnd Feed Pnnseesipg, Val- 62, Pp 55-59, 1966-

21. R. Bryon Bird, Warren E. Steward, and Edwin N.Li¤htf¤¤t» Tgahäpgxj- Ehenamenai Jahh Wiley 6Sons, New York, p. 555, 1960.

22. David A. Wallis and Richard A. Miller,"Bioprocess Simulations For The PersonalComputer: Convenient Tools For Education AndExperimental Design", Poster Session at theSeventh Symposium On Biotechnology For FuelsAnd Chemicals, Gatlinburg, Tenn., May 1985.

23. F. H. Johnson, H. Eyring and M. J. Polissar,Ins äinetis Denis Qi Malegnlag Qinlggy, wiiey,New York, 1954.

24. Isabel sa - Correia and N Van Uden "Ethanol- ‘Ihdueed Death Df Sasshacsnyses secexisiae AtLow And Intermediate Growth Temperatures",Qidtesnnglgsx and.Biasnginee5ing, Val- xxviii,Pp 301-303, .

25. William E. Boyce and Richard C. DiPrima,Elementagx Diiiezsntial Egdatigns And BQHHQQLXVslgs Pjgglsgs, Third Edition, John Wiley &Sons, New York, Pp 338 - 339, 1977.

26. S. D Conte and Carl de Boor, ElsmsggsgyMgmsnisal Analxsis; An Algnxithmis Anocgasn,Second Edition, McGraw-Hill Kogakusha, Ltd.,MEXiCO9 P 329) 1972.

av. Jon M. Smith, mathsmaiisal usdslins AndDigital äimdlatign En; Engineexs AndSsssggssgs, John Wiley & Sons, New York, P268, 1977.

28. V. G. Jenson and G. V. Jeffreys, Qsggsgsgissinstngds In Qhemisal änginegging, SecahdEdition, Academic Press, New York, Pp 379-381,1977.

29. P. W. Atkins, Physical Chemistry, SecondEdition, Oxford University Press, SanFrancisco, 1982, p. 949,

l30. Richard M. Felder and Ronald W. Rousseau,

Page 149: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

139

5. Of. B1? 5.55 »John Hiley & Sons, New York, p. 428.

3 1 - F - 6 - Sh 1 ¤51<5v » EäL..¢.=s..<;.5.5.5. ··@5..5-1-9p. Seccmd

Edition, McGraw—Hill Book Company, New York,1979, pp 95 - 111.

32. James E. Doss, Thomas N. Doub, James J. Downs,and Ernest F. Vogel, " New Directions For 'Process Control In The Eighties", A.I.Ch.E.Diamond Jubilee ·Meeting, washington, D.C.,November 2, 1983, p 27.

Page 150: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Appendix A

DERIVATION FROM LEE: POLLARD, AND COULMAN15

Fox — Fx + Vrx

— Vrx = Foxo — Fx

- V dä_ = Fogo — Fxdt

¤1.>< = Ex — E.¤>< 0.dt V V

Also:

dt V V ·

From equations (2.4) and (2.5) the relations are:

dx = Hx — kDx (2.4)dt

ds = —gx — mx (2.5). d E Yx [ S

Note that the terms for flow rate and volume are

omitted here. Rearranging (2.4) yields:

Hx = dx + kgx (2.4)Adt

139

Page 151: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

140

Substitution of equation (2.4)A into (2.5) yields:

dä. = --1- < dx + kpx > — mx A1dt YX/S( dt )

Following the derivations of the aforementioned,

assume the derivative can be substituted by the

change, which yields:

SS = —gQÄ_ - möx A2

Vx/sNowby substituting the definition of delta, 8 the

resulting equation is:

S0 — S = _1_ ( xn - x + kDx ) + mx A3Vx/s

Solving the above equation for x yields equation

(2.28). Similarly for P starting with (2.27) and

(2.18).

QR = __1__( Hx — kDx ) (2.18)dt Vx/P

Page 152: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

141

—VrP = FOPO — FP (2.27)

and substituting (2.4)A into (2.18) and solving for

P in the fashion shown above yields equation

(2.29). repeating the procedure with equation

(2.5) and solving for D yields equation (2.30).

Page 153: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX B

DATA FOR SPECIFIC DEATH RATE FUNCTION

RD/TT % EtOH RD Et0H —1n(EtOH) ln(RD);eg"1 %V/V hr“1 g/1

K

200 17.5 21.82 0.14 1.98 3.08100 16 10.91 0.13 2.07 2.3940 14 4.36 0.11 2.20 1.4710 10 1.09 0.08 2.54 0.096 8 0.65 0.06 2.76 -0.42

T Indicates value multiplied by 107. ·

142

Page 154: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX C

HYDROXIDE ION CONCENTRATIDN

Assume .1 M Ammonium Hydroxide Solution

In solution ammonium hydroxide disassociation

reaction is illustrated by the‘equation:

NHQOH <=====> NH“+ + OH'

CNHg+] = [0H’] = x

ENHQOHI = 0.1 - x

The disassociation constant; Kb, is 1.8 x 10'5.

Therefore the concentration of the hydroxide ion is

calculated by the equation:

Kb = cqgbjzcogga = ___;§__ = 1.BxlO_5ENHQOHJ 0.1 — K

Solving for x yields:

x = [OH"] = 1.3E37x1O'3 moles / liter

143

Page 155: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX D

1191.91.

David F. Ollis, "A Simple Batch Fermentation

Model: Theme and Variations," Bioghemigal

Eggiggegigg lll, The New York Academy of Sciences,

New York, 1983, pp- 149 — 156.

2. Alician V. Quinlan, "The Influence of Dilution

Rate, Temperature, and Influent Substrate

Concentration on the Efficiency of Steady — State

Biomass Production in Continuous Microbial

Cu 1 1 ¤ r E • " El1.s>„¢;.hs.m.1.;.é.1. E.n.Q1mgs.s:-1.0.9. 1. .1-1- » T h E Ne wYork Academy of Sciences, New York, 1983, pp. 197

- 210.

3. Isao Endo and Teruyuk Nagamune, "Application of

Kalman Filter to Automatic Monitoring System of

Microbial Physiological Activities," Bigggggigal

Epgigggring lll, The New York Academy of Sciences,

New_York, 1983, pp. 228 — 230

4. P. Linko, M. Sorvari, and Y. Y. Linko, "Ethanol

Production with Immobilized Cell Reactors,"

Bioggemiggl_EngiggeriQg 111, The New York Academy

of Sciences, New York, 1983, pp. 424 — 434.

1 4 4

Page 156: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

145

5. E. C. Clausen and J. L. Gaddy, "Production of

Ethanel frgm B1¤meS5·" BigenemieelEnggneeringLL},The New York Academy of Sciences, New York,

1983, pp. 435 - 447.

6. Charles D. Scott, "Fluidized — Bed Bioreactors

Using a Flocculating Strain ·of gymomgnas mgbilis

fer Ethangl Pr¤d¤¤ti¤¤»" §igenemiee}_ Engineering.„..lll, The New York Academy of Sciences, New York,

1983, pp. 448 — 456—

7. Ninoru Nagashima, Masaki Azuma, and Sadao

Noguchi, "Technology Developments in Biomass

Alcohol Production with Immobilized MicrobialG Celle-" Brgenenieel Engeneering All,

The New York Academy of Sciences, New York, 1983,

pp. 457 - 468

8. Alician V. Quinlan, "Kinetics of Secondary

Metabolite Synthesis in Batch Culture when Two

Different Substrates Limit Cell Growth and

Metabolite Production: Xanthan Synthesis by

Xenengnenee.gengere$rie»" Bigenenieel. EngineeringLV, The New York Academy of Sciences, New York,

1986, pp. 259 — 269

9. Gregory Stephanopoulos, "Application of

Macroscopic Balances and Bioenergetics of Growth to

Page 157: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

146

the On - Line Identification of Biological

R E a C 1 ¤· v' S » " E£.,1„c•.<;.,h. 1 • T h E N E wYork Academy of Sciences, New York, 1986, pp. 338

— 349

10. Charles L. Meyer, Joseph K. McLaughlin, and

Eleftherios T. Papoutsakis,‘ "On — Line

Chromatographic Analysis and Fermenter State

Characterization of Butanol / Acetone

F Er m E vv 1: a 1 1 ¤ ¤ 5 • " B-1s;s;„h.e;¤„1Ä¢:ä.l.„ E11gi„x1e2r:.„1..n.Q 1.5/. » T h ENew York Academy of Sciences, New York, 1986, pp.

350 - 363

11. Tsuneo Yamané and Shoichi Shimizu, "Fed - Batch

Culture with Automatic Feedback Control: An

Advanced Operational Mode of Microbial Reaction,"

T h E N E w Y ¤ r k A c a d E- m vof Sciences, New York, 1986, PP- 364 — 381

18. Lee, Pollard, and Coulman. Cited earlier.

13. Jones and Greenfield. Cited earlier.

14. B. Sonnleitnert and 0. Kappeli, "Growth of

I 5 C ¤ ¤ 1 ¤· ¤ 1 1 ed b v 1 1 5Limited Respiratory Capacity: Formulation and

Verification of a Hypothesis,” Qigtgghgglogy ang

Page 158: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

147

Eieengineening, Vel- XXVlll• Jehn Wiley & eene,Inc., 1986, DD- 927 * 937

15. C. G. Sinclair and D. N. Ryder, "Models for the

Continuous Culture of Microorganism under both

Oxygen and Carbon Limiting . Conditions,"

Eieäeennglegy eye Bigeggigeegipg, vol. xv11, JohnWiley & sons, Inc., 1975, pp. 375 — 398

lb. Y. R. Chen and A. G. Hashimoto, "Substrate

Utilization Kinetic Model for Biological Treatment

Pr¤¤eee•" Qigseennelegy. eng Qlääßälßäällßäv Vel-XXll, John Wiley & sons, Inc., 1980, pp. 2081 —

2095

17. Mehaia and Cheryan. Cited earlier.

18. Nihtila and Virkkunen. Cited earlier.

19. Stephen Simkins and Martin Alexander,

"Nonlinear Estimation of the Parameters of Monod

Kinetics That Best Describe Mineralization of

Several Substrate Concentrations by Dissimilar

Bacterial De¤eitiee," Qeeliee eng. äpxiggnmenäelMiggggiglggy, American Society for Microbiology,

Oct. 1985, pp. 816 — 824.

Page 159: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX E

DATA TYPES

SOURCE SOURCE REACTOR ORGANISM . DATAA

NUMBER AUTHOR MODE TYPE CONTENTS

1 OLLIS BATCH K. SAMSSS]R1S_ BIOMASSETHANOLSUBSTRATE

E OUINLAN CONT MIXED TEMPERATURE<MUNICIPAL SENAGE INLET

TREATMENT PLANT> SUBSTRATEDILUTION

RATESTEADY —

STATESUBSTRATE

BIOMASS

3 ENDO & BATCH BREwER’S YEAST SUBSTRATENAGAMUNE BIOMASS

ETHANOL

4 LINKO, CONT S. QSR§!lS1AS ETHANOLSORVARI & K. ERASLSLSL I NKO Z - 11951 1.-1-5.

5 CLAUSEN & CONT S. SEREQLSLAS BIOMASSGADDY ETHANOL

148

Page 160: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

149

SUBSTRATEDILUTION

RATE

6T

SCOTT CONT Z. MOBILIS SUBSTRATE(FLUID ETHANOL

BED) PRODUCTION. RATE

BIOMASS

7 NAGASHIMA, CONT YEAST ETHANOLAZUMA & (TYPE NOT CONVERSION

PUBLISHED) YIELDSPACE —VELOCITY

B OUINLAN BATCH Ä. QAMESRSIRIS BIOMASSpH

9 STEPHANOPOULOS CONT S. CEREVÄSIAES BIOMASSFED- SUBSTRATEBATCH ETHANOL

10 MEYER, BATCH Q. ACSTOBUTÄLIQUM SUBSTRATEMELAUGHLIN & CARBONPAPOUTSAKIS DIOXIDE

ACETONE

11 YAMANE & BATCH Q. BRASSLQAE VOLUMESHIMIZU FED- BIOMASS

BATCH ETHANOLPRODUCTIVITY

_ GRONTH RATE

1E LEE, CONT 5- §„E_FiF&'5T^..E.-9„ SUBSTRATEPOLLARD, & ETHANOLCOULMAN BIOMASS

DILUTIONRATE

T13 JONES 2. BATCH _S_- QEBE;/.l.älB.€§ BIOMASS

GREENFIELD ETHANOL

Page 161: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

150

SUBSTRQTE

IQ SONNLEITNERT BQTCH Q. QEBEQIQIQQQ BIUMASS& KQPPELI ETHQNOL

SUBSTRQTE

15 SINCLQIR & CONT Q. QTIQIQ BIOMQSSRYDER ‘ SUBSTRQTE

DILUTIONRQTE

16 CHEN & CONT Q. QEQQQENEQ SUBSTRQTEHQSHIMOTÜ MIXED CULTURE EXIT

RETENTIONTIME

17 MEHQIQ & BQTCH Q. SUBSTRQTECHERYQN CONT BIÜMQSS

ETHQNOLPRODUCTIVITYYIELD_ DILUTIÜN

RQTE

18 NIHTILQ & BQTCH T. YIRIQE BIÜMQSSVIRKKUNEN SUBSTRQTE

19 SIMKINS & BQTCH QQQQQQQQQQQ QB. TYPICQLQLEXQNEDER §. TXEQIMQQIQM MONOD

CONSTQNTS

Page 162: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F DATA TYPE

APPE}U)IX F — 1

DATA SET FROM SOURCE #1

CELL MASS SUBSTRATE PRODUCT TIMECONCENTRATION CONCENTRATION CONCENTRATION

Q / liter Q / liter Q / liter hr

0.1 48 0 00.4 48.7 3 71.1 43 4 151.7 38 7 25 _2.1 35 10 302.45 29 14 392.3 22 16 482.3 17 18 552.4 11 23 652.1 ° 5 26 752.25 3 28 782.15 0 27 851.7 0 29 95

151

Page 163: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 2

DATA SET FROM SOURCE #2

Temperature d S0 S’ So—S’ 3’(OC) (Khr“1) (ppm) (ppm) (ppm) (ppm)

10 42 943 72 ‘371 330*56 954 55 399 390*33 973 92 331 402*167 1109 313 291 106*333

20 42 970 19 951 34656 933 23 910 32733 992 53 939 361*167 979 54 925 434333 921 375 546 301

30 *42 909 16 393 30056 931 14 917 34633 939 23 916 395*167 996 97 399 330333 943 77 371 423

* Indicates data not used in the s0urce’s analysis.SO — Initial substrate concentrationS’

- Final substrate concentrationB’ — Biomass concentrationK — Half saturation constant

152

1

Page 164: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 3

DATA SET FROM SOURCE #3

CELL MAS8 SUBSTRATE PRODUCT TIMECONCENTRATION CONCENTRATION CONCENTRATIONg / liter g / liter g / liter hr

1.2 104 0 01.5 102 - 1 12 92 3 23 89 7 35 73 12 48 55 20 512 30 29 b17 1.2 37 718 0 38 7.5

153

Page 165: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 4

DATA SET FROM SOURCE #4

Biocatalyst Initial Yeast Residence ProductivityDry Matter Quantity Time (based on vol

catalyst bed)

(percent) (g/100 — g) (hr) ‘(g / I —hr)

9.0 (wet) 25 4.3 1912.4 25 2.7 1927.2 25 1.2 3977.5 25 1.2 3350.6 15 1.1 4520.3 5 0.96 52

For continuous production of ethanol from grape

juice (14.2 Z wt/ vol sugar) with immobolized S.

ceggvlslgg and a residence time of 5 hr the ethanol

concentration in product is approximately 7 g/l.

For continuous production of ethanol from barley

malt wort with immobolized S. ggggg};}ae_ and a

residence time of 2 hr the ethanol concentration in

product is approximately 5 g/1.

For continuous production of ethanol from

commercial whey (5 Z wt/vol lactose) with

1 nmdbn 1 1 rad Q- and 6.- n.1.„<a.a„r„ 6%..-ggiggtgsidase and immobolized 5. fggglliä with a

residence time of 4 to 5 hrs the ethanol

concentration in product is approximately E2 g/l

and 20 g/1 respectively.

154

Page 166: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 5

DATA SET FROM SOURCE #5

CELL MASS SUBSTRATE PRODUCT DILUTIONCONCENTRATION CONCENTRATION CONCENTRATION RATE

No / ml x 10-B g / liter g / liter hr-1

220 0 13.5 0.04210 0.5 13 0.07200 1 12 0.12160 3 10 0.17145 6 S 0.21110 13 6.5 0.2440 24 3 0.27

155

Page 167: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 6

DATA SET FROM SOURCE #6

TRIAL RUN FEED FEED ETHANOL OVERALLNO. TIME FLOW GLUCOSE PRODUCTION GLUCOSE

RATE CONC. _ CONV.<hr> (1/hr) (g/1) (X of (X)

the0retica1>

1 283 0.72 121 99 732 391 0.78 126 99 853 331 0.48 104 97 944 185 1.44 97 98 915 283 1.43 93 96 96

THEORETICAL YIELD IS FOR EVERY MOLE OF GLUCOSECONSUMED TWO MOLES OF ETHANOL ARE PRODUCED.

FLOW RATE IS EQUIVALENT TO THE DILUTION RATE(RATIO).

„ 156

Page 168: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 7

DATA SET FROM SOURCE #7

INLET OUTLET SUGAR SPACESUGAR ETHANOL CONVERSION VELOCITVCONCENTRATION CONCENTRATION YIELD

(Z) · <% \//V) (Z) (1//K/——ga1—hr>

15 8.5 92 0.4515 10 95 0.2514 8.5 95 0.45

SUGAR CONVERSION YIELD BASED ON COMPLETE CONVERSIONOF SUGAR TO ETHANOL.

157

Page 169: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 8

DATA SET FROM SOURCE #8

Values for yield from Ä. camgggsygis fermentation.

Yield is 0.57 g cells produced per g glucoseconsumed. T

158

Page 170: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 9

DATA SET FROM SOURCE #11

Data shows final cell mass concentration of 170

g / 1. This supports the assumption \of no cell

mass concentration inhibition. The data was not

uniform so systematic analysis by the program is

prohibited.

159

Page 171: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 10

DATA SET FROM SOURCE #12

CELL MASS SUBSTRATE PRODUCT DILUTIONCONCENTRATION CONCENTRATION CONCENTRATION RATE

g / liter g / liter g / liter hr—l

8.2 50 38 0.069.2 20 35 0.153 0 20 0.19

160

Page 172: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 11

DATA SET FROM SOURCE #13

LOG CELL MASS SUBSTRATE PRODUCT TIMECONCENTRATION CONCENTRATION CONCENTRATION

q / liter g / liter hr

-0.067 260 3.3 0.530.333 255 6.7 3.30.67 247 10 4.30.9 237 12 6.21.07 230 14 7.71.33 223 25 10.11.433 200 27 11.31.53 135 33 12.11.6 167 40.3 141.67 143 51.7 16.31.7 137 52.7 17.31.72 117 60.7 13.71.76 103 70 21.31.73 100 70.3 22

161

Page 173: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 12

DATA SET FROM SOURCE #1#

CELL MASS SUBSTRATE PRODUCT TIMECONCENTRATION CONCENTRATION CONCENTRATION

Q / liter Q / liter Q / liter hr

0.7 S.3 0.5 0.S1 6.2 1.3 1.31.9 1.6 2.6 2.S2.1 0.2 3.3 3.32.2 0.1 3.2 3.62.3 0.1 3 #.S2.5 0.1 2.6 63.2 0.1 2.2 73.5 0.1 1.6 7.S#.3 0.1 1 9 ’

#.5 0 0 10

162

Page 174: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 13

DATA SET FROM SOURCE #15

Maximum specific growth rate = 0.54 hr“1

Other data not in one to one correspondence.

163l

Page 175: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 14

DATA SET FROM SOURCE #17 BATCH

CELL MASS SUBSTRATE PRODUCT TIMECONCENTRATION CONCENTRATION CONCENTRATION

g / liter g / liter g / liter hr

2.6 1OO O O2.9 91 4.4 23.7 76 11.2 47.1 42 28.2 78.6 O 47.9 ll9.5 O 49 199.4 O · 49.5 24

164

Page 176: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

DATA SET FROM SOURCE #14 CONTINUOUS

SUBSTRATE PRODUCT DILUTION PRODUCTIVITYCONCENTRATION CONCENTRATION RATE (ETHANOL>

g / liter q / liter hr—l g / liter /hr

18 40 0.25 10-28 32 0.55 15

45 25 1 2560 20 2 3670 18 3 4078 12 4 36

165

Page 177: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 15

DATA SET FROM SOURCE #12

CELL MASS SUBSTRATE TIMECONCENTRATION CONCENTRATION

g / liter g / liter days / hr

0.4 24.5 0' 0.7 27.5 0.09

0.9 25 0.121.1 23 0.151.5 22 0.171.2 19 0.202.5 22.5 13.9 19 1.027.7 16 1.142.2 7.5 22.7 3 2.092.5 2 2.142.5 2 2.177.9 2.5 3.176.4 1.6 4.126.0 1.2 5

166

Page 178: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

APPENDIX F — 16

DATA SET FROM SOURCE #19

Typical Values

Orqanism Specific Growth Half SaturationRate

(1/hr) (g—S/1)

Räeogggohgä SE 0.56I.r-xp„h...i..m;4.r..i.64.m 0 - 59 1 · 9 >< 10*+

Sewage _ 0.256 7.2x10—5

167

Page 179: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Appendix G

TYPICAL VALUE8 FOR PH AND TEMPERATURE

Organism Type Optimum pH Optimum Temperature

Funqi3O 5 E6 OC

Bacteria3O 7 E9 OC

vea5:l“ Q 37 ¤c

168

Page 180: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Appandix H — 1

L I ST I NG OF COMPUTER PROGRAM " PLUSED "

Page 181: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 0

••••|•••• •1LL I! TIUTZJ Tl·Ö Ta! PRUIII STIUTIU ••••••••••••••••••••••••

T310IQ!•••••••••• CITIT!TI!t3UIT!!5ITlT5llTIIll!$9PI1'Il••••••••••••••

••••••••••••••1320 0IT'I••:¤0T2!:IT‘.I•0:IT5!:00TI!1IT5•0•IT7!•CITT!•114:124:13-0:154:1S•2:15•!:17•!TIN TP CITT>0 T9 1350 B.! I5TIII LIIT! 5•8:C2lI 5xPI1IT ° - I TNT! Tl IIIT TI! TYP! 1U MT! TTIT YU IILL IIUT TIT! TII IIIUTII

HIT! TIP!TI5! ITII I50!1355 LIIT! 5•Z51CG„l 51P!III' ° NI 515 Il ITIIIJITII U.! PLEASICITTII TUCIUITITYPIIITIYIIUILLIIUT TIT! TII IIIIJTIIHITU I5!I TIS0 lllT3'.! LIM! 5•2S:C1I 5¤PlTIT ' TI! IT! TTR! TI IV! C15 G III!TO.I5I!I'EIl„I TPTUBJLIIITUOIIUIITYP! 'I’

'T30! LIIT! 7•I5•P!IIT ° TTR 'C° TU CITT(°TIT! LIM! I•I=0TI!¤T§Y!1TP DTIUGIHSTI PIIIIXTHI TIB I5 ELI IIIT30! TP 0TlI•¤I!157Tl |1II•0I!4!!I T9 IPS! G.! II7!ZIP! LIM! 7•T5:P!1IT ° '1500 LIM! IIJICII 1I:P!T!T TEL 'III 5'TTITTI‘1511 LIM! I5•?:CTILI J22PI1‘lT 'TEPGITII2 'T5!} LIM'! !ä•I:CIL£P 1I:PII‘IT 'pl '1530 LUUTE Tlmtll JMNZIT 'SIJIFIIT! IIIITRATTIY ·1••0 LL‘£•IT! TZ•5I:C¤! 1'!:P!T1|T 'TITI'Z•Z0 LIIT! I5•5I•C¤„I TMPTTTIT °P!UIIT C5TlITTU' .15:0 LIIT! ihßxüül TTTPIIIT '9!£IPIC 9TI IT!'INI TP CITII5 TIB II! EI I57!T57! TP ITI! T9 T57I EI I51575 LIM! 1!•71PITIT 'YHLIIT! Ibäußl 5•Pl1IT °<•-H!1l!•Tl!Y!11P Uli•••• nu 1515TM LIM'! T!•71PI1IT ' HLIIT! 12•I5•C1I 5•P!TIT ° °I5!0 IP UIIMCIIITIII TIB TH! B.! TIN1200 TP l0T!! T9 ISIS IL! ISITIM LßT! TMTIPRTIT °•‘:LIIT! TMIIICILI 5:PIIIT '<•·-•Hl1l!•TI!Y$1ZP III•••• TIB 1:6T310 LIM! T5•7sPlZIT ' HLIIT! IMZIICII 5•PlIU ' 'ISI! TP !1I!¤G!1!II TIB TH! B.! T5ISI!1PlIT)!TIBT5l.IT2I!T5 LIM! 10•T:Pl1IT HHLIIT! IMTITCII 5•Pl1|T °<•-':|TIhI§Y!•IP III••·• nu 15 _II! .IIT! TI•71!!1I ° HLIIT'! TMTITCII 51Pl1IT ° °T22! IP I1l@l!1III TIB it! IL! ISI!ISI TP IT5! TIB TSG ll T9!I2•! LIM! II•7x!!!IT °•°:LIIT! Ildlsßl 51P!I!T "•·•·Hl1!l•2I£'¤'|•2P III

_ I" T9 TIBTI7! LIIT! 1I•T1PI1IT ° HLIII! I|•II2G„l 5•P!1IT ' °151P I1I!l5III1 T9 It! ll II!I$!! IP ITS! T9 Ill! ll TI!15 LBT! I!•5I1P!1I 'WLBT! Thltßl 5•P!1IT '<-HIIIPIIYIITP IIIl" T9 I5It! LBTI 1!•5I•P!lIT ° 'ILBTI TIMIGI 51lTI ' °Tbl! TP I1I9!I1II TB TB II Ill _T0l!1PITO!T—15lI1tl ,T5 LBT! I5•5I•I1IT °P'1L¤I! TMÖTICI NRG °¢•-•'•I1$II!!•1P ITIl" TIB 15153 LBTI T5•5I•lU ° ':1.¤T! TMTIGI 5•PlII ' °II! IP III!¤5TIII T9 III ll IS15817 IT7!T9T&lILII•NI5 LIM'! Il•5I1Pl1IT °•°zL¤T! II•I•1I 5•R1IT °<•-HI1I!•1I!Y!•1P Illin" TIB T5

Page 182: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 1

160 IF 01l0•G100113¤ T10 1660 ELI 10101660 ¥•CSILIIs1•2:'3070 1700 .Im 0•C$lL1I:1•FOI10I1700 CI71•CI71•11710 IF 1•13 600 1•I TI0 1720 III ITN1720 1I671¤11J1•I0:ü70 181730 IF Y•13 N 1•I T1- 1700 G.! 17I1700 0072•1:I2•10:II7l 181700 IF Y•17 N 1•1 TII 1700 EI 17701760 00T¥1:I3•10:U7l 18I1'0 IF v•10 II 1•I TIII 17I EI 17001700 0670•1:J6•10:I7l 181790 IF 1•13 N Ill TIB 18 [I 1010 -INI |ITS•111!•10:IT0 181010 IF 7•I0 N I•I T10 1020 EI 181020 I76•I:16•10:IOTl 181030 IF 7•17 N 1•I TIB III EI 181000 ¤077•:¤J7•10:0070 1810€0 IF C1171>6 Y1!] 1051 ELI 18IISI LIIT! 20•25:£1I 10:Fl1IY '

°:007l 139018 LIIT! 20105:0l.l I0:FIII7 '

IIS! LIITE 20•!:ClI &•F07I7 ' Il Y'! 01011 Tl PEIFY NT- 0070 IT 7 7E3 Ü 'I0!7 LI37! ZLESICCLZI 0:F!!!07 ° FI2! 0IY fl? Tl NV! TI FIIITI II PY!!0TI IT'J0l IF! 07 VW! C1ßII'1060 L«"2•IT! 20•!0=C3LOI 2:F!I!T '0 °!LI3T! 2I•3lICII I01PlII7 °Y!I '1CI.I 2:LIZIT! 20•!7:F!II7 'T••'1JI30¤1I!'!0:iF 01I0•" TIB 10601061 IF 0IIO•O1I0113I 770 1060 [I 10621062 LIIT! 20•I:ClH 0:FOIIT ° 0l YU III Tl IITFT NT- N70 IT 7 7!I I'1063 LIITI 20•0I:C1l.l 2:F01I7 " 0 ':'J¤.l I0:LI070 20•t0:Fl1I7 'I 'zdll t:LIOT! 20•60:FI1I7 °<••':01I0•1I!Y0:IF I1I0•“ TI- IIIxw xr ¤m¤¤I••13: T10 IN S15! :000III! LÜT! 206:3.08 0:F\1I7 °1066 LIIT! 22•2!:ClLI 01FIII7 '1390 LIM! 2I•8:@I 10:F9!?|7 ‘ F!83 IIY IY Tl MI! TI FIIITII AI FI30 TI ITT- IIY 07 Y')! Ol1C!':I70 18 ·19I LIIT! ZI•3:ILI 01IIIT '1910 LIIT! 2I•ß:C1U 0:0037 °1700 CI7I•ITI:¤7I•’1I7l Id19I GI ·‘ 10ßQ0000000000 TIIIETIIITINI-TOTIITIIITlTIOYOTI•••••0•••••••••••• -07-TIITIIITIIF-TTITIHLFIIILITITIHONHOON••••••

•••••••••• TIFILIIIITI-•T!II• TI-Tl0•IIllLIT-TI0000•0•00·••••••0•0ITII77LIT01-LIIITITIEGYIII 00•0•00•000000••00000000 „1071Q•••••••••• 800I1LLG701I7I¤.1.87I71II70•I·1D-7-••••••••••••••0••|•l•$7l7IQIl7II•l•I1l

••••••••••••••••••••••••107IQ•••••••••• I•F87C-Tl7II•0•I¢1FIt-Ilm! •••••••••••••••

Page 183: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 E

1900 LQCATE 1•12:Cü0I 0:001:11 ' SI THIS $0220 vw 10121 I!01 T1! 0010T0!·1110LY220 IOC0!1.2122F8¤12T!’0010Fl22S R2T11ilI° A1990 LOC012 2•2:C10I 1290101 ° 0011 F8 Y1! 01°:08 2:LI012 2•27:!l1I1° ' 1 ":C1l.8 12:LI012 2•22:PI1I1 ° KFG! 012218 11I I11 81 I N10°2000 L8012 6•12:CU.I 0100101 ° 0 MIIII G 20 0010 P01I12 0 20 0010S21COI8 EITEIII PL£022222CIF1II112IOI0118120 °:1ID•2100 IP 0011•1 T10 2110 21.8 21022102 8lII 91002110 1•1:D1:I1•102112 :8012 10•6:CU.I 218101 'YR 21215 0 02Il21 0010 F8 C2LL 10 00TI011l':CU.8 22120 L11£012 11•I•I1:I!'.11 001112122 12 00111•' ' 8 00111•" 10 2160 21.8 2132120 01111•0£10011112190 1•|•1:DI•12192 IF 1*21 110 2160 21.8 21002100 17 D11 110 2106 21.8 21202106 I1•I1•10:D12120 810 21202160 1*1-1:10*12170 10102120 12 0012*1 110 2190 21.8 226-12190 FG! I1•1 10 !:FOI 92*1 12 12::12012 11•92•10II1:P9!I1 ' ':I!.!T I:(11 I12191 I•1:1I1•10:DZ2192 L2£012 10•6•£2Jl 2¤P01I1 ‘11I 21212.9 *0 001 2010 FCI YEIGITUI

°:C11L2I 2 . ,2200 L8012 11•11•!91:I!I1 001112202 1F00111•° ' 8 0011I•‘° 110 890 ll 810810 01111•Vl„1201111

' 820 1•I•1:DI•1JN 121*21110 2290 [8 $9°2229 1P D11 110 820 E8 0826 !91•I1•101D1228 810 800890 1•1•1:10•I2292 12 1011*0 110 2220 2.22 2299221• 1P 18*10 110 $9 21.22 22962296 12*12118 110 G7 21.8 22222297 0l 0$1 810 2190#··‘ 1F10<18 110 ··· H.! $9¤··* 00 ' . ·827 810 21902222 IWI0$1 L8212 20•81Cl„8 1•:2I1I1 '

I

· 0 12 81¥1 10 870 ll0870 0 I1•1 10 210 8*1 Y0 121L£012 11•I•10I122I1I1 ° *:821 I101 I1871 1·0l82•1•1·0872L012

20 L8I12 11•I•I111II1 20111 .«· 12 ¢0I11•‘ ° 8 20111•“ 10 0 0.8 0820 2111)*010011110 1•1•I:0•10 12 1*21 10 0 [800 12 D11 110 0 8.8 810236 I1*I1•10:D12210 810 0

Page 184: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 3

2322 IF ISIN '1~El 238 EL3! 23202320 •IF IlI•|C T11!I 2339 E1.! 23202320 IF ICH! T10 2327 EL! 2332 °2327 50302 20302332 50T2 E70 32332 IF ICH! T10 2333 EL! 2392333 00302 8002337 50TU E702332 28•l22339 LOC2T! 20•23:C¤Ll 20:PI2IT °

2300 IF 00T0•2 T10 239 EL! 2082330 Fl I2•2 T0 3:0 802 Tl 22:LOT! 22•8•20•02¤FI2I2' ° ':llT 8:Ix! nn2332 !•I:I2•20:0•22332 L0£2T! 200218 3:202IT 'TTI 3Y3T!I 0 IIIIIT MT! 0IIIITIIT!TuTICI°:C¤.822300 LIIT! 22•0•I2:!!1|T 02Il)2302 TF 00I21•° ° GI 00221•“ T10 2000 ll 23702370 322I)•vI.t202I1)E20 2•I•2:R•0•22322 T! I•32 T10 3000 21.32 Z!2320 22 M2 T10 2320 EL! 23902330 9!¤•12•l0:I•22390 20°0 23012000 2•l·2:22•22022 IF I21I•1 T10 2022 CL3! 2000 -2000 IP lI•!2 T10 2029 EL! 20002000 IF 221lI 110 2007 E2.! 20232007 B0!) 88 .2022 NT3 2302022 lf 2208 T10 2023 EL! 20292023 21lII 8002027 202'0 2302022 TDI!3029 LGBT! 20•23:Cl.Q !0•!22IT '

2020 TF MT3•2 T10209B.!2082023 90203 0 |2•2 T2 3:0 8•2 T0 22:L$T! 22•I•20•I2:II2IT ° ':lIT 8:TIXT I2 .2032 2•::9:•10ss•:203l L£3T! 22•0:i3.C2 3::*0TIT °T! 593T!! 0 IGIST 2022 $U TT!°:ü.3 22000 Lßfl 22•I•112:2NT 202212002 22 8221•‘ ° I !0421•‘° 10 208 EI 209209 2!|22•9I1202212° 2000 2•I•210¤0••20I 22 282 TI 20 II 20002000 I! D22 T0 800 ll 882000 02•|2•20:I••2070 822 800208 2•|•2:22•| .208 T! 10 892 ll 88 .208 TF IDT! 10 88 II 882000 IF 2828 TH 827 II 888072092

IT! 208208 27 22228 10 892 II 8820932097

ITI 208

Page 185: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7*+

2•7¢·I).;CA¥E 20•25:CJL¤| {•:Fl{1T ‘

0

2500 IF !IT5•I TTII 25!0 EL! 25U|I•I T! 5:FI I2•I T0 I2:L¤£ITl II•l•{0•I!:F0!lT ° ':!!T I2:x25II {•I:II•I0xh{25{2 LIM! {0•5xCl.U 3:FI!IT 'TII SETI! G IIIBT HTI FI P00l¢T GTI ·ITIUI ':C¤LI 22520 LIM'! {{•!•I{:I!UT FN!)2521 {F F0t{l•' ° U F!II{•°' TI! 2555 EL! öß2550 F{{{)•Vl.{F0{{))2560 {•I•I:R•I•I2562 {F {•5I TTII 550 EL! 25662566IFI•{{ T{¤25%5.!255025% I|{•II•l0zI•I2550 0070 25202550 I•{•I:IF{•I2552 {F ZIM TIE! 2570 EL5! 25562556 {F {DIF! TPS 2577 D.! 25552555 {F IFI>!H VII.! 2557 EL! 25722557 !!5U! 003257I 5070 25I02572 IF !F{'ISI {{102577 SL! 25772575 SGU! 20002577 20T] S5103570 Z3n•!F{257* LIIT!20•25:£12I25I

{F HTM UD 2570 IL! 25502570 FI I{•{ T! 5:FI l•I T! 12:L§T! II•I•{0•II:F!IIT ' ':I1T I!I2! II257I {¤{:II•{0:I•I_ 2572 LIIT! I0•5:C!I.l !xFOTIT 'TII 57572,7 G Ill! HTI FI 9I!F!C G'!MT! °=C1§ 22500 LIM'! I{•!•II:!!'J7 III!)2502 IF 00{!{•' ° GI 3!{I!•" TM 2560 B.! 25I0um 5!m•v&{Iu1n2520 {•I•t:n•••12522 IF {dl TIB 2560 U.! 25262526 IF H•{{ TB 2525 ll 25I2525 M•!!•{5:Pt _25I I7! 25H2560 {•{•{:!!•{25*2 !F {Id ’Ü 25I SLI $625•6 {F {DI! UI 2557 ILS! 25652565 {F {DI! TI! 2567 D.! 25I' 2567 G HI255I IT! 870I5! TF {!(!I TG Hl! IL! 2592555

_

G2557 IT! BN25I IDT!25S LIM'! I•B•MI I6•F!III' ° .

I

25l G IG2570IF GM TG {520 II I5!25I IF TIB I5! [I IM2500 MMT! IM2700 M:I„IIT! {•25:Cl.l ••F!II7 ° TI GT G G TI! HTI FTL!.

Page 186: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 75

E EILJIIII s2iIiJIS •27)VLOCITE 0•5:C2'.0I l2:FIIIT ° HIT FBI II! FIO!T':Cl„H 2:LBCIT! 3•27:FIIIT' ' T ":COLOI I2:L3£IT! S,J3:FIIOT ' IEFBIE EITEIIH TI! FILE HI '2720 LBCITE II•20:C!lH MFIIIT ' IELIIH IS I LISTII G TI! FILE! QlllEITLT 0I TI! BMI HTI II!

.

2730 LOCIT! I0•I:ClH 3:FILE!°•.H’2700 LBCIT! 0•I•xCl¤I MFIIIT °PLEB B TUI HTI FILPILIITI 7•I••FIIIT 'FILElI|I°:00LOI 2:L0£IT! 7•20xI!0T BI

· 2720 CLSILSHTE I•20:ClH IIFIIIT ' Yll HTI IS II HIH SN!) H TI! IIEFIILT HIV! 0II• PLEII STI! IT. Ill 0

A

ATI FILE IS 'IBII2700 LHIT! 0•2!xClH MFIIIT ° I EITHII IS IIIIIB T0 IETIIERTHIS HTI FILE '2703 H Q HTI 27702700 IILL '•••••r‘2770 OG ‘!POTTl° FH HFC I0 I2700HIT!2770

TLG! IIam lIII¤lIII•°.|I!'2H0 JPG B0 FBI IPPII I0 I2010 HIT! |l•TTFO•¤|T2•IH•0ITI•0IT2•HT3•3IT*•HTO•3ITO•HT72020 IF 2ITI•I TIB 203 E.! 2HI2230 T0I I•I T0 II:HIT! 0I•IIIII:lI7 I2000 IF 3IT2•I TIII EQ EL! 50023% F30 !•I I0 !H:HIT! |1•IIIII:I!T IE000 Z? 0IT3•I TIB 2070 S'.! 2Q2370 FBI !•I *3 IEII2a‘!I7! 0I••Z!IIl:llT I2320 ZF 00T0•I TIB 2070 EL3! 27002I70 FOI 1•1 T3 IOI:IIT! 0I•0IIII:!lT I2700 IF 0IT!•I TK! 2710 EL! 272027I0 FOI I•I T0 IIHIITI |I•EIIII:IlT I2720 IF 0ITO•I TIB 275 EL! 27002730 FOI I•I T0 IHIHITE 0I•FIIII:I!T I -2700 IF IIT7•I TIB 27H E! 2700 A2730 FH I•I Tl IIIIITI 0I•0IIII:I!T I2700 CLI! II2770 III 'FITTI'0000 LIICIT! 20•20:CIJ IIIPIIIT ° TI! IB I HTI EITIT0 FH EICIHTI 0!TlISTI2II„TGIHIO!GT2703 LE!0 HTI FH THIS S27 TIIH TI!FI'III§°00I0 FH MIT •I TI I000•l.IY•N„I7•IIIIT BELITH20 LIIT! 20•20:€l.I I0:PIIIT ° PLEII BIG Til HTI Il IBTEITI v _ HTIIT TIIIBIHTIPIZITI TH TI PBIII HTI IT IS 'II*,0 I30H FH IJ! •I TI I2Hsl.IT•l.IT•Ix'¢!T 08.ITH00 ITB0020 LBT! 20•5tN„I IIIPIIIT ° TII 3ITI GTIT0 FI EI

· Cl HTI IT IIIT H 2Il• TI HIV! GT2III B HTI PI TII! IT Tß TIFIOIIB°HII FH I.I7 •I TI IM¤l.I7•l.I7•l:I!T ll!H70LIIT! 20•B•§I I0:PlIIT° PIBBTITBHTIBBTil 1'] HTI IT TIB H HTI P0IIT0 . FITIFBIBHTIITII °IIml 0 . •B FI BIT •I TI IQII.I7•II7•IIBT IIH70 ITB7QL¤T!H•5iG„HIO•IB‘ UBT-HTIHTBIIFIImu IIIII M IT III HTI MTII ' IB GTI HTI FH TW'

70I0 FI EI7 •I T'0 IQ¤l..I7•IJT•I•BT Il70I0 HTO•I:CIT2•CIT2•IxI!TI§

Page 187: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 6

TOURIST EITHHT6 FUCHLIISSCGHTHTI! PLEII HTH 0616 FI 0211 116330UI!!Tl67100' 1

0110 $00 08.61 •1 T0 1300:0!UI•M.6Y•1:IlT 0!L6Y1115 06T1•1:CIT2•ClT2•1:0!TIH10000 III •••••••••••••• 11110 IIWTII IIIUTS T1! I676••••••••••••••••••••••••••••••••••••••••••••• PIVIUIJ HTHH 1IT0T1!10003

I! 0012*0 T10 10006 B.! 1N1010006 CIT2•CIT110010 06TU210•°1L 0633 0¤HTI6T1I':06T1.00•°TG®TK':0ITL6!30•‘|I':H -T1.6000•‘l123TI6T! COIOTl6T1I°1HT1.6l30•°TII'1HT1.$0•°FOT CGTIITIH°:0IT1.6I70•°ISIF1C HIT! I6T!'1J!•2•JI•210020 0I306T160•'C8.L G3 '10130IT100•‘GTIT1I°10l$T1C0•‘ p I 11t•r‘: ·0150IT260•°TGH6T1I':01§T80•‘ ':0I$TSP' Q C °:01$TH0•‘ I1 °:01306T300•' 'x|I3HTIO•° °10030 01300T060•° SIIITIITI p I 1x0•r‘:01306T360•‘ TI! °:3!306T!!0•‘ °:01$TIO•' hu'! ':010HTH0•' NCIIIT °:0I306T600•‘0HTl6TTl°:0I$HT¢0•‘ pl 111II*‘10000 013HT760•‘ ISIFIC ':01306T700•' GT! HT!°10IÜT'7C0•°1I1 hw! 1°:!

· II06T•01 10030 •‘l3:L3CIT! 0•2311] MPIIIT ' H TI GT ISIN TI

3 JIITS FOI °1! HTI FI01ll7 HTI10060 LZZITS 74MPl1IT ' °10070 IF l6T1•1 TFH 10000 L2! 102*010030 LIFT! ?•12:CZLC! 2:PII‘1T "TI ‘10ITI.F0101° T1! 1I1T3 0x'100*0 L0061'! ;Z•1MZ1I I1:P!1IT ';•·1r7 :•11 ••••I11w°10100 LIFT! IMIMCELI I!:?!IIT °1l•·0r7 c•11 ••••Ip1°

·10110 LIST! 20•23:1L'I 1MP!1!T ° Pl!3! IT l!1 T0 III! T! NIITH 0 PG! T1! IT0 I2! IT vll CI01C!'10120 LIFT! 12•10:PIIIT '•':LIIT! 1!•36•1] MPIIIT °<-‘:IIIO•1I!T011! 0I00•" T10 10120 ’10130 LCCIT! 12401FI1IT ' °:LIIT! 12•36:CCL] MFIIIT ' °101ö0 IP 0IIO¤CI01131 TFH 101I B.2! 1013010150 LIFT! 1040:001IT '•°:LIIT! 10•36:1] MIIIIT '<••-°:01!0•I0'10•IF 0I00•“ T10 1013010160 LIIT! 1040:00IIT ° ':LIFT! 104611] MPIIIT ° '10170 IF 0IIO¢I01131 TG 101l EI 101B101N Y•C3I„1I1!¤*03101:„T!•2:JI•2101*0 IF F13 TII l10•'1°:II•1010200 If Y•13 T10 1l10•°!':Z!•1010210 LIIT! 04211] 2x!IIIT °FI '1]T1„I100° TI ÜIT3 Gs'10220 LIIT! 1240:13 II:?ITIT·°¢|-In 0011 •u|l1:1I'!0230 LIIT! 1040:1] I!:!lIIT 'IEYIYY ¢I11 •¤ll|•1°10200 LIITI 0•B11C! MHIIT ' T1! 1I1T3 FI TCII HTI 0l MIPUITSM.] ' IFTIÜLCLIIITUGIIIITTE 0.* I10B! LET! 74M0l1IT ° TTV! '¢° T0 1TIG°10 LDT! 20•811I IMFIII °

I

10270 1.002 14x01I6•1000•1! IIIUGIIBII 010071 TG 10 II 100100 IF 0I!0001671l 01001001 TG Ill II II]10200I0I!•10T101lRI1I10!!3, .102*2 FI 1•1 Tl II•611I1•60|11•7„0GIO$I•!3lI•3001I!! I102ß I! HT!•1 11010 EI IHN10$LIIT!0•8•1I0:Fl1I' ITIIIGTIGKINTIIIT3 F] TI HTI G10! ITG

I

10310 LGTI 740•!IIIT ° ' °100 LQTI 042:Cll 2:001IT 'FI '1HT1.00I° TI IITI 08

I

Page 188: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 77

10360 LIM! 16•16:COL00 I:P0!lT 'uq F ·:4r•c102:01.Jwt 10•16:COLCl zzmuv •s•q n·:1n•z10360 LIM! 15•16:COL0| 2:P01l7 '0•Ä K':JI•210370 LIM! Z0•Z5:C&00 16:P0111T • Pl!55 II! |!9 T0 IM T1! P01ITP0!55T1I|!T11IIl!YMv¤l¤10300 LIM! 1I•10:P0!IT °•°:LI|T! 1Z,30:C1l,l 62PI1|T °<··—-':01I0•1IIYI:1F I1l0•'° T10 103010390 LIM! 1I•10:P01I7 ° ':LIM! 1I•30s0l.0I 6•P01lT ° °10600 19 0100•0I01131 T10 10500 SL55 1061010610 LIM! 16•10:P01I7 °•°:LIM! 16•30sClI MPIIIT '<•·••':I1l0•1I!Y0:1F I ·1l0•‘° T10 1001010620 LIM! 16•10:P01IT ° ':LIM! 16•30•ClI 6:901IT ° °10630 19 I100•Q01131 TIII 1050 EI 1066010660 LIM! 10•101P01l1 °•°:LIM! 10•30s¤.I 6•P01I7 °1•-—°:I1I0•1I!Y0•1F 01I0•" TQ 1066010650 LÜT! 10•10•P01IT ' °xLIM! 10•30•|llI 6:!01I7 ' °10600 19 01|0¤C1I01131 T10 1050 S15! 1067010670 LIM! 10•10:901IT '•°xLIM! 15•301£1I 6:90101 '<·—•':I1!0•1I!Y0:19 I1R0•" T10 1067010600 LIM! 10•10xP01IT ' °:LIM! 10•30xCII 6¤P01IT ' '10690 ZF 0160(11001131 T10 10500 H.2 10310500 Y•C&1!11•POS101:JF•0vJ7•I:J0•IvJ!•01i510 19 v•13 T70 10520 EL! 10531020 1lI•'C°:J0•16s00T0 1C59010530 ZF Y•15 T1¢.'1 105b0 SL55 2155010500 L1l0••F'sIF•1#:00T0 1059010550 ZF ‘t•17 TFH 10500 S23! 10570N500 UIO•‘0°:J0•16¤i0T0 1059010570 1I Y•19 T11! 10550 ILS! 10% ' 710500 1I0•°!':.T!•16:IT0 1059010590 LIM! 9•l2:ClI 2:Pl1IT 'FI '100TU0201' T1! 3.I1T5 S1'10000 LIM! 1I•16:Cß0l 30:701IT '0•9 C' ‘10010 LIM! 16•1•1C!lI 19xP01IT 'Q 9°10020 LIM! 10•16•C!I„I 1I:P01IT °0•Q I'1000 LIM! 10•16t0I.I 1!:P01IT °0q l'10060 LIM! 6•I5sC3L11! 6:991IT ° T1! LI1T5 FI Yll 010 FI 11!l.I!TIJIELI IFYIMILIKITIGIIAHIJITYP! 'I' '10050 LIM! 7•16:70!IT ° TYP! °5‘ T0 CUT1§'11000 LIM! 20•25:£I 16:991IT °

I

10070 LIM! 1•1:01II¤1I!Y0•19 0100¤G01051I MIIIOII1971 T10 10390 E! 1011000 19 I100•G010?)I 3100¤G01991 TQ 10090 H5! 1007010070 19 1!•16 T11! 10091 !L3! 1}09!10091 Il 1•1 T3 1I1I1111•1S1111•3!1/1.0:lIT 11007I 19 10¤16 TFH 10093 IL! 2007610095 FI 1•1 T0 1!:01111•10111)I1„I1•I73•15:I!T 1 _10096 19 J!•1• TQ 10095 B.5! 10090

- 10095 FI 1•1 T0 1I2I1111•I1111·I75•15•£1 11000 19 01661 T10 1070 EI 10901070 ¤„I1LIM! 6•I5•0•¤„I 6sPl1IT ° I TI10 3 TI $7 XGT1! 1I1T0 90 TI IT0 9013.7 G3

I

10710 LÜTI 7•10M1I7 ' . °10700 Lßil 9•1I:N.I IMIII 'FI '10T1.ß00° TI IITI Kt '1070 LIM! 1I•16•¤I IMG 'p·00l'•00l11l ‘111¢10760 LÜTI 10•16•G„I IMG '

‘ °1070 LIM! 10•16•CI„I IMG ° °10700 13T! 10•10:ßI I:H1IT '10•-••0m•l••1 '1«I•010770 LIM! I0•8sßI 16•7010T° PIIII|I9TOOTIP01IT¤ n III TI Itl uv nv 93 ¤01I'

Page 189: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 7 8

1R1•" THE! 1073010799 LIM! 12•10:P01IT ' °:LIM! 12•36:CZ1LI 02001IY ' '10000•1F 01I0•0110011J1 THE! 10000 ELSE 1001010010 LIM! 10•101PI1|T °•':LIM! 10,36:ClI 01PI1IT '<•••'101I0•1l!Y0:1F|IIO•'° THE! 1001010020 LIM! 10•10xP01|T ° 'xLIlT! 10,30:0l,l 0:001II ° °10030 IF 01I0¤¤I011J1 T10 IU00 EL! 107810000 Y•CSlI.1I2!•000101:J!•2:J1•210050 IF Y•l3 T1!) 1I00•‘1°:11•1•10060 1F Y•1I T1!I II00•‘2':12•1010070 LIM! 9•12:COLI 2:001IT °F00 °;00TU|001' T1! HITS II!1 '10I0 LIM! 12•10:COLI J1:!!1IT °|l'0ÜIIYIIIl118 °10090 LIM! 10•10:Cl.I 1'!:P01IT '1I•••u••mt•I••1

°10900 LIM! 0125:CII 0:fI1IT ° T1! 1I1TI FI NI 00TI Il! HIIUIIEil! IFYUUHLIITUOEÜIITY0.0 laum LIM! munznt • rm *1:* T0 COIT1C'10920 LIM! 20•25:COLI 10x!!1IT °

109I LIM! 1•1:01I0•1I!'10x1F 01l0¤Q01$51I IIIFEII71 T10 20690 0.2 1090010900 IF 01I0•01I0167100 111I0•O1.001191 T1¤ 1-1950 E2 109810950 IF 1!•10 T1!) 1092 ELSE 109551.*952 FI 1•1 T0 1311101111•0!11:•1,0005•0§2„$93I20„2171l!T I1795 IF 00TI•1 T1·£0 10900 EL3! 1125)10900 LIM! 0•2!1£I2I 01!01IT ‘ CI '1115 ECZID YG1 N5? PIII? T1! I 'IT! EUR T1! 1'·0TI P0l'I2Il,| HTERII10970 LIM! 7•10•P01M ' '1098 LIM'! 9•12:CIOI 2:201IT 78 °1IMUl01° TI IIITI C1

10990 LIM! 1!•10•°Im 2:POIIT °I1l0•• °:JI•211000 LET! 16•10•¤I 2:701IT °0an '1J0¤011010 LIM! 10•10:CII 21F01IT ' °11020 LIM! 10•10¤01U 2:P!1IT °h•·1r•':1l•0110I LIM! 20•251¤I 101P01IT ' FIS! II? H9 T0 Mr! T1! 901ITE3 hl PIII T1! |!T1II KI! If VII U0!C!°

11000 LIM! 1!•102m" '•°1L2CM! 12•16sC1I 01PI1IT '<•··•‘101l0•1§70:1F I1I0•°' T1!I 1100011050 LIM! 1!•101!l1IT ' '1LET! 12•361Cl.3 11001II ° °11060 Il I1I0lDl011I1 UD 111N L2 1107011070 LIM'! 10•101!I1!T j••sLIMl10•36sN„§ 0s0I!II '<—-•'x01l0¤1I290•IF I190•‘° FH 11070 °2220 LIM! 10•101!!1IT ' °:LIM! 10•36s¢1I 0:POT!T ‘

'11090 I! 01!0•C1I01131 TH! 11130 E12 111001118 LIM! 16•101201II °••:LIOT! 16•Z6•Cl§I 0:!01II °1••-•':01|0•1l!!0•1F 2Ill" TE 111811110 LIM! 10•10•!l!IT ° '1LIM! 16•36•ßI 0•FI1IT ' °11120 I! 310801131 1D 111I E2 11000' 111I TE„1I1I•0I101•JI¤2sJI¤0!«1¥211100 II N1! TB @8'I'1lI•101118 II 9•10 TB 1§l‘I°1b1011160 I! D17 TE 1Ih‘I°11!1011170 LET! 9•121Cl„I 21Il!II 'YI '1IOTLB01‘ TI |lIT! K1I

111I LET! 1I•10•G„I 1I•8III '•1I1• °1118 LET! 10•10•GI JIWIIIT °1•l'0 °118 LIM! l6•10•QI IIWIIII 'l0YI °11I10LET!0•51¤„I01II1IT° TIÜTIÜTEITIEIIIJITD [I ' XI TI EI Lil TI EEI! TIF! °0' ° -118 LIM! 7,101001II ° TW! '0’ TI IT!] °

Page 190: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 79

;0

11200 LIM! 1•1:DI!0•1l2V0:IF 01R0•C1I01031! 01l0•0I01071 T10 10030 EL3! 11230 -11230 IF 01R0•C1I01071! 01I0¤GI01001 T1!I 11200 (L2 1120011200 IF 1!•I0 III 11201 E13! 1120211201 F11! 1•1 10 Il!:E1111•!1111/00•IIT 1112021F 1I•10 T1!I11203 8.321120011203 F! 1•1 10 1l•!1111¤(1111•20:!!T I11200 IF 00T0•1 T1!! 11270 E13! 1130011270 LIM'! 0•2:CII MHIIT ° ! 11113 Q3 T! IIT DEIN T1! llIT3 F! T1! 0010 $0131 ETH

I

113 LIIT! 7•I0•PI1IT ' '11200 LIITI 0•I2•0:Cl„! 2:P01IT 'TI '100TLl00T° TI IIITI In '11300 LI01'! 12•I0•01CII 2:P01IT °p-$00:1/1118 ':I1•211310 LIIT! 10•10•0:C1! 2:POIIT ' '1120 LIM! 10•I0•0xCI£l 2:P!1!T ' °11330 LIIT! 10•10•02C3L£0 2:P!1IT '!0•-graue!/gal ':IE•211300 LIM! 20•23•0:C10I IMFQIIT ' P0!33 AIV GV T0 NR TI P01ITB N N8! T1! ITTI IN 0T VGUNIT11230 LIIT! 12•I0•0xP!1IT °•°2L2£0T! 12130•CL'.30 MPIIIT '<··-•°!0l!0•1I!Y011F01!0•“ THE! 1120

11300 LIM'! 12•I0•0:!•1!T ' °:L1lC3T! 12•30sC!L‘I 01901IT ° '11370 IF 31!|•OI01131 TS2! 21011 {L3! 113H113l ;3CäT! 10A0:P01HT °•':Ll3T2 Z0•30:C3LI 0:*0IIT '€·-·':3IIO•1I!Y0•1F 01§0•“ THE! 1!300 ·11300 L2‘°J1T! 10„10sP0!M’ ' ':LS2I1! 10•30:C‘«1I MPYIIT ° ° -11000 IF §1R0•C1II·131 TG 11•1<° 5.32 112011010 V¤C32l1‘1:I•003101:1£•2:J!•211020 xr v•13 MI um 9.33110001102 1I00•‘I°r11•10sIT0 11000110001F T•13 TI! 11030 B.! 110U11030 1H0•°!°2I!•1MOIT0 11000 I11000 LIIT! 0A2:ß! 2:!II!T WI °1!T1.II001’ TI 1IIT3 C:11070 LIITI 12•1MCI.0I lI:P!1!T °}0'lY•$tI11t•r °11000 LIIT2 HAMJIJ 1E:H1IT °13••¤r•¤¢t/gal '11000 LIBT! 0•232C1§ •:?I1IT ' T1! ZIIT3 T] VII 0010 II! MillTHQ! 1!T0!öIIJL1¤TOU3000l!TYP! '0' '11300 LIM! 7A0:!01IT ° TYP3 ’C’ TU $11]11310 ;I2T! 20•2s§„! IMHIIT °

_

113 LIM! 1•I:0I!I•1!!10•1} I1!0<1IOI03Z3I 01!I•OII10’1 T1!0 11273 EI 113113 IP 010031071Cl HIEIM001 IE 11300 B2 112011300 IF 2•I0 IK 11302 IL! 1130311302 Fl 1•1 TI Il!F11I1•0I111I1.0RI¢3•303ll•317:I!T 111303 IY l17•1 TS 113 E2 1102° 113 LÖI! 0•12!G! 2:0ll!IT 'TI °1lTLl701° TI IIITI Re

I

1180 Lßil 10•10•0•G„I 2z!III3 °1I1•1•0§1 HIFI11370 LIITI I0•10•§„I 21|l1IT 'lltaynb '¤J3¤I113 LIII! I3•I0•¤„! 2:!III7 ° °11300 LI01! 10•I0•l„! 21l1lT °II1&l1 N31IßLIIT!8•8•QI 101!lIIT' PKUITTIGTIFIII!I — ~ PII TI ITK I! IT VI D01T11010 L¤T! 1I•101RIIT °0°1LI07! 12•2•¤„! 00llT ’0•-•'10IlU1HYO•1F I1I00“ TG 11010110l LIM! 12•I0•!lII! ' 'rL£T! 12•I•G.! MHH ' °aut II ITIHZIHM T1II1•‘Mt\ ¤• una

Page 191: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B O

1I0•"‘ THE! 1160011ä30 LIM! 10•10eI01IT ° ':LIM'! 10•36:ILOI •ef0II! ° °11660 IF I100¤C1l01131 VII 11700 ELE 1167011670 LIM! 16•10ef01IT '•°eLIM'! 16.36:CII 0eI01IT °<·····':01I0•1l!YIei! I100•‘° VII 1167011600 LIM! 16•10eFOII! ‘ °:LIOV! 10•30slI 0•f0IIT ' °11600 IF 01l0¤0l01131 V10 117I EI 1161011700 Y•C11Is1¤FOOI01s«11h0sJP2sJP011710 IF 7•13 VII 1ß0•°l':Ih1011720 IF 7•10 VII 11•‘11°eJ11•10 ' ‘11730 IF !•17 V10 1§0•'0'sJ0•1011700 LIM! 9•12slI 2:FOIIT °FI °1ITLI701° VI IIIV3 Re

0

11730 LIM! 1M10eCII IIef01IT '1I1•1l0•I1 '11760 LIIT! 10•10elI VIsFOIIT °1l1h•I!01 '11770 LIM! 16•10eCII I0sfIIIV '1l10|y•1 '41700 LIM! Ieüzll 0:f01I! ' VI 1IIV0 FI Il 30Tl II! 1•1I0.IIVFBÜJU 1F!Ulle3LII!TOOGÜZITYP! '0' '11790 LIM! 7•10eI01I! ° VW! ’C' V0 CITIIP11N0 LIM'! 20•üsClI 10ef01!T °

11010 LIM! 1•1s0I00•Il!70•1F 3100l$0¢601I IIIMIIII71 TIB 11300 EL! 1132011000 1'F 0II0lC1l0I67100 31R0¤}I0179Z VI! 11030 P.! 1101011030 IF {F10 IH!I11031SL0!413Z!11031 FI 1•1 V0 1Is3I1Z1¤01!1}•6e)eI=!IT 111332 IF I0•10 V10 11333 !L!! 1403611033 FU 1•1 V0 Z01|e01111•0111l/1R1eIl!111030 NOOT•011000 IF CIY2•1 VII11000 &0!11910ggßß ßßgggßtl mßgßßl

ßgflil!11060LIM!11070

LIM! Müsli MHIIT ° YU IT GG VH! M 001*0IT FI FI 1!'1T°11G LIM'! lleüsll 0ef01lT ' VI 073VH IILL IGT I! VI 0070 CNil ' SCI! FLEK 3T— I!11070 LIM'! l0•l0e¤.I Reflil!

°11700LIM'! Ueüell Reflll! ° ·man M num N:000-11*203!LI!•l0!•1

1:730 R1! mv11764 F0l!•1e¤„011900 ITK110l IF C!!!•0 VIH 1173 B.! IIH

' 11770 LHV! hüslll MGMIIIIT °O

11G LÜT! 3•10•fIU ° °119W LÖV! Ueüsll 10•III0 °O

lll I0!1•0e1!II•1el1I1•101ü10 I! l!1•11'$ Gll IlIIG 01B„1$01G!1I•01He1IÜIG!1I001I„1¥lG1!0sf0T1•11RI IF l|!•1 Til 180 ll 100I180 IIFITIÄVÜIÄIIIGRG 0l!L1l¤018T8•0111I¤01$!$e01l1$0I$7Ds70T1•1eIV0 IIR12000

luna III 108 II men

Page 192: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

T

1 B 1

12090 0I$FL100•0ISI10I300:0ISFL100•01$301300:01SF1.1CI•0I3IOT30:FOT1•I:0070 12110121.00 1223012110 IF UITUI T10 12120 8.32 12150 ‘12120 IF F37I•0 TNS! 12130 ELS2 1210012130 0191.100•0ISOOI’00•:0191.100•010001'•00:0I!lICO•0I50070C0:F371•1:0070 12131210012150 IF 0075•1 T10 12100 21.32 1219012100 IF F07I•0 T10 12170 E1.! 121812170 121812100 1850 -12170 IF 007061 T10 1800 EL! 183012200 IF F07I•0 T10 1810 EL! 1222012210 01!L100•01300780•0I9LI00•0I300T00010I!L1C0•01$70C0•F371•1:870 M12220 019120081087000•01!L200•0I$\‘000:0I9I.80•0I500T0£0•8T0 1012230 IF 00T7•1 T10 1800 IL! 183012200 019L200•0I58T7I0•0I!1.80•0I38T70010I!L2£0¤0I38T70012220 I2!12200 LI072 0•13:PI1I7 010FL100¤LI|T2 0•33:F01l7 |1!L2812270 100272 7•I5:P01I7 0I!1.100•LIA72 7•B:FOII7 0181.20012230 LOCOT2 7112:00107 0I9L1C0:L$8T2 7•J51FlII7 0191.8012290 00-012300 IT£72•11:FOT1¤012310 IF 3I71•1 T10 12320 EL! 187012220 IF 10>12 71012350 218123312230 FI I•I 13 1|•LB2072 I0•I•13:F01l7 III °000.0000°10I111:l37 112300 F371•1xEOR•1I:0070 187012320 FI 1•ITE! T0 17271 379 1:.8572 IT'202„15xF01I7 III '000.0000°10I1112I7E.32•IT2I2•1:11217 1 .12300 1I0¤•1:F371•1:1M•I0sI°E!2•II12370 IF 0072•I T10 12300 21.22 120*012$ IF F371•0 T10 1238 EL! 12060188 IF I0>12 Tüll 12020 8.32 1200012000 FI I•I 70 I0¤L10T! I0•I•I51FIII7 III '000•008°10III1sl37 I12010 F071•Ix1I0•I0¤I7I 120812020 FI 1•I7!l T0 1781 37IP IILIITI ITH•I31FI!I7 III °000„080°10III1:I7EI2•1728•I:Il7 112030 $•11FOTI•I:IOI•I0•1"'!l2•11:I70 120812000 IF 10112 T10 12070 B.! 1205012030 FI I•I T0 1!1LI072 10•I•331FOII7 III '000.0000°10II11:I!7 I12000 F071•1_s10!10:I70 13312070 FI 1•!T8 T0 1781 07D 1:1.N«17! 1T82•351F0II7 III °000•0000°1011I1s17E!2•I7£I2•1:1!!7 11208 0•I•F01’1•1:II•I0s17Z8•II=I70 130312090 IF 00731 T10 1800 I1! 1810 _1800 IF F07I•0 70 1810 BI 18812310 IF 12212 TE 1800 IL! 1801820 FI I•I T0 1C:L!I7! 13•1•12:F91I7 III '000„0000°1011I1:I!T 1183 F371•11IIlI|1:£70 18101800 FI I•ITl 70 17llI IT! IILIIT! 1T!2•I5:FOII7 III '000.00°1¢1II1xI7202•I7@•I1l!7 I10 D1110I¢1F!71•I:ITH•I1:I70 1810' 188I7ID1270188l.I18701870 FI I•I T! ICILIIT! 10•1•818II7 III °0•00°IOI1I1•B7 I10 FITI•uIbI¢xI70 133188 Fl I•ITI 70 1781 37I MDT! ITH•81FI1l7 III 8880*12311):17@•I7G•1•07 I1208 D•1•!!71•111D1011701I•I70 13I1810 IF 870•1 T10 1820 I.! 127318IIFF37I870183l81018317 10)I2TD1208lII881800 FI I•I 70 IIILIITI 10•I•10aFI1I7 III °0•00°1001I1•07 1183 FOT1•11IOII18T! 1278

· 188 FI 1•ITl 70 1781 S7! MDR I70•101F01I III '0.88°100II1•I7N•I7Q•IaII7 I1870 D11F07I•1•II•10•IT!l2•1I1I7I 1273

Page 193: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B E

12070 F00 1•1 T0 1l:L80T2 10•I•32:FIIIT 11318 °000.|000'T|1I11:837 I12700 F3T1•1:1AI1•10:00T0 130812710 F8 1•1T8 T0 1181 318 1:L80T2 IT82•33:FIII7 11318 °000•|000'101I11:1T2l2•1T2.92•I:817 I12720 I0tI•I:F071•I:10I•1011T82•11:007l 1303012730 IF 00T2•I T10 12700 8.52 18812700 IF F071•0 T10 12730 8.32 1012720 IF 12112 T10 12700 8.8 1270012700 F8 1•1 T11 12:L8IT2 10•1•12:F01I7 11018 '000.0000‘12II11:837 112770 F071•1:III•I2:8T0 188 012700 F8 1•1T8 T0 IT81 318 I1L8IT2 1T82•12xFI1I7 11018 '000„0000°121111:1T82•IT82•1:837 1

12790 88•11F3'T1•I:IhI2:ITO•1118‘|'l 1881280 IF 12012 T10 188 8.8 18101810 0 1•1 Tl 12:1.8312 10•I•33:F01I7 11318 °000•|08°12I1111l!7 11820 F3T1•I1IlhI218Tl 18812030 F11! I•1T8 Tl IT81 218 IILIITI 1T82•331FOII7 818 '80.0000°121I11:I7E!2•ZT82•I:817 11230-1 IOCI•1:FOT1•I:1AI•1211T82•I1:30Tl 130812220 1F 0ITO•1 7118 1800 822 129701800 IF F071•0 T'*12.'|1§0 E'.! 129201870 IF 1F1>12 T10 12900 8.32 120188 FOI 1•1 TC 1F1:1.0CIT2 I0•I•13:'91I7 11318 '80„|000°1FIII1:837 I12390 F371•I118¤1F1:00Tl 1297012900 F8 1•IT8 70 IT81 378 1:L2IT2 ZT'82•13xF91!I 0018 '000.0000'1FII1111T82•IT28•I:!1Y I1291$ l08•1:F271•1:1II•1¥?:17232•1I:3•.*73 1297012920 IF IFITI2 7118 12920 21.22 1293012930 FCI 1•1 TC !F1:1.CZ«1T2 10•1•33:P9111T 11018 °000•0000'1F11111£T 1 ·12900 F071•1:200•1FI:0lTl 1203012920 F0! 10178 Tl 1781 378 1:L!I°2 IT82•33•F01I7 IIII °000•0000°1FIII1sIT82•1T82•1:81T I12900 I3C3•11F2T1•111lI•IF1xIT82•I1:00Tl 130812970 IF 877•1 T10 12* 8.32 1881298 IF 10112 T10 1810 IL! 1299012990 0 1•1 TC I211.0C272 10•I•32sFIII7 0018 °000.008'10III1:837 I13000 F271•111l•1318Tl 1303013010 0 I•|T8 Tl 1181 278 1:1.808 IT82•33:FIIIT 11318 °000.0000'10111!:1782•IT82•11!!l7 113020 I82•1xF371•I1!hI0:IT222•1113030 IF 0•1T101800 8.8132201800 IF 101181 T10 13230 8.8 130301308 IF 1T81•8 T10 1380 8.8 1300013000 LIM! 1•231C8.8 MFIIIT ° 883 IV 89 TI 0710 92012318ml 0m ~ -

‘l

13070 ;.°C«1T2 3•10:F91I7 ' HC1! 101308 LÜTI 1•1:l1I0•I?¤10•1F Ellhlll-321 T‘0 12090 8.32 18813090 0 hl Tl 12 ITU 1:LIIT2 10•I•131F9!I7 ° 'ILIITI 10•I•33:F9I117' ':l37 I13100 IF I•13 10 13110 8.8 13100

· 13110 IF 18(20 10 1318 8.8 13181318 IT8•1311TIl1•18:87l 101318 178•13•1T81•20•870 1013100 IF 1•8 T10 1318 8.8 13181318 IF III8 10 13100 8.8 1317013100 1T8•8•1T81•18•87I 1013170 ITÜ8•IT81•8•87I 101318 IF 1•37 10 1318 8.8 101318 IF III8 10 10 8.8 181010 IT8•3711T81•1I•8II 101810 ITÜ371IT81•8I88 101328L0721•8•0I01FIII7‘ !087I1lI.1278l.l1FT00I2 . 798 '0° 70 D87 10 870 8729 2L8 °

Page 194: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B3

$$0 ww! 1•1=01l••1¤m:1r muoneeesm 01I0•$01771 nu 13200 EL! I313230 IF 0IIO•010I010710I 01l0•01I01771 III! 13270 E13! 1320013200 ER000I•1:0!7110I _13270 IF 0I72•3 III I! (L3 103013200 L0007! I•3:0I.I 0:¤.3:701lI °13270 100072 3•I0:FOII7 ° °13300 LI07! 20•23:01I.I 10•7!1I7 '

I

13310 F072•02NTI•0•I78•1II781•1213320 IF 007I•I III! 1333 EL! 133001333013300 IF 00I2•I 71II 1330 213 I3!1330 IF F071! 7118 13300 E1.! 13370233•0 0I37L100•0I30072.00a0191.100•0I3007200s0I371.100•0I33I200:F071•1:370 I!1337023330

IF 0I73•1 1"•!11 13370 8.32 1300013370 IF F07I•0 IIB 13010 EU! 130313000 IF F372! 110 13020 EI.3! 130313010 0Z91100001300733n0I1100•0I300I3I0•0I!1.I00•0I300733•7071•1:I70 1300013020 0137'.200•0100|7300•01371.2!0•0I3|07300•0I9L200•0I3007300•7372•11370 130313030 0I37L300•013007300•019i.300•010007300•01371.300•0I300I30¤I70 1301013000 IF 00?0•1 III! 13030 21.3 130013030 IF F071¤0 71*8 13070 EJ! 13000mw IF ww 'wm 13000 Eu! um13=70 1330013000 0I3?'.200•01330700010I37L237•0I3307000:313'1200•0130II000:F3‘72•1:370 133313070 0I371.300•0!330T00••0I9L300•0I300I000•0I371.300•0I3I07003s0070 130101300 IF 007!•1 710 13310 13.32 130013310 IF F371•0 710 133 21.3 1331320 I7F072!7'1B1300I1.3I3313330 0I3F1.100•0I300I300•0107L100•0103I300•0I37I.100!I337!0•7371•IzIII 130013300 0I07L200•01300I300:01!L2!0•013I07300•0I37L207•01300I'300:N72•1:370 130013330 130101300 17 0070•1 710 1370 B.! 130001370 IF F072! 7119 133 (L3! 13701300 1300013370 013713090I000Yä00:3I!0300•0I300T000:3I37L30•0I3307000¤3I‘0 13010

1300013010 E13020 L307! 0•13sF3I|7 01371.100•L0037! 0•3I7l1I7 0I£!•I.307! 043177137 I1371.30 ·13030 LIIII 7•I3170II7 01!LI00•LI07! 7•3x70II7 3I!1.§01L307! 7•33I7l1I7 I191.300130•0 L307! 7•13I70137 01!L100¤z¤7! 7•33:70II7 0!371.200•1.I|I! 7•317lII7 3I9.30_ 13030 Ü!13000 I782•I1•7071!17072!13070 IF 0071•I ID 1303 01.3 137'3I3! 17 10012 IC 13710 [313701303 E 1•1 70 IMLIII! I0•1•1310l.I 10•701I7 III °0I.X°I01111:I37 11373 N71•1•IbI0•I70 137313710 FI I•178 70 1781 II! 111.ßII 1I8I•13x7I1I7 III °!•0!'101111:1782•17§•11I!7 I13700 §•1•17H•11:!371•I•1bI01373 17I72•1 7$13700lI1!1370017 N71! 7_1373 II I!1373 17 10012 I! 1373 [I 137313700 FI 1•I 70 IMLQII 10•I•13s7IIII III °!.0!°101I1hII7 113770 7071•1•II•10•I70 I!1373 78 1•I78 II 1781 078 111.ßIl I7B•I31NM III ‘!.3I°101111117FII•1I’7Il•1eI!Y 1

Page 195: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B4

11910 !F Il>12 THS! 133 E2 131011010 F11! 101 T0 I|zLGlT2 10•1•32:FIII1’ USII '|00.0000°101111:IIT I11020 FlT1•1:I011•10:F2T2•1:UT0 1305011010 FG I•1TIl T0 ITEII 370 HLIITI IT'El2•32zFIIIT GII °000•0000'10I1I1:1TEI2•ITEI2•1:lIT I11000 II22•1:FST1•1:Il•|0:1TEl2•11:FST2•1:lT0 1811050 IF 00T3•1 T10 11060 E.! 100311060 IF FST1•0 T10 11070 EL12 1192013070 IF IC>12 T10 13900 8.52 1813200 FG I•1 T0 IC:LGOT! 10•I•11:F01I7 GII °000.0000'1CI1I1:ßT I11290 FS”T1•1:IIl•1C:0IT0 1003 _11900 FG I•IT¤ T0 ITEI1 570 IILGITI ITEI2•13:FOIIY GII °000.0000°1CI111:ITE|2•IT2R2•1:IIT I11910 I0¤•1:FST1•1:1I•1t:IT!I2•11:00T0 100311920 IF F1T2•0 T1Il11910 8.!139l11910 IF SCI! TIII 13960 EL! 1390011900 F11! I•1 70 1C:L0£AT2 10•1•32:F91|T GII °000.0000°1CI111:I1T I11920 FST2•1:2H1•1C:FST2•1:2I1T0 100311960 FG! I•1TE! I0 1781 STI? IILGATI I7EI2•33zFIIlT GII ‘000.0000°1CI111:ITEI2•1TER2•1:1IIT I11910 !1S£I•1:FST1•1:Il¤1C:ITEI2•11:F¥T2•1:lT0 100311900 IF 12112 T10 10010 21.32 11990 ”13990 FG 101 T0 !C:LIOT! 10•1•.'2:F01IT GII '000.0000‘1CI1I1:I1T I10000 F1T1•1:III•1C:FST2•1:IT0 1057010010 FCI I•|TEI T0 ZTE.91 STP 1:13372 1TEI2•23:FIII7 GII '000.0000‘1¢2‘11:1IE§2•ITEF2•1:I!T I10020 11SC1•1:F§T1•1:1£I•1C11TI!2•11:F2T2•1:10030 110010 IF 10¥3•1 7*91 10000 21.32 10220:•¢00 IF F!T1•0 T1•£! 10i20 E12! 10220 ”10(‘20 IF II1>22 T‘!£| 10000 9.32 1006010·160 FU 2•1 T0 2021031 10•1•12:F91IT GII °000„003‘10I1I1:!IT I10070 F$TI•1:1lh!0:§T1 102101003 FBI I•ITII T11 ITIII S'I'l9_1:1.G«1T'I ITB2•I5:FOIIF GII °000„0000°1|I111:ITE92•ITH2•1:I1T I10090 lSOI•1:FOI1•1:111••I021T2I2•11:3T0 1021010100 IF F1T2•0 TIII 10110 E! 1016010110 IF 10112 710 10100 ILS! 1012010110 FG 101 T0 IIILIBTI 11•I•32:901IT GII °000.0000°10I1I1:I!T I10130 FST1•1xIl•10:FST2•1:00T0 1022010100 F3‘I•I7II 70 2781 STIF 1:10311 IT!I2•32:FlII7 GII °000„0000‘=2'I·I>:I9 'E!!•ITP2•1:I!T I10120 I¤•1:FOT1•111l•10:1T!!2•11:?2Ib1:00T0 1021010160 IF I0>12 71*II 10190 $.1.1 1017010170 FG I•1 T0 IIILIBTI 10•I•23:!0II7 GII ‘0I.00l°10I1II:I!Y I10100 FSTI•1•I$1I•FOT2•1¤IT3 1057010190 FG I•2'!I TI ITPI 1721 1:;.*31 IT¤•53:FlII1’ GII °000.00I‘12I121:1TE9E•IT!."2•I:1!T I10200 '10..'9•1:Fl72•1:IH¤Il•!T!.92•1Z:?1T2•1x00T0 2027010210 IF 00T2•I 71Il 10210 21.22 1019010220 IF F1‘T1•0 TIB 10210 E'.! 1020110230 IFID12T$10260lLSI102021030 Fl I•1 TI Ilstllfl 10•I•121FIII7 GII °0l•8°12!1I1:H‘T I

· 1080 FITI•1•II•12sl7I 10390108 8 I•|TI TI ITII TT! 1:L¢IT2 IT8•I5sFI1I7 GII ‘8•81U111•ITEI2•ITl2•1xII7 I10270 8•1sF071•1sIl•1Is1TK•11:l1I 103l108 IF FST2¤0 TIB 10290 lll 1030010290 IF IDI2 TE 108 II 108108 Fl I•1 TI IIILIITI 10•I•3l:FIII| GII '8.8M1111H7 I10310 F0¥I•111D12•F3T2•11l70 1081030 Fl I•ITI TI ITII IT! I11„ß9I IT8•31lII IH °8•8'1II1II1I7ü•1TG•1•I!7 11033 81•F|T1•1•1I•12:ITÜ•11•FST2•11I70 1%10300 IF IDI2 TU 10370 UI 108nä Fl 101 TI IIILGIII m•1.SSe•01I9 GII °0I.00G°1211I1•I!T I

Page 196: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B5

I!370 FBI I•ITEI IB ITEII STEP ;:L¤I1ßIE ITEl2•SS:PIIIT BSIUI '••!.•O!•°:£IIII2ITE.I{•ITEIZ•l:!IT II•3|O lSCI•I:FSTI•I:III•I!:ITEI2•II:FST2•I:OITB IOS7!IMO! IF |I!TO•I TIB IOO!! EIS! I!SI!I!!!! IF FST2•! TIB IOOI! GLS! IOMO 'nano xr mm TIB IOOO! ILS! IOO2OIM2! FBI I•I T! IFIILRITI I!•I•3S:PIIIT USII 'O!!.!!OO°TFIIII:IlT IIMJ! FSTI•I:III•IFI:FST2•I:UTI I!SI!IMO! FBI I•IT'EI T! ITEII STD I:Lü|TS ITEIISSIFIIIT IISII °OO0.0!O!°IFIIII:ITEI2•ITEI!•I:IIT IIMS! IISCI•I:FSTI•lxIIhIFI:IT!I!•II:FST2•I:ITB IOSI!IMO! IF IFIIIZ TIB IMO! U.! IM7!IM7O FU I•I TI IFI:L!OTI I!•I•SSsFIIIT USII '!!!.!!!O°$FIIII:I!T IIMO! FSTI•IxIII•IFI:FSI2•I1ITIl IOSTOIMO! Fl I•ITE TI ITEI STD IILGITS ITEIIIEIFIIIT USII 'OO!.!!O!'IFIIII:ITEI2•ITEI!•I:IlT II!S!! IS¤•I:FSTI•I:III•IFI:ITE!2•II:FST2•I:I!TB I!S7!IOSI! IF !!T?•I TIB IOSZO ILS! IOSTOI!S2! IF IOIIZ TIB IOSS! EI.! IOS]I!S3! FBI I•I TB IOILBBITI I!•I•SS:FIIIT IBII 'O!!.!!!!‘I!IIII:IIT II!SO! FSTI•I:IlI•IO:FSTE•l:6lIT! IOSTOIOSSO 'Bl I•ITEI TI {TUI STEP HLSIZITI ITm•SS:FIIIT GTI '!!O.!O!!‘?!IIII:ITEI2•ITEI2•I:IZT IIOSO! 3¢I•I:F3TI•I:!II•II•ITEI2•II:FST!•Ium xr um TIB mu E'.! umIOS] IF I!•ITIII TIB I!7S! EIS! IOSIOI!S7! IF IT!II•S! TIB ION.! EL! LMB!IM~I! LBUTZ I•l!:C11I I•!IIIIT ° FIES SPK! III TB CSTIIIIS FEYIEIIII VIII BOT!

IMI! LIBTI S•I!•O!IIT ° HC1! I!IMS! LIITI I•I:SII!•IISY!•IF IIIOQUOIIII TB IM] ELSS IM}!IM] FI I•I T! II STD I:L¤T! I•)•|•ISx!IIIT ° 'ILIOTI I!•I•SS:!IIIT .' 'ILBCITI I!•|•$zFIIIT ° ':I!T IIMO! IF I•IS TIB IMS! B.! IM]IMS! IF III<!O TIB IMO! ILS! IMT!IMO! ITEI•ISxIT!II•III•3IT! ISOO!IM7! IT!I•ISxIT'£lI•OO2!JTB ISOO!IMO! IF I•ZS TIB IMO! H.! I!?2!IMO! IF IMG! TIB I!7!! EIS! IOTISI!7!! IT‘EI•!S:ITEI•IIIIxiBT|I IMO!I!1I! ITI.I•BzIT!II•3••ITS IMO!

. IO72! I! I•S7 TIB IOTZI EJ! IOTOOIOTI IT!O•‘S7•ITIlI•II2ITI ISM!I•7!! ITlI•S7tII'lII•]•ITI ISOO!IO7S! LÜTI MEIGQ MIIIIT °_ Yll JOTI IS LISTE I3! IF TIB! OISEMII T7F£'!'TBB9TYBS!°3'2ITIY£LSI °l!*O! LNITI !•I!sFIIIT ' TYFI 'I° TI CITIB°IOTTO LB?] I•I•III!•IB7!•IF IIIIBIOSIU JIIOIMIIOII TIB ION! ILS! I!T]I!7] IF IIIOBOIONI IIBIOOI TB IOB EI IOT7!

_ I!7!O BTOUITBIOB I! UTF! TB IOIS! ll I!]IOOIO Lßll hßtll OIGSIHIII °

° „IOB LBTS S•IO¤FIIR ' °IOB LBFI ]•8•¤„l IMFISIT °

I

IO]! FITI¤!•FITI•!•FITI•!•ITDI•I1Il•IIIOB IF ITI•I TB IOÜ ll SI]IO]! ITILI]l!IBTI]•IIRI]ÜlBT\]•IIBICS¤OIBTICS•FITI•|‘ I!O7! IP ITI•I IB IOB ll IOOIO ·

Page 197: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 8 6

f •

MIB BISPLII!•BISBBT2AI:BIS?LIII•BlSIAIZII:SISfI.ICI•·0ISNTZSlaFSTI•1:NI’B IB91BINN BISflZIB•0ISB!T2IB:BISPL2I$•BISIMZI!=0ISPLNI•0ISI•I'IS!:FSTI•IIB9IB‘IF NTS•I TIISI IBBN ELS! M10 .um rr $$114 nu 1•••• EIS! um eIBBIB IF FST2•! TRI IB9S! GLS! IBINI•9•0

0I9I.II!•!ISIM3!•II!LII0•0ISI!TS!I1IIRICI•0I§TIIsFSTI•IINTB IBW!IB9S0 BISILZ!0•0ISIMI!01II!I.1I!•0ISIII3I!•II!LISI•0IINTII:FST2•IINTI 1B07!IBBN BISIL3N•0ISI|TSI!10I!LJI!•0ISNTSIIIIIILIINISMIIIFSTSBIum rr IITO•I Nu 1•••• B.! 1S•¤• .·IHN IF FSTI•0 TIB 13010 EL! IW90 '16910 IF FST2•! TIII 1S!N ILS! ISBNISBBBIFFSTFBTIIIISBNIIISISIBB lISBI0 !ISFIIBO•0ISNI’B!!s!I!LIIO•0ISOOI’B0!1!ISII.ISI•0ISITBSO•fSYI•IINTB ISBSBISBN II9I.ZIO•!ISIMBN•0|!L2I0•0ISNIB!!1II!L8I•0ISNIB¢I1FST2•I:NTB ISBS!ISBN IIS!LSI!•0ISIMBN•II!|„1I0•0ISI0IB00•II!III•0IS!ITBC0•FSTS•IINTB ISBS0ISBB! BI9I.BIB•!ISBMB0!:!I9LB!0•0ISS!IBN1!I!LBC0•!ISNTB!0:NTB ISINI30S0 IF IMS•I T10 ISBN ILS ISIIBISBN IF FST2•0 MI ISBN ELSI ISB7B13070 IF *§TS•0 TIIEI 13090 GLS! ISIB!ISIN BI9'.Z>B•0ISBITS001!IS!LZI!•0IIIOTSIO•0I£I0•!I§I!S:FST2•I:NTI ISIIB13090 BI3!U00•0I30MSN•!ISIIJI!•0ISI!TSI!1!I!II!•0I§T!!•FITS•1:NTS ISII013100 BI9I.B!0•!ISIMSNzII9LB00•!ISl!TSI!:!I!LB¢I•0ISNT!!•NTI ISIN “ISI10 IF BM6•I TI0 ISIN BIS! ISISBISI20 IF FSTS•! III! ISIN EJ! ISIB!ISIS! ISIS!1SI·b0 SI9'.öB0•0ISIMNB:!I9Lö!!•BI3SBT§!01SI!LBCI•0ISNTO¢I1NTS ISINISIS! SISI'.§ö|•BI3IM7B!•II9*.•IB•JISZM7I!•SISF'.BCI•!ISIM7C!:::60 REI13170 IGISIN NT'! ö•IB:P!I!Y IISLINILIMS 0•ZS:PIII|’ IIILNBILSSMS §••0aI!I!I SISPLNMLIMI MSSIPIIII IISFLNBISI?0 LIM! MBIPIIII IIYLIIIILIMI 7•ISI!SIIT IIILBIILIITS 7•B!1P!IIT IIILSIBILIMI 7•SS:HIIT IIPLBIIISZB0 LIM! 7•I0:P!IlI’ II!.ISI•.IM! MISIFIIIT IIILINLIMI MBCIPIIII IISFLSCIILIMI 9•SS:PlIII IISLBSIISZIB III¤0 ‘IS220 ITEI2•II:fSII•0:I'ST!•02FST1•!ISZN IF I|TI•I T'<!I ISIBB RS! ISINISSN IF IIIII TIB ISISB ILS! ISSNISSSB IS3•I;S2sB FSI I•IN TI INI STS! I:LIM! ITUI•I0:!IIII BSII '!00.BN!‘I|I1I11ITE'2•IT!I!•Isl!T IISI70 IT!I!•1I:!'III•I1I!IIISIN IF NI'I•I TIB ISI! ES! ISSNISI! IF FSTI•! TN IN ILS ISI!ISB! PITYIBIFITDIINTI IQ! -ISSI? ?!SYI¤IS•!STI•IISSNIPIIIIITIIISIILSISSBBISS! NIISJB! FI I•IN TI INI SIP IILNTI ITNJITIIFIIII III! 'BN••N0‘IOIIIIx!IN•IIN•I:l!T IIN ITNIIII$II

. INIYIINIINISIBESISBN ·ISNIPNHNININEIISNIN INIbI!¤I!II•I•NI! INISIN IF FS‘TI•! IN ISBN ll ISM!ISBN FIIFBIHIFIIIII ISBN ·ISBIB FIIlN•!ST)IISO!0 I! INI! TN INN III INB!ISBN NIISB! FI I•III TI III! ITU IILÜII IINNIIIIIU III °#•N'I¢IIIIIITNMTNBIIIII IISB! IINIIIIDIS ‘ISBN IF N!B•I IN INI! [S ININIBIIFIIINTNISBNBIIISBBI

Page 198: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 87

ISIN IF FSTZN TIB I5! EIS! ISSNISSN PIISTS•2S:FSTZ•I:NT¤ ISSNISSN IF FSTSN TIB ISSN ELS! ISSSI

‘ISSN F¤STS•N:FSTS•I:NTS ISSNISSSI F¤SI'I•SS .ISSN IF I|>I! III ISSN ILS! ISSNISSS0 l!G•IISSN FN I•ITU TS ITUI STU IILIJSI ITWJNTIIFIIIT USII 'NI„IIN°IIIIII:ITU2•ITU!•I:I!S IISSN ITU!•II:III•IIISSN IF ¤II'S•I TIB ISSN III ISINISSN IF FSTZN TIB ISIN B.! ISINISIN F¤ST|•!S•FS‘|'Z•I¤NI’S ISINISIN IF FSI'S¤I TIB ISIN SLI ISINISIN FNI'I•N•FSI’S•I:NT! ISINISIN FSSTPNISIN FN I•ITU °S ITU! STU IILNIT! ITUZJSSISIFSIIT IISIN °SN.NN'I!IIII:ITU2•ITU!•I:Il!T IISISI ITU!•II:II|II!ISIN IF SITI•I TIB ISIN ES! ISSNISIN IF FSI'2•I TIB ISIN B.! ISIN ·ISIN FUSTNNIFSTSSIINTU ISSNISIN •¤STS•SSISSN FSI I•ITU TS ITU! STU IILNITS ITUIJNTIIFSIIS USIN °SN.•B'IFIIII:ITU!•ITUS•I:I!T IISSN ITU!•I1:II·'IIFIISSN IF SITS•I TIB ISSN ELS! ISSSSISSS0 FSI ISITU TI! ITU! STU I:LSCI'! ZIUIISSIFSIIT IJSIIN 'SN„NN‘ISI*II:ITSRZ•IS!?!•I:;lIT I 'ISSN ITE!!•II:I§IS•ZIISSN IF IIS€I•I TIB ISSN SLI ISSNISSN IF IIIIITUI SB ISSN H.! ISSNISSN IF ITUI•S| TIB ISSN IL! ISSNISSN LSIIII'! IJSICIII •:FIIIS‘° PIII IB B T! GSIK IISIIIIII SGI IIISI

l

ISSN LNIT! S•II:!SIIT ' 'süß NISN0 LIIT! I•IIIIN•Il!SS•IF SIIIISNSINI TIB INN SL! IXISSN FI III T! I! STU HLIIT! !•)•I•NIFIIIT ' °:L¤€IT! N•l•!S:FSIIS' · °:I.CIT! N•S•NIFIIIT ' 'ILNIS! N•I•5xFSIIT ° °xIST nIII IF I•IS TIB ISIN RI ISNIINN IF IIIIN TIS ISIN [LI INNISIN ITU•IS:ITUI•IN¤NI'! IIIISISS II'U•IS•IIII•I6¤SIII ISINISSNIFISISTBINSSILIISSNISSN IF IIISI TIB IB SLI INNISSN ISUSISIITENIIINTI I1INSS II'U•NII'UI•SI•NTS I1ISSN II¤•I‘hII¤I•I•IsIII ISIN

. ISSN LÜT! I•NIl„l SISIIIS ' NI NT! IS LISIU I.! IF TB IIB ISF!'I’T!BSS—NTI!ISIS!L, lISSN LBS! S•II•FlIIS ° TSF! °!‘ T! SSBISSN LBS! I•I•IIlI•IHSS•IF SBINII IIIBISSS TB IIS! ll ISSNISSN IF IIIIIGIIISIN ISBN!} TB INN II INNISSN BISHIIIDISSN IF GSI'! TB INN Il IBISSN GN IMG!

‘IB F!TINSFSI#IFIT!N\SSTINSISD!•IIIS•S!INN IF NTS•I TB IN II INNINN |IIUI••|I8SIN•IIII.IN¤IIXIN•III„!CI¤IIBSISI•F!SI•IINN IF NT!•I TIB INN ll IIB

I IIBIFFSTINTIBINNEIINN

Page 199: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 8 B

IIIII! ulSPLZIM!ISIIITZIIIII9LIJI•!IS§ITII!:!I9LI!•!IIITII:F!TZ•III«I!ß'IF DIT3•I NU IIIII R! IIIIIIIIII IF FITI•0 TIB III! R! II!7I _II070 IF F!TI•I TIB IIIII R! III!III! IIIIIIIIII IIS!LIII•IIIITIII•IIl.II!•II!IT!I:¤I!fI.I£!•IISIT!!¤f!TI•IIIITTI IIIIIIIIIIIIIII

IF II!TI•I TIB IIIII R! III7!IIIII IF F!TI•! TIB IIII! R! III!IIIII IF FITIII TIB III! R! III!IIIII III7!III! !I9LJII•!ISITI!Is!I!|.3I!•IIIITI!!•!I9LI!•!IßTII!:fI‘T3¤Ix!T! III1!III! II9LIII•IIlITI!I:II!LI!!•Il!ITI!!•!I!LIC!•II!ITI!•FITI•IIII7I IF ITS•I TIB III! R! III!III! IF FIT)-! TIB III! R! III!_ III! I! HTI-! TE I!II R! IIIIIIIIO! !I!UII•!l!IT!IIII!I.1!I•IIIlIIT5I!•!l!LI!•!ISIT!IsF!T3•I:!T0 III!IIII0 0I9LIII•III3!T!IIIII9'.I!|•!II!IT!!I•!I9LIC!•II!IT!!¤F!TI•Ix!TI III!IIIII II!L!II•III3!T!!•¤I!LSI!•3IIIITSI!sII!!L!!!•!I!IIT!!:!T! IBIII! IF IITI•I TIB IIIII R! III7!IIII! IF FSTI•! TIB III! R! IIIIIIII50 lI9LI•I!•!II!ITII!:|I9LII!•IISI!TIII•§I!LI¢I•II!ITI¢I•fITI•|a!T! III!IIIII !I!'.3!I•II$IT!I•!I!IL5I!•IIIIIT!!•§I9L!I•II$TIC!•!TI II8

III7‘IIIIII IUIII'•I LIM! I•IaPIIIT II!!LII!:LIM! I•I!:P!IIT II!I.!I•L¤T! IJSIPRIIT IISPLIIIILIITI I•5!•!III7 IIILIIIILJITE MISIPIIIT II!L!II:200 LIIT! TJIIRIIT IISILIIIILZGTI NZIIPIIIT IIIPLZIILSCITI IJSIPIIII IIS?'.3!!•LIIT! ’•!0z'!IIT III.*L•!I:;.’!5T! ?•I!:fI!!IT IISFLSII .IIIII LIIT! °·!:IIIT IZSLIIIILIITE HIIIIIIIT |!S!LI!!•L$T! 9•3:!lIIT I!?'.3I‘I!•LIlT! 7•!:!§IlT IIILICMLQITI °•I3:!|IIT MQ}!IIJII lIU•!III! ITUI•IIxF!TI•!1F!TI•!•F!T3•I:fIT•••IIIII I! ITI•I TIB III! R! III!

_ III! IF IIIII TIB II3! R! III7I-IIIII BIII370 FI I•ITU T'! ITU! ITU IILIMI ITUIJIPMIT IIIII °I!„!°IMIII:IT!II•ZTUI•I2II!T III!I ITUI•II:F!‘TI•\:II•l!II17! IF !ITI•I TIB IIIII R! III7!IIIII IF FITI•! TIB IIIII R! IIIIIIIIII N!TI•!•FITI•IIIITI III!IIIII P•!!T!•I!zF!TI•I .III! IF IIIII TI! IIIII R! III!IIIII Ä! — , ·IIIII FI I•ITI TI {TUI ITU IILIM! ITMJIITIIPIIIT IIIII '#„!!!°IlIIII:IT!*I•£TU!•I:l!T IIIIII ImIIII’I·III! IP IT)! TC III! R! III!III! I! FIT!•! TB III! R! I!III! FITII•!II‘I•II!T! III!

· I! I! !ITI•I TB IIIII R! IIBI5II PIT!!•!IT!•I¤!TI II§IIS !ITh!•!ITI•!IB IP TDI! TB !!II R! IBIIIII BIII$ FI I•ITI TI ITU! fl'! IsL¤T! IT_•$T'IIlIIT III ‘#•I#°I¢IIIIxIT1ITE•I•IIT IIII! ITGNIIIIIIIII! I! ITI•I TEIBRIIIÜI! I! FIR! TB I5 I! I!I5! PITÄIÜTFIIITI II!

A III! I! FIN'! TB IIIII R! IKIIIII !!I!'I•!xfIT!I•!Tl III!IIIII PIIT!•!:fITI•I

Page 200: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 B9

:ITER2•ITEiE*I:I•!•I IINI! II'£?!•II:IHI•IIINI! IF !IT$•I TIIEII NN! EL3! N73! .NN! IF FIT1•! TIIEI INN ELSE INNINN F!!TI•l5xFIT1•Ix!!N N7I!·INI IF F!7I•! TIII INN 9.3 N70!INN P!ITI•S!•FITI•I:II’! NN!um r¤$TI••$NN! FI I•IT!I T! ITIII STIF IILIITI IT!!!•F!!T'IxFIII‘|’ UIII 'I!!•I!!!'I!IIIIIIT!I2•II'!I!•I:IIT I VNN! IT!l2•IIzII¤I!N71! IF I!N•I TIB N7I! 9.3 NN!N7I! IF F!TI•! TIB NTI 8.3 NN!NN! FITI•!!•F!TI•I:NT! N77! ·mu F!!T!¤6IN77! FI! MIG T! ITIII !'|!F IILIITI ITW•F!I'|'I:F!IN IIII '!I.!!!!'IFIIII:ITEI!•IT!I!•I:!I!I’ IN730 IT!!2•II:III•IFINN! IF MINI T10 INN 9.3 IIIIN50! FI I•IT!I T! IT!II ITD I:L§C!T! ITMNIIFIIII UIII '!!!„!!!!°I!IIII•II'€I2•IT!l!•I:III INIIO IT!!!•II:IIhI!NI! IF lC!•I 'IIINI1! 9.3 NN!NIS! IF IWITIII TI.! NII E1! NII!Nö! IF ITUI•'«! TIB NN! 9.3 Nil!N!!! LFM'! I•Z3:C1!! I:F•III ' °I!!1 9G Il! T'.! CITIII PHIZIISs mu smNN! LIM! 3•II:P9!!IT ‘ '2'JII N ~NI'!) LIDIT! I•2I!!3••II!‘Il•IF BIIMGIIIII 'II N8 9.3 NINN3 FI l•I ’! I! STI! IILIMI I!•|•IIFlII¥ ' 'ILIITI I!•!•!!:FIII¥ ''ILIM! I§•·I•1lsF!III ° ':L¤T! I!•!•I:F!IIT ' °:|.IM! I!•|•tIxF!III ° °zl!T INI! IF I•I1 TIII NII ll NFINN! IF IMIII TE NN! 9.3 N9INN! II'!I•I1sII'!'!I•!lsNN N2N92! IT!!•11:IT!II•!I:!!T! NJNN92! IF IQ! TIB N96! IL! NINuw IF zam hu um ILS! umN92! ITEI•!5•I'!I!•I|I¤I'I'! NIINN! IT£!•!!:ITUI•N:IT! N3N97! IT!!•17sIT!l1•!Is!3T! IHNNN! IKM! I•8IC!.§! IIFIIIT ° IQ III! II |.IIT!I BI IF TK 6Hä _ IYF!'!°TIU!ITYQII’!!II‘IY!Lu ~ O .NN! LIM! I•II¤F!IIT ° TIF! '!' T! $TIH'INN LIM! I•IxIII!•Il!‘!!•IF IIIUQINIII IIIIIGIIIN TB INI! B.! I7GI!INI! IF IIIIGINNI !II§!I99I T$ INI 9.3 IM!INI! IINIIITÜINI IF GTI! T$ I7N! Il INN— INI! GI Nuß.!ITG FII$!•FIII¤!•FIF)!•FIT!¢•FIYI•!•I1'DI•II'II•IIINI! IF III•t IE INN ll IKINN IIII.I$!I§|’II•!III.II¤!I§II•1I$IC!lI$|’I!!•F!|'I•II7§ IF INN TE INI ll INIINI! IF FIN•! TE INI II INIINI !III.1!!¤!I$7ܤ!IlII1I§I'$•!IR.I¥I—II!•III•I:II! INIINI!IRlIB¥D•!II.$!I¢¥D•!IINI

IF IWI TC INI! ll INNINI! IFFIIIQIKINIIIINIINI III.}IÜTÜ•!IH}I¤!ÜI!III7! INNINI!INN

IF III•I Ill INI B.! INI! 'INI IF FIT)! TIB INN 9.3 ITS

Page 201: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

‘ 1 9 O

1.:-:017210•{F IOT5•l nu 17220 ELSE 17250R220 1r mu nu 17220 ELSE 17200

172201720017250 17 00T6•1 NI! 17260 R2! 172901720017 F275•0 TM 17270 EL! 1723

172701720017290 012!L600•0{200T7001I1!L6I0•0{200770010129lt¢0•012l775017200 ID17210 LIIW 6•21F01I7 019L100•LGIW 6•15:!01I7 I{!L8•LIIT0 6•22190M I1 T2!\.200•L¢|W 6•011P0{I7 I{!I.060•L&0W 6•201!01I7 I{!|.500•Ll0W 6•671P01I7 I{91.60017220 LIIW 7•2:P01IT 0{!L1001LMIW 7•1517l{IT 01I.D01LSW 7•201!01IT I19L2I01LlIW 71011701IT I{2FL000•Ll0W 71501701IT I{9L5I01L.IOW 7•67:Fl1IT IT2FL6I017220 L¤¢•1W 9•21P01!17 0{2!L1t0•L£U7! 9•15:P0!IT 0{2!\.2£01L!070 9•202Pl1I7 I12!L2£I1LOCIW 9•31zf01IT 1{2!L•C11L0C«1T! 9•201Fl1l7 0{2!L5C01L¢IW 9•671P0{l’ 0{571.6170 ‘17280 I12D•017250 1TD0•111F271•01F2T2•01F2T2•01F270•0:F275•017260 {F 2071•1 TM 17270 E'.! 1731017270 {F {D12 T10 1723 ELSE 1729017200 S117290 700 1•1°D 70 {TD1 279 1:L’.C07! 179l•2:!91I7 U21! °000.0000'10111!:{70!2•1782•1:!!!7 Z170·)0 I7D2•11:F2°1•1:1&.°•1§17810 17 1072•1 7118 17820 E2! 17090 _17320 ZF ?27Z¤0 T1•!I 17020 {Z2! 1788017020 P02T2•2sF271•11J0T0 17•2017080 P02T0•151F272•117050 {7 10>1l TIE! 17860 IL! 1707017060 MN E E17070 Fl 1•{TD 70 {TD1 279 ULIITI {7D0•!00TIsP01IT U21! °03.003°10111111TD!•17D2•11!I17 {1703 1TD2•111{l•1I17000 19 00T)1 718 17500 B.! 175501753 17 F2T2•0 Wü 17510 (L2! 1752017510 POOT0•151F272•113'0 1753 '17500 P02T0¤3•F27¥117ß FI {•1TD 70 {TD1 279 1:L5£3W {"90•20272172{TI7 U21! '000.•000'1C{11‘:17DI•1TW•1:II7 117580 {TDO•1111D101730 {F I78•1 TM 17500 :7.20 17610175601l 7272l TM 17570 IL317$17270 702‘l'!•3•N72•1:370 17290178 P3T!811N’8•11753 73 {•1TI 70 {TD1 279 11LI2W {T‘I!0•P'.'I27I1!l1IT N1! °03„003°10{1{1x{TE•17@•11ß7 {1763 01*0001*1,17610 {I 37*1 TM 17600 EI 17670° 1763 {I NT3 TM 1763 ll 1731763 73Tl01•N70•11370 1763173 F3‘70¤00•NT5¤11763 F3 {•1TI 70 {TD1 279 11L¢0W 17§•73T0•N1II 313 °3.3°1011{11{T¤•1TH•1•M7 {173 {TK•111{D1017670 {I 376•1 TM 1703 Il 1773 _1763 {0 N70! {M 17670 Il 17731763 P3T3•Nl$11370 177101773 7373717710 73 {•{TD 70 {TD1 079 HLSW {TÜ•SW131I 313 °S•3’1Y{1{1x17lI•1T§•1•l!7 {1773 1T¤•1111b171 „

Page 202: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 9 1

1770.1 7128 INTER 10 11EII SIE.? 1:L.1£A1E I1S1’¤2••7:1·I1u1 110II ’IIO.1••0'101111:11EOZ•ZTEl2•1:1I11 117700 1TEl2•11:1M¤lI

‘17710 IF |0CR•1 71017770 ELO!170817770 IF 1M¤17!I1 T10 17000 EL! 177817700 IF 1T!I1•00 T10 1708 G.! 1770017700 LIM! l•Z0:CI.I 01FI1I1 ° PMI! 90 II T0 COTIII IIIIIII1 vw! lI1I

I

17000 LI07! 0•10:P01IT ° '1CI.I 10 T -17010 LIM! 1•1:0l00•1l!0011F I1R0•(1I010!1 TM! I7l0 G.! 1701017020 FI I•l T0 10 ITU IILIMI 10•I•Z:001IT ° ':LIM! I0•0•10:!01I1 °°:LIM! 10•I•2!1P01IT ' '1LOT! 10•|•01:!01IT ' °:1.IM! 10•I•00:P01IT ' °:LIOT! 10•I•071!01lT ° °:!!T I17000 10 1•l0 T10 17000 G.! 17070170001F10I(!0 71017000 G.!170U17000 1TEI•10:11tl1•1I:I111 17317000 1TEI•1011T!I1•00:!T0 1730017070 IF 140 TQ 170 B.! 17010170!01F1•1I(00 T1017000 0.I170817000 11'¤•00¤11'l'I1•1In•I10 17017000 1T!I•!011T!l1•001!T0 173017010 11EI•07z11!I1•1I•I10 170817750 LIM! 1•81C3.I MPRIIT °‘ 10 0010 1! L1!7!I I.170 IF T10! 0MEER! TOP!’I"0U!0TYIIOI1I!§1!0!L3! '17030 LIM! ••I0sP0!IT ° T10! 'Z’ T0 Z0011T|I°17000 LIM! 1•1:01I0•110!‘!I:IF 0170•'3l01001I 0100¤2!01011 710 17000 I'.! 170001°000 ZF I1R0•C;I010710! I1R0•Q1!01•01 T10 17070 RS! 1700017000 ElIIOT•1:MT11lI17070 IF CI7!•7 T10 1708 E! II!17000 C1.!:Cl.l 1017000 LIM! 0•11!01lT °G.1 II 00710 H IITI7'! 11I PEIIIT 9€1f1C°10000 LIM! 0•1:!01I1’ 'g I litt! IQ C gl III! hrt |I 1i1•r 1l11•r01°

10000 LIM! 7•1:P01IT 'CQTIMIG ÄITIMTU CM81700110 IRUTI MT10010 !I0tI•0:ITI!1•1Iz11Il•1III0 1T!I!•1110000 IF 1I)l! T10 1800 IL! IIS10000 01III! FI 1•17U TI l7!ll ITU 11LI07! 17m•11!I1IT 11018 '000.000°1I11112LIIT! 1T!!!•10•!R1IT III f000•00I‘1I111111.I07! 17§•l02!l1IT 1101I 'I•0.I000'1C1111:LIOT! ITGJIIIRIIT IBII '000•008‘1I11111IT!I!•17¤•1:!!T MT!I2•l1INI! Fl 1•1T!I T0 1TUl ITU HLI07! 1Tm•0·0•001IT '.1!1I 'M.00!°1!1111:L0CM! I7l0•00•f0l'IT IIII °000•00'1011I111.IOT! ITU•!•701!0IlT 1101I '000„1•O°101111•1TUI•1T0•l1lIT M7U0•ll

. 1870 10 Q1 TQ 10 I.! IIU10 10 IDITII 70 100 E! 1018001I1TI1•OT101l00lI10l8 ·10lO LIM! 1•81¤.I 0•I01I ° FI! !0 0 70 $110 IIIBII0 10 870

I

10110 10T! I•10•001IT ° 'lßl 101018 1070 l•l10100•1000•1! Illlilll 70 1018 I1.! 10181018 FI I1 70 I! ITU 111070 10•0•11!01IT ' 'ILÜT! 10•0•l0•0IU ''1I.0T! 10•I•8•H1I ° °•10T! 10•I•I•lII ° °11070 10•I•001I1IT ' '!10T! 10•I•81HII ° 'IIIT I10100 Fl I1 10 10 IT! 111010 I0•|•10•|I1I ' 'IBT I

' 10100 10 1•1I 10 10100 G.! 1010010100 If 1I<00 III 10100 G.! 1011010100 11‘!0•1011T!l1•1I1I10 INI

Page 203: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 9 E

RI00‘IF I¤2S IMEI II200 ELSE R230R200 IF Il<3I T10 10210 ELS! 10220 ‘

R210 IT'EI•2SIITE1•IIIzNT0 R020R220 ITE•2S•ITEI•SI:IIT0 10020II230 ITE•S7sIT!lI•II:UT0 I0020R200 LIM! 1•25:ClI IIHIIT ° VIII IITI IS LISTE [LI IF TI! IEtxüllll TYFITIIIFIITYUIIITIIITIY210250 LIM! I•IIzPlIIT ° TIF! ’C' TB COITIII'II2I0 LIM! I•1IIIl0•II!Y0•IF IIIO•0l0IISIU |Il0¤0l010T1 T10 10 8.3 R ·270R2T0 IF II00¤C1IOIIT10I II|I¢l0I001 T10 R200 B.! IIIR200 !lllT•I:IITI0R200 IITÜ

Page 204: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Appendix H — E

L I ST I NG OF PRCIGFIAM " F I TTR "II III IIIS!I•II'!!I5!I•MIII•lIIISII I I ,II•CIIS!I•III$!I•IIIS!I•PTIII•IIIIl

.“m‘,’•·w",'„·* M x, uuZ! IGM I:Cl„I !•!•! 'IQ••••••••MI¢III|IIPQI'I§!IIIlt!FII!I_•••••••••••••• °••••••••••••••I! l! Dsl! I•' 'xl! I•' 'xl! I•' °:l! I•' 'xl! !•' °tl! I•' 'sl! 7•' °xl! I•' °sl! !•' °tl! I!•° 'ilQ••••••••

I'I•II¤TIIII'IPQ!I!\!TIMPIIIIT••••••••••••••••••••• I TI TIP! IQt!IIII °!IT'I'!° PI IDT I II

T! III! IIMI GBI II ·93 CJ•L¢I?l MMG! I•PlIIT ° IM ITI I! M III IITIIIII HGI TI DNT III III. PIII ITM I!• Y!II III PIII I! 'IMI3! FI !I.I!•I TI I$I•$T Il —uu ¤n¤$•••.l•IZ! Ol MI PI ID! I IIII III! II•I'!P!•GT!•II•ITI•ITl•IT!•ITI•IT!•lIII•IT7II! IP IT'I•I TIII II Il II -ISI M I•l Tl IIIIDT IIJIIIIIUT IIII IP II'!•I TIB I7! ll III7! M I•I T! IIIIHT IIJIIIIIIIT III IPIIT3•I YIIIIIBIMII! PI !•I TI II•IIIT IIJIIIIIBT IM IPITI•I TIBIIIIIMZI! M I•I TI IIIIIIT !I•IIIII:lIT IM IP IT')! TM M ILI II!M M I•I TI IIUDT IIJIIIIIBT IM IP ITI•| TM M III MM PI I•I T! II•IDI IIJIIIHHTIZI IP IT!•I TM M II MI7! PI I•I TI II•lII! II•!IIIIsl!T IM GM II °M M -IdIII LII IIII•!I•ISII•II!I•I•l!!!PGIT„II•IlTIII7ITUIJI LII III••IUII•ISIIgILIII•III! IIT YUI .JI PI IUI • II T! II ITI I_ IH LI! I|LII•I3•IlII•I7lI•IT7! Il? ILIIM PI MI TI IJI !Q•II••II•IM-IIÜUMII!

IP IMNIIS • IM•II\$ TM II II IIII UI IM•III•IM•III•III Il! MIIUITIOIMIIIIDIMIYIIIITMIIIIIIIMIPMNIMITUIMIIII IMIIIIIIIII !TIT\lP‘!• P I M M I•lII°•III MIIIPI!I•I—M'!•IT-MIIIIII !TITlIh'! M M M I|lII°!I!! MII IPITI•\ MIIUI TMMIIIIOM !!TT'LI!'! M P M I|lII'IIT! MSI! IPITI•| MITI•I TMMIIMM !!ITI.I!•‘P D I•lII°zITl II .M TPI!I•I TIIQMRUM

1 93

Page 205: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 94

S•0 *!{TLS!•'S C3! ‘;'1":327‘1 S9¢S7? TF f!Y!1•1 7äII S30 SL55 S9'?SIG !T1TL$l•‘P fü! ·:.1S':6ZT'.7 S9059* LGEITS 1J:!!1IT SNES! i?9·:L17f&TS 1••1P!lIT YTT7L£|600 ZE? F¤!•*•50=IEF F'•Y•70•*.5I1YT1*:Z|2•6~!•!§::0 F3! 1•12 TG 12•1I•‘.£!•t*TITLE|1:22 Sf? vv) TI I:30 JC°•P¤:1•Tt:,v·:Z¢ ¤:°•·= M11 ggg .:•(‘ 9357 €*I1•F!Y1-üC7:5c um hr$:3 1’I*LS!•‘°!!5 ZHOLSI" __:7* .ü"J•°5 1•1:9F!I1’ 351751 '7‘:.I5§TS :-1:99317 ITYLEI:56 T1.•L2.1='17.5!. 5:=ä 133 **2%--:1::533 =·;·¤E;-· ' .-5%-1°éZ‘ Fi! ·•i TZ .1§•’;__*2 *25 ~•i TI E752 °•95IN’°1. ::15 °¤. °-£· ‘.‘$£ •s$* z#:1„=1•v1-°°1¢ IS'! ° J°S9 TI7.5!•‘E32Z‘!7?1"705 J5 °!!'5 SS! SSPISUTITIQ PRNSSSS ·7b-3 LIZITI L•1:•!1‘27 3!I.°5!€ä3§ :.11175 L-1¢:!FI'|? ’77‘.!|°°5 1*||l!•¢l-II!!:•1.1:!!I!5•'J!fZ>•1..7S' !IE2•1!¢||55.°S:°·1‘|1•v¤1!55 S770 ‘.55•a·:‘.13••I·570 *2% 3:;-:3 'I :3 ;‘5111 LIZSTS 25,3.95157 EEZSS '¢!t.•‘=¥J3S21 ¤L1S•1.SI•!Z‘8C:1.5!° S7'.35é’ü9’!¤•'.2TI55T5"·‘2·¢

PSB552 $15 ¥11~•7*•'3Z1•1t7'577 u1‘1I!I1 :0•>:·«E1cZ3-e•:.;-01 :••2.:·III FI! !•Z °3 IS' ST55 1292 ZS üIY'•1 7*% **75.55*2tIS Z‘1 *55 *12 5.55 55512 .5*5 51.1-1 -171-. · 511 ·7 I' 1S35* 15 S31 5.55 ’S’552 75111 211 SL55 SS.‘~-Y L!55 i57f1-1--SZ·1· -51.7.11 Z1'-:’R 15 Z47:•1 "'ET

9:T 5.55 S505:2 Z? 1 1 *7 5.35 '!'?‘7 LIFE .5If1·: •*?'3•:°.· 51.1*-*7 1' 110551 ISST I99-5 S? 1•1 Tf {I? S°55 IZ22; 77!5•!I€1‘ ” 'ZSLC Z' SI°1•Z T5! 172*: Lt!Z3! ZFISTU1 T|¢!10§0 5555100%100 PI! |TSI•3!£!;)•1SZG I! NTFS TI ZOII ILI1'1!:0:c Pl'! UIRJI1111.11:c1‘ I1? 11¢2I LSEITI Z•tI1Cl‘LIT 9:F?11iT °••••••••••••

_ 1070 LEUTI Idlsßl !:*!1'¢Y 'IE VI! HIP1:05 LIST! Inlstlü 31*!!•:? 'I *40 12*9*1110 LCITI 7••I:1*•3 21*!!IT °'J* *1113 SWW110 LSB 1T•tI•CII! •:7¢!IT 'TYPS 'Y' FI'I1! LGIT! 1I•IS:GJ •:I!1IT '9!! U TW?11%* LIST! 1•••Is£1I t•!9!IT '°I' Fl l'11SQ LIITI 1••tI:Cl.I 92Pl1|t ••••••••••••11II LGIITI Z•::IZ!I•!H1*I•!! TZIIICCICIN Ü IZIIUIIUIS: 7I11I ll 1170 _ ·21*7 17I!*I•0lI!TI— U EZII•C*|9e1101 TIB ll! £L111I¢

· 11I=1* FU 1•1 Tü 1•:LOZ5°! Z-éI=SZ‘.I S:H!I' ° ':|!!T 1

Page 206: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 9 5

.183.L2C57E 5•¢I:C3Lll Emil? '$&:fr all °2156 LCCPE 7•el:I¤L¤I 3:**!l° '*•t Sc VEYE 'ill! 1.2CaU 1C•6I:3II.C! ä:**I!:T °*!! 237Y all'Läßt LSCBU !Z•ü:C3Lll ::PQ!!IT '••§$; Q•:;r11•lll? LJCIYE 1*·•6:'2¤'.U ::97ilT °TC 23lT!lIE'1;53 -C2l?5 1r•hI:C¤L2! §:*l!l7 '•••••••••••:;*4 -::;*5 ;."•:!m* esZEW ’€’ T'! Y! IMLZZITE 1•rI:CGLC! Emil? ° ':fI£7° ! ‘131: XF 2¢*7•i TWEB IEEC ELSE :720zzzc ·*I*.£•••smv•· nv: ·: :••··Z33£· .22F•?E 1·1:*$!l° 37*231 7*·:L22¤*E !„~:P*!l? YYZLEI;E·•£ 55* *lx=*•5r:{•£* ?!'77Ü•.E’i'Y°ZÜ°;ElP*••l•§:1357 *2* ¥•25 T2 1E•l5•LE¤"'2’.EI.

· g3rl *7* »•i T3 EZ3" 32'•*t‘I¤T'—-‘ :3* IZ'- **57 :5·T1332 *5E° ·*lx„F!" ·&2°.3*l

:*I°LEl•"l•5 ‘P~CLIF3":E:‘ .32;*3 ;-;.=•?!·:t £!sI$st••-:;:2;*5 :„::s•!s' :":?:•l3E·l· 7IL•.ER.!Y2T.E!‘ 'E ·2332 EE* **!¥•*•!E::£E* *I•a•31·• Yx,•!ß•!234 *¤! \•° ’2 '2!•’!'.Z235l *3 '·'•; YE 3Läri °•*23F'T -* :!* °••‘ °‘!E~ °••iZ3"? **.E° **‘;;•?7t«‘;„'LEE; ~5!* ¥•=22*1 ?2T.E$•'!§E%‘T|¢ 5;*3 V! ?!'1E E2! EERFEÜBTICS F*‘22EE!°;—22 LINE 1·1:*!Zl' 5'f~;°E!::£••:L2°.|TE ;•15zPI2tY Y2'.EtM2? N1°•FI‘2‘ -2•EJ *27 l•E YZ ZI E°!¥1Z4? Z? RUTJBZIYB M50 E.3E ZM;·•€ !JT•|!'Z‘:;:2 G? El·r£ Y?älE•E3 2E*’•1..:‘·'*¢NEE•"'."•2.2L•.j lj;;j•:s;~:;5_·Q6~‘j•.;•~=;~655 7:~32 =.=?•;··‘.»5•·;2·*Z *2* 2T.•:5 °Z :5 375* 1;;!.' .Z2$°E EE•22.:*i!!° 25213 ¤•.•'!¢.ß!2!I' .4§•=.;&•¤Z·?2:°.5!T 22;ISE *2* *5••EE T! E 3'E* ·•LEE? L22ö°E !2*·r:!*!•I‘

LEISE:::<VIER 2::~•= ~.::•„::=;15a-; &Z·¤¤• ·;•& ·¢E!<EI•••:.;-r::T•:.:::5*G FI! l•2 TE II 5792 —.!3C Z* D. TS 1570 !L5!1:00E70 L2! &E!(!•l •IIZ2·!·:•iEI 1l•lI’U·•tl:‘„rÄ ear 3löl! E! 3•l U II STP 1:•& t!:!•¤;x»ISS? 758 IT!|‘!•l!(l° -•1I

- zu In 12rEß LCH! Müsli! 7:•l!lT ‘••••••••••••tät Lili! 5•6lsL‘2'.! 3:!l!l* ‘! *7; BIP292 LCCIT! •a lll! CUP

2 ib}? LI"! Sdsl! E:!!!I' °CF THIS lll?2370 LMU ildhßl t:**lI‘5 "Y7! 'Y' Fl'I70l LMU lbtlsül 5x•!!IY °Y£! ll ’*‘!'1°1• LIM! 1••••:t¤'.I emu: •••• FI I'1*El LMU !t••l¤1I MMI! ••••••••••••ZT! LMU i•1xl5II•lIl7l:l* §23$•Cll!I7* I 2!I0•¤:!|¤:!2‘ HU 1750 LI 27 E•° .270 if l27\•2!Ill7l| 57 5I7l•·l!01ll0) WB T7! ELSE K55!X'!) FCI l•I Tl !r:LGCaT! hälst}.! 5:•ltIY •

A ':ß!Y Y E

Page 207: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 9 6

A- 1 Pu! *113 .::...1-.; .1:;;....1: ;;:·.„. - .Lm ml .·•¢.. .

1790 ;0••1111:111A1•¢1900 FU U2 TG III STEP 11510 rr xnma1111 Nil :221* Zus :2221550 !11|1••I1I11E30 six! 1:5¢··1 iE$'1I 10000:530 l5;1•0:Cü1’IIO•°!3' -am n1sv6•0:570F§l1•5T013lE75P1:920 II7E!151•'5.‘i|1*1;•¢iI1·1"1•.f*!Z1'·*I€1•1"·‘151!1.·~§!ZI·!1111590 P&75I'1-aült $111 •iI!Z·:*·‘E1.. .5111 ·51'1·1:1:*3-1 *&*55I3·•·-i31€I·171.Z~:‘·.a51i! -51 1-1:*:¢ 5Ji*1·•11!1I •1111·1.. 5122C rzxt Z:*2; 11% *1 ·%1’•1 E'? ;:*-1 •'.1äJ5••UlJ5•·.151’¢§'2 ·*i Z-: 5: £Z.1 -51.f-;1*1. 1* 1*.L1‘;S5;„&2 1'•*1·1·: ‘5 I53 Z -51:3-; ’··é 1*°' 5.551950155u 1S..t¤°.J5T*¢!iI*•01’1•l·· 5 ' 51 1.·51ZE•: f:;1115;3•!1*73 IGEY7 1 -1*901*%

35L124IL*•0x10;•.01519} F1! Bali 72 $115;-. 575* 1521*15'.I!·L*•.5•*.?5‘ ·: : -6.:-;: .2 S11: -Z:1:-:15051 3* ¢§5’3‘f..11l31.F•.!•‘15.1 '71'. 1*5*1 555*1 5555 5{*•05*130 .."1?€¥*·L.*•!5'·•£ !•'5Z’ 1533 1* ;51!*¢$•' "¥5'ä 2L•' 5.55 517t •206: 11;•T‘.L-.11:21:1*: 2011*5270 ZF $0*31 Ü 2*7¤•1 N1 I-%Y:•1 I•5'• 5195.5.*5990

S3•31'1I5995 92929 50003 ,5955 55 57l•1I9 K55! 5095 5.55 513*

5*1*5 5'$•Z!!•:5iIf '75•<·:I3?.•t511C *5* T••.*5 71 57* 575* ‘5:51 1* *1'1‘•;? 745‘ 5;: 5.55 5.551 1* 11'1 •¢ 7*:9- 51:i 5.55 51~=5:•? ·1$•‘-'15• ää'1 •¢1 1-1: 11 1‘•11 B-.:2::1 ::1••1¤••a2152 11527 351"f v1S••!!.1::¤ ·5190 *!*•0:ZZl1•f2190 *7 äa.II7‘1 5TI 5731.*503 1* ·1II13•9 WB 9.*•0°*.L!5 ß!*301* *51114 TG 299* 5£ ll!ER m•v¤••1A1:1:-•:1:-:1.:<¢1:2 41::-:1·5.*.13 1$I1•!¤1•1200 BT I

Zw_370 lI•01TN¤0•¥l8•1:5l$31•f.1I£3•‘1:9T5!l1•11TD..’••0011P|I1¤0ISI FU I•°J9 T3 II $79 12290 1•:•1BN! IF 2*1I Y1! GE L3 3105310 §•§•i.l11II1J1•61•I•1*1.51/•!!(I1·¢!Z1•1•*BIG TÜ¥'I•1l!1l11I1•4l11·1111•11!I1J1•!!iI•111'1l51l1·l11I•1111•1I!230 *1•T’K•1ll€äI1!1•0!1I·1111•112I1I··!I!I·111I1I11I1·£I1I•1111••1‘!I5300 9III¤IÜl•|I§1111¤•Iß•11!\’i;2•¢$1'I1!11I1•*I(3•11%1P|R1•!|9I1•¢!11118 IX? mtl! I ·533 3I!•¤f!¢5:YI•T¢l1ü:1!S*.•Y$•°1B:%l•Il1IIß1!I\1'•!‘1l2•'!¢32*W!1¤P|NI1lI|¤

Page 208: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 97

260; ‘17 .35*0 WE! 2•l0 2.52 261:2-10 TE!P0!2•••0h= °2"T0¤•'U2:L33?•L08!•! :K§••¢¤0•STE?!! :5070 23702~20 IF ·B!5IT2HP‘JI2·°2!PT'i01 ‘&2$‘11¤|•1’uE; TFSI 2630 ELSE 20•0N1 I2!!002•N|:T2!T¥0•¢JE:Lß0P¤!.¤•l:K20¤¥00•¢•ST2P21:2UT0 23702b•0 EF ä|S(T21'PU2•TE!!TH01 •222tl1tl·TU2) TE! 2öl0 R52 20502650 ZF 2!?0€I01•°0IL£}22LX TWEI 2000 R52 2#602~e(· ST2Nl•S?2.991.'2:K0|•lZ0•$T29l1:T¤L2•7l2/2267*2 2* S'EF!:•o tm ::3; 5;;; 5;-g ·2•·50 !‘I'1’ '2F20l I¤>22;1°:60°0 25202•0*} Pälv:7 'EHZR L¤5!‘1§00°:S·3T2 252025*2 IF 7ZL2=•.’JOOI °“2! 2520 ELS2 2510 ·221C 2°2227•2T2‘!1.'2:70;2•’€L2„'2:·¤0••’!!•2T2PIl:22T0 2270252Z 72 ¢22*¤(!•T'J2".I". °‘·'2'2 2227 2222 257*2{P5' 0:"

2Z•” ’E’2251 *2'Ef:. *2*EZ'? ·•::.12=r.·:2T2=*•.;:°C.;¤.;ESS; f=ä•°¤r2z·!•·e·1s25?·I I2 SSSFZJY-*253 70.; **5 220C 2.22 '2:97 Z? £2P>1000 27iZ 2.22 22102:Z(· I? L3C°•<‘ TEE 2227 2.52 22222:2f '2.'F5’-'2•A0¤=°2“°P·!22•TSS.2:;2.’2•.£32•1:••*•272*9:5$T3 dä2:l; 12 •¢22 °2"20l2·°2FS°*‘22'· ¢§2iüG••'25¢ Wü 2sJ 2;.*2 2292;-L °2?=¤xE•&‘;.:TZ1*°¤*$§•‘2',2:.12?•·.3.°’•1:"••·••2TE.*‘152°U 25202:ZI IS éSS=72'°l*!2•'2!°•‘2.';.•22.¤0¤•’!22} Tl. 2t20 R5 2tt02::é 12 '. T2'.? 2.52 2:77-2277 2’22'•9T2!9"l:!••I•S722¢:20T2 220 ‘2:20 *21äT ‘2!20II!?0'.L°":!3'!2:20

I' T?.} •.‘7t:01 TE! 2720 EL!Z2!

2710 2*101 '2‘!& .§.‘?>1—‘0l I1 !..ü3’°2727 2T|•:’r71'T.!•.32)¢*71 ‘ ‘ E2727 250 !•6C° T2 2°¤ ‘27h? I2 &22=&Z.Z‘·¢7 Z-. •V5.1' '°e2'ä 27232'2I· STä0S°•I:Z•27»2':. h2'~° T27* Z2 27¢2!T•’ T‘·‘2'~ 2'3· 2.22 2'2?2°2* ‘2L5•75.5•1€:22°7 2727E'? •.u•s¤•&2.=22Zl 9.2*21: •{2J•21‘ *'0•·•‘T~.ZI°„2’.1·“~.•‘22:i !£Z•2Zf•*.'Z.•.2C£ “.•‘¥ ;2Z22.x*'2I 27i•'0°« :TI°.‘•.JI1Zl'9•.«01252*% i·’2772IP•K2I:1T2Z|L272!*••.2J'i22230 :J!Z'n0 ·20•( F3 !•LI T3 27G 2121E5! I’2!!Z1•(· TER! 2.22 2ß022t0 'Z'.2\i¤QIO•12270 •id•GGIOOZ€X1•‘Ü·0I1Z°—2222 I3? I22l !3R•i1dI!3!‘hK5!0¤02900 FI Ill T3 S70 V2.! I— 2*1t l' 321116 Trh 2202 2.I 29202'219l21V•¢2I0•Zmt 10 !¤x!•¤••1=1•!s1:••-r$¤!•¤1a11v TEI EN: E2! 2•!t29•€ 29002*5ü ¤2!•0!t!1‘2'1!1!!I|•0IIZ)/G-¢d·01Z11! — .2900 IIT T2970 GIISUIIIV2920 l!'1„2•PJ¤l||0l1Ll'.2I'.|= *¢!§•¢11Ld!1•0l!L¤R!1‘2/B112990 19 !0(€!12·!I¤ß1>TI„9 Tl! $0 RI X2020N IH3010 1* |0§•.0 l I3!-.2 'FB 3& R22 3*:203020 |l7!00*•9¤XlI•Il£‘12GT2 22273030 IF TOL9•.00•300! W2! 2150 2.22 SN0

Page 209: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 98

2760 ¥!2•(MIRO!/N!CßLZ·.l'2I!L2Zi‘2.X;!‘•E3:1: r:‘Iv•cSSE; FM !•L&8 T3 E'! 272F I3190 IF 3I(I;•| N2! 2I20 ELSE 2130 '3I00 KOIv•¢¤I'J•I2:iG e.23lE•tII:!III•|ItZI~'R'J$I4EC!'-0I;I ·JI(I"2/VS!2123 REF 2212I r.S2|¤E••ZSO*¢„'ISIV:K2IV•0:EOT3 2I20 .2;•·; rSI•«sZrav:xs¤¤£¤.$¤•£T¤ISZSC !2II212323 I•4£° T2 3T! S'? I _,S:?·' Z•E•12124 IF 753*I **9 S22? 2.22 219331*C 2§2•0tE•2XF@eZ¤|)• '!22iT‘•‘=T€:)•:I.:•II"•LC2*Ö§2l:·°‘:(2°L* /2‘ ·'22'7··2I2237 °'J2•T'éZ•Z2I'*"‘5• • S¤!2ä'*'*2'7 S7 7-33 •°2·ZA2'7‘·¤7"·Z‘ · ET'? •F7.I•l ·2Zf2}·22II·Z' ‘.•v:F22;-1'a322•°~¤F:°2•4!••·2«'·iIiI:·=Ü°7·‘ •.€22‘:"•Z5’I·2.. ’22‘1•2Z7I·.f‘ ··.‘222222 3&•‘E•SA·.'E•£2'Il :‘4•S•P&°J2•F!!2 :IE7—•L?:7¤•i323: •„E;? 1 .

226C223C °!'J•1Z°•’22;'•S¢¤•6I€l’23KE•SAv3•3&‘PE‘2rK22‘* ‘:233 2•2!F K2••22** !"':!'S°-•¢*‘22i2T|•1 •IZ£2?=•2‘I. .22*2%-1 •£2iS'¤•29¢ •t2!€&Z!EYA·:··¢; ET}-5 °·‘!!¤••*f2S22? 2‘•Z1’L1”"V2•C***°•'2°2„•:*‘3’3’Ö‘P22?I °L*3E•0:!·1T¤2•< am :*2Z”•·I :*2Z#E•\‘:L£?2•¢:I!•Z3•1:*2'.3•.!SIM ¢*.=!$*’•t2EL!•S!<2T>•IY •l•22•¢£•07.379\**•0I’ST=!IYT lmäläl —2217 *'P1'•·I.*I2«'F2I2TäP*iT7•2**I£2TlFI'}’2.•S·l!'.5.*IYI‘222*3 !EK•i3EL!•€!'2*§•I7¤/iK22l!•2I'STl*IY.··!!;!'IPIY"2'!2!I=2223 YiT\£•=3l’.X!0ZTSTP!*•1>’¢¥SI•2IT3T;Pl*•ZI•7!I2T!|Y·1I'!II’3!;122¤0 °22FF•?2£2'!9!’Y‘·FI.37#I$•I‘2222I'!••T!*2!22•22'..*2.’27¢ 6236*: u•1·11I°.2 ‘·22**3 *'32”Z••°2€2°Z°I? •·:°Y2°*.T•°Z'= •E¥°2°¢*I!"·12•£!•'•',"‘,.‘I2*ti‘5227 IF äE2€°22”··°22?EI °?'.2 '·2! 22$' 2.22 2,2t22*1 Z? .2*22 1 °I*2\ S~?l 2.22 2-31*2•1~. Z2 ;22F2•·.· W2! 2•I1 2.32 2¢2$5·1' °2."3Z’F!•*I!FFI:LZ2*2•.2¤?2•I:9t¤l•!!ZZ3:23°2 22302,2. Z2 •32S'P2F*·*I2*'22;—¤22°*2.”2ZFFZ·*22¥? °‘2I 2~2•I E'.? 2••·'-2•2‘ °2.'!2!".•*2Z*?I:.¤0*2•.ä„’3•L:t=¤!•~•I¢2:2·223 223*2,ö• 2* lI2‘Fl!”•*22*'Z' ·°&.*Sf?E"!22E*!•!!IF*? WE! S,I(· 2.32 262-T2,20 IE T&2*•„2¢¢1 **9 367-' N 20•·ISMC I‘!23•!!£2.‘I0xT!'.2•§/!3:I!•I•IlC2z33T0 2%

*22 7•6€' Y! STI ST? 2 ‘

2ö9¢2300 NBIO Il? 2220 INNC!II0•FY*ZlZ•FII•¢•'II0:SI§i:!1••II2!:NI¢61I••III!

~ ll *!\•(1llPIC·CIP¢‘1I!"2.•$IP‘II•C3::I‘|'B SN23U SF l<¢ TN S! ELEI 560Z5! SIN-!E38 I' BIIKJI Ol! 270 E'.! I3!2370 I3? F1*ßlIl•I•Z•I!•·2~0·'|!:£2?‘2 227923 U F!§Ii6•l•C•II•4!l••\.'I!‘!?32'C1l/.t1·I'SI‘Il1'lIl2!I2399 NS100 FI !•! N LII ITD 1am zr emu: man Ju: L! huuu •\lir•••¤m•x2•3¢ lI.Iä|•I•’.B1£!2I)‘/Elli}

_ 2:6 Ii? I2220 !üLIl¤Il.äI!1'I.•2ZF?

Page 210: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

1 99

-==='l -·•·-···•·••

•· ·•. 2 .- ---3 ~..5é7? $0*01115222: !5•05S|„!|(D1€;2C!1lL*?•5Z*13:1%,5-1 == ;36*0 YrS1•0:I•7I•03700 FU 1•LA0 70 573 579 13*10 ZF 61411*0 710 3720 ELSE im3730 1552111*0 MI 3750 E*-SE 37303736 VTS1•Y1S1•4011I1•01:I•1!3'!1‘1f2!·02(I•1H37*0 IZ:1•!'2I•1 ~5750 REI? 15763 '!S1•‘.'!21/23 '3770 3I5•¢:!!1•t:7*555•·):56JIi•0:1X33•‘3:57E”•i:"„7-1•!:L03*•¢:12•.0¢00315720 535 E•0-*7 °5 STI3°7$ IF 6521ßZ'1 ·6IiI•Z" •°3'-5 °'·E.‘ 357f 5.55 3223Z5-}: 57&*!•T•2:E•27#12;; ••2.<' Z353*1 I5 3?:*I°•c 7-5* 553*.* 5.55 55-;5535 °2L!•7E.3*10·557C 3°5I35-} E2!5553 *5* !*L*i V5 3.77 5'?i53:.} I*Z•1 ·3273 {E 3:527 WE! 3910 5*.25 32203230 '!!5•0!•.63i'3115’•¢7(7•1?·!3¥·'5III ·57'7•1»•394* Y*=§•°s!!E• 3#•&f'J1•é€ ’•:? ·•"0Z?J‘•Z? °•5‘° 5ZiI‘•5Ii$•1*•·•·‘!iS15543 3¢'—5;•50v21•31'2':2‘•CZ•Z!!73•1E3!} ·•5ä7 !:5Z.*5.*’- 35*55 2*12*357 {H5: 71-!22•7‘*€*.5· 111-°3:56V3.•5•\‘!3; ’2*!Z32*2.* ?=ä•°¤*32•!t•vx!: -3**6 @$728-)-15'20 !l57f•7••"31*?•I1•<3.·'I-MISS'-:.P•0!iLZ53‘£L:·Z •‘•*!I7¢;2Z3l'.1‘•22€LOZ1'!".=•1 =I 5!¢L£Z3H.1‘·2I|L35°-5'.1•2fZ‘•3522 ZF 57E?!•0 VB 6**0 EL! 3*60536 TE *35(P\127IT·•‘!t‘·’0L2 32* Em 5.55 *06130*0 Z5 LJ2*‘· W V*2*6 be-! 5-55 3*3*3*20 15 .75!•(· 71-5h 5*9 E'-55 -•3£l‘ 3**% 72P•'7••;!:7H•°*I;•!I;-*T§°:L$.‘35•·.1!;5·;:P:••:•5755*:57°‘E 3530+°··¥‘ Z5 -53'T5!!"é·°5'**¥! *I5"‘J57¢'·'Z 7*56 •3·;·f 5-55 **.37-.26 I•¢2‘:’5*"'1•t‘3?*':.7•7*•*.’2E5•;:!'t•'Z•··5°5**:57°7 323!'-Z57 Z? 55* 5.55 •—13$-030 2* "7‘l*5°.> "·¥5¥i •‘$? 5.55 *6·*$->•< s'¤?•2*2*!„'2«¤:•r:•2*!*=:22?¤ 3*37-355 327107 'äl k2?35.":E7T7 A40!60:3 3* $.1**.0061 7Z·l"! W32 E'.-*5 •°°l~T7¢ 572*!•37'*•3s7Z°.3•5Z'-L12:*:•!!•5TE"P:53°7 3532

ts r .2:* 2*•:•· ¤•:~¤•x:•!.> '~20& r;:¤!:!•Iu•¢2-110 V5L3•.0111I*•„¤1 _-259 I23I7U•t!32:•'17?•K3619 7210*0*I•£P.I1•°-I7357¢S7!1

· *19 7* 3111*4 TB 619 E'.! •!60*16i k‘!I'!lI10•1 E«:’0 K5•l3¤!1•3!111·B-31§2I•l”

Ü Z•1!0 |2•¢5l01V•I!1?•0400 E! 1*] 73 373 STP 16310 15 |1*1!•0 TB *560 H.! *39433 £31\'•¤10•1430 15 !'3!l|!*0!111/$4-0-521111 TB 0006 [L5! -8-3~0 I312*01111‘3;·•I!!lI1•1.0:*0111}.'1l-+13·31€111:3073 460Q3! *311*31117 ‘3f—1§!*0I1*¢11Z' /B-013%*11215*560 Q7? 1 .•372 !!21••S11/G10-330 •I!$IL!¤%J1!•I1•011L02lLx:.‘!2 5•2‘Z'LLZI5'.!1•!!4.2£3I3-z1'3;*‘312!

Page 211: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

EOO

#12G I? ·Sf€ I? YEI! C °E! *EE·I ELEE 429~3i·: •~1.:n611•«u1n•11·1!t!:E11?•E 6:2:•E31 IF ?UL*•.00000E *10 us: ELSE S1}:S3•0 T}1_=•’11il0:lU1lII1!*UII\II1•l‘?lC*:ZI‘I*•lK9!10:5CTC #15VSE! ?‘II1••1I1*!\|II1I!•iI*:IITG ·Sö0

~!!F SBF I*L1E TZ STB STEP l .#3*-* IS i*ZII‘•0 T§·Z1 M20 ELSE -100·•·1; ~‘:1~•«1Iv•!••.L 'ZE• ‘!'Jll•'H1•0i1if.'I!I*IZY1·äIiI1•Dl1!!^E/KEZI _••2*Z· %E7{° I-34 *.S•11E'*.2!V:!IZ'«•„:EIT'i •~E‘~••T *iEI.*V3I'S'*:°'S•'.EZ’€E’E'P _·~!=Z .lZ¢TE IE•E:F*I'€° .?l'=£ *0*-;:.1: 1:•::‘:: ;r¤•:a nu 1/%-* • •••.••• :•.·

·•:. .IZé°E i:•3:==E'.° QEEIE **1;* 11*:1:1:: ::1+1:1:: ·;•E'l; ¤ •••.•••·:·5

-*2 -11äTE Z'•i:°FZ‘!' IEESE *1::1:-1:1 :::::::1:* zzmzm -;-S-! • ••••••.•••‘:l?T1~·6i· .$‘.1:°E ;S•E:11E•1° IEEE 'I•:::I'¤¢:| :¤•f‘:::•¤e 1;·E!;•:•11•e•·- 1 n•,••••

*~:C LIIVE 1*•E:‘EZI" UEISE ‘:*•1•0¤ yu}: cuffiziunt &g·¢•|1.;•§1 • !0|.!!0°='1E-E‘P? LISTE E1-E:*!!'?’ IEEE °1s•¢:11: um •m zmzuz 11'••·· • •••.•••*1r§·E1E IE Zä’.•‘ T*E' ·E:E äE 8*1*E1E "IIIES•GSEE; FSE I•‘.*S TI 5*3 SE? .#$20 IE äI'!1#3 "‘£S 4:0 E.SE •E10S500 ‘EIIEE•H‘!I!?¥•1 ·*EE‘I "}*VE•!J!'.'E•LüE'lIiI!1.‘EIKZI-55C fl? ZSE"! *';1Vi•!'J|VI.’!\!9I’*éf!0 L."°„.ä?S ZE•3:*!!l•T 'bur; wg uu t·,1••°•E•'! LQRSTE 22-E·•1Z<T tE1:1E ~n•·m mzxfxc rau: °I2I E/vv • 1I•.••1'¤'1ll

Q '.•Ö

•c€¢ }° EET!°Ä!*!•' E3 "E- #:1 E.EE ~:E{‘-:1% SSEJE •0Z£°•¢EÖ E?xs: gg1070** LL3:E1'?EE'S E=E€EEE* 3•1EOOIi- .I£ 'Z!••*=•°EE••;:*‘·E·iIG·EL SF YLIIE • 1. TI L2'

E’E‘ EE U

IMEI Lil! ‘Z1ö•v;I!i•LSI•«'!Liß«•EISM? EXT Riß · *10% ESI XLZYE •1*1T3 öI• ST! K-10‘Ü6( .iIE lLZü•!‘•<XLIlE•i°E••31::9: IEIT :.:I10* PI HEIM TE Mtoo! ml¤•11•·•1•••1§!-11III! LII €IG•l79••‘!ll•1"I!•!

· IIIII IE |GI•I|II • 1GTI•!)\I MI :::21 us III!1::21 Lil 1IG•17!!•fIG•i7•;•21c1J• ln MI!101-0 Y°IT'.E!•°LI 1 I l':2280 Lüöf! 1•11PlZ!T P12! ¢°*·1LOZI1'! 1••1IIIl" TTITLIIIII! I! NI•*•M1!!' N!•19•LIIIYT!TLEI*•ö•I•I!IIITI PI !•|I TI !!•EI!Ll1V!TLI!)SMM Fl 7* TI IMIR IYÜIIITKIJNIP NT! TG {IIIERIC *IT iP¤•.SI'I1•lY10111* III? #.1 _

. 1528 !TITL!!l‘Y!H°11210 LCH! I•11P1IIT !$¤!"'*·:L$¤TI E•:x**IIT ITTTU! _ ‘

Page 212: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

EO 1

.24.. .4- ·~ .--4.--11-zu *111 x•o °¤ ;13•1r·.1::210'=¤n veo 10 5zog): 1¤P¤ZIT1I„Y1:IF 2•0 *1-f*I M10WE'? PSZT aFII,FIV1,T ’;G3{•3 1EIT 1.:3-232:.. TIT'1.E$•°.N I I 1 *1225*.*5 'IlE':Z3El .33-*2 !•2:POII° S°0CE51s0•:L22!•*E I-!¤:PRII° TETJQ1 Z3: =P=:2E•!Z¥1!••:.::-‘!•~s!•<szs1;:¤1s: 11;>•.c!·=1•••-1•:.: ‘:1362 :Z1•:•1¤••It/5:v1I:•vn•••i£‘51 256 I;52•0:YLII•|.]B(IIII!*i·Z3£€‘ *2* '.20„•!E T2 •2 ST? If- 11237* ;£:=TE E3•Z¤·.2s&1v cää'1! ‘•••.•°IIL§!L233·' :;5!•t„&!•2ZlZ:I•E" 22.::392 *2* *3ö•EE *2 E S22? ~

‘Z=~-L? ;22¢’E *3h•é:°•!&° LEIKE ••••.•~·=·.-G!1 ··2' ·.45•'.h&•'!I£2:1•E?° *2s..·•2' -2EB

-..2ZI-··3 *2* 2•: °3 I2! 5*2* I10•5; 1= 1*; WE! 16666 ILS! I0ö70

Lil! 2EI1E•Ii•LJIIölI2·Z-*--*2212 •·.3S1&2'2 · -5lb?} IE? E:1-S; *1 I•I T2 Il' E"E9ZLT•*' *2E* 12212 -42S€§!.2‘ -!•1332 EEZT Z:*:221 Z=:1·•<-:322 S2! 2•2 TB 232 STEP!22230 CI21• L30II!£2*!•L.°Ii•\IZ2•I>•1/äE2i!}•E'£f2•Il2*362 2Y2••L30I4If2•£‘I-‘.£I1I222•23I1/IEIi!•!}•EIZ2•£¢3 ‘2329 IF ZAO••0 TG 20540 LEE IC!ZCSN IF 2!2.‘C!I•I•t§ I 2!2f2!!•I.tS TIB :370 E'.! IGSMZiff- L!~3•I12•l•I:Z.¤••2\¤••I:€IY! Z300‘ :332 2* Z§2.’•*•I Nö 20200 L5 2;:20::2*f ZE zrsct EJ! :22*.2;·é!{· 42°•!:Z•!·2:1l1!·•!ß‘2‘•;:S2°'£ Z$:*·'1.•:2· 2* IA‘2*•E **98 HSE? LES l::s·2i2·:E‘2 2* 22'••: WET :CE3€· LSE !0:•·2·13432 2* Ir2I•—I· *°·TE'· 2 :9‘2LES12:-

ZF ZTE•( '“EI 23:5i LEE iii?}1~.—45‘2 S*$•2:2•i•;:ZI.°‘·•2§{.2••I:i**!°2 29:90

2* ISS? LSE 21*9.2IS7; 2* 3’E.'$!2•I.4! 1* "’.1·I2!I•Z.ä! **29 :2222 $.3.* :f:9°Iiéll:lä9f S1? 2 _um ;! STM) nu 1¤m°!;¤ zum.I:0! S*ä•IIzw! 1* IEM W2! 10••• L5 104*2am ¤l••lI20605 IF E700 TÜ !0I0• B.! MH!mult ItT•II20600 LIITI I•?'0¤IIIT I

. IGN ITK20000 3•IE¢0I0 ul

1.1I 1:1••vL:¤1-151••1•.:I. .120000 ln VUI2N!!IILII•I0•¥I•I!T9I2NI Lil IlII•0••(!L1I•!7!I•I20070 IN IUI20000 FI ll)! 70 2020000 !lII••I•04l0I!•IZ .2*:160 LSI IIX•I70i•IIP1I\•2°2=·Z!•u• if 1!•I¤•21.‘5 • !r;Ii·2··„! IE $120 E.! EII!

Page 213: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

202

20160 ·VIITL£0•'I’ Ps ih? -1 9-51*2-1156 LIIUTE 1•1:F2i!IT 2*0CEl ¢‘7$‘:Lä2'2 1„•:P?Zt&7 *72,92*7160 0EF FI1•V•3J:02? '*1*•*0•.E¤v:1T!T;E0••6·I•!626271 F11! H12 TC 12•I!•*.£ItYTI?.£0129100 FG! V•0 TU 02*2*0 0I1*•°01!ITI!.‘!2:IF ¤I!?•0 TIB 2*222329202 2221 £¢I11FI‘!116072*2210 32IT Y1! ~22229 ¥11".20•'C¤II·'!22!!°21237 .CZ§?2 I·L:°III? SP¢I2|L?91:;£C3T2 l•1:P2!IT IYITLSI22Ea; tvL•1£Izx1'ZT'.£wg _.2222*7 222 2?!'•" I!é:1‘£? 2'4Y•21=•¤?*;•!·•x27226 *7* :•;· 'I -I2•".,I222* =1F ‘·•£ ’1 S212% °••21!JT.x.v·;j¢ '¤=; wg. 333;:.2122i '22° '2":.=:.1-.°212fI #&2!° -1-2·i2;:- ':T;2•••: . ;1 @75,5 ;3;.·5:;;31;•27227 °='2§.•0¤•¢2-2320 'ZF 1•: 1*1 Il! 2'22 L ~293•0 IF I11722T1.•7 W2! 21TG3227 I? °¤T22'1017L1"ä=Y'22*Z' ’°·2°i 2C2’•? 2.52 29262L3s<• !b’2S!&7•1'F0°*.2;1'2"°C '?2§° I2Z3?7 $272 111:*211.1 2*%22I.:9‘:;2‘10T2 .•12:22!!° *17.2027225 l&T22"!:'•€•296(-T 2Cl 1•2 T2 I2° SF2? 1231112 ZF 0iT22IZ1•2 **9. gc-.612062C I? E&T22I1I<!;'i6*22.Z1 TM 2I'•¤= 2.22 20626 °21636 I6T23rZ¤•I-20T!!I!•2166 ¤2!° I.2*2050 !l0%•1:'*0·’$ö•‘ä22·?t’!!0!!•ä2I1POT23!!I°‘•!.123669 ~'IIC•IIOI2•’S:¥I'€¤*!0=02J2. .2f·«7$ 1;.i.*•(·:'L00•1.:•00?22IlI¤21·•0—1 227 17L•22 '2 22 2722 1723¤*£ 17372 22•1'2'.:!2I!6" 22111 •0•.ä ‘=.422172* z;¢?•=,é2•‘1!·1::2‘° Z1'.2112* 272 22••22 *1 2 22 -21522 .2Zä°2 27••2:°'1‘l° $2162 '•••.00’='.»22223f- "J2•!2A2•‘1!Z1:¤21° §2°•22566 118 ?!1•.::•€!!··i2='21222311% Z1•2„I•!6°22'?!'T ·‘1•2.1•20?23?$i°21229 272 !•2 TI I2!•1 2T2* 122!°*‘ 1* 1*2% W! 2323*2 E 2*2276

I? HLA! T9 2§s."‘2 2.8 2021'22609 I1§•6•I7T2 23t•029620 Z? NI? TM 20Ü E8 20620206I 21I•7¤I?2 29600B6! 1l£'.G•!20000 2* I•1 VII 20620 28 IT!

· Mt! I]! E6!2*2000 LII I1•2‘2lI2•11-'IIIZP•I?!!lI!••1•lIII12'IIZZHITMIMX21:70 ZT! 20‘!0206I I? 0I]2IIZ•L=•0 ***2I 26200 9.8 2971020000 LI! II·II4I•12/IIIL1-I?ü!0l?•4I•2UI|I1l71IZJ•I/I6Tl2!!1I•1207U IYI K7!20*10 Z? |I?'!!tI1•0 Tél 20720 E8 20*002*178 LII I1‘¤22°!1ll2222•l/“*¤I2'2)1•€l•·U2l:2I]!•·m2•226*M CY! M7!20700 JI I1•II*I•!‘1'71I1T•1!00!!!I1•L11•(2•2IlI111’0I!!2•LIIl*8I!1=-IllH7}! I2]? 2 .2’570·)*lI•1°7II!°!1 _00770 I? !¢?!!!1?•t **-20 2178 LS! 20200

Page 214: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

203

é.7§„ 2i'L 4.321ZQQQQ OQIT IX·5UIlIYI/U1IlY•I.'liTES’III,I620010 I1? I -20020 I!III•1!RI!’!5ILIOI2J030 *00 I•L60 10 STI STI! 120060 IF RITE01II•t TIE! 290020250 IF RIIIIII/IITESIII TRI 20060 ELSE 20002·30&0 !FZ'••1/IG7l2:II:I!IIII•I2)870 $11 I ·2020.2 *55* ‘1·SUI¤!lIII•l0I1II•III.¢1•!IT!!II00!IIII•1•20270 LZI5 (2·SUlII!I1III/5!€I.•!/f.L°1•IITlSIIII!IIII•!1·l$I1IOIIII/0I!I‘•1.I•0

nä266:-; !II07•I#P$7ESY3BI2"‘It¢ FSF IRIS TC STI 5°2F 22€·‘2I ZF *6°5!.!?¤) °*B¤ 20*5C5I*E-I I* PS3! ;‘F§°E!II' ’@§i 206-7 5.55 20953iT¢•; *?‘3>•:=‘!=72'Il:5°••I=•l2i*!I ‘f57° IB22? ’E5° I;•5LI38IIInS7 CI-Z:•1· .Q.·*¢T5STZ°JI1:I'•1&27-*7772,

•I ‘229092:000

'¥·;T'6Z‘•C1/9075 S7II.•é?:!IIl'IZII•§¤I0!STII¢ES"! ..TC6T5 1~**:IP3 ItE205; *571*-220-Li 7.5:;5Iß7! 1•5:Z?.E5 •1POIIY 'lteslte a! Fernen! !•I:ni•:!:• *•l1••u'E32! 2237 Z„3:=&Z1-’ 'Um; rrsu :vs•• af ¢•!a°2:3:2 Lütaft 3•z:!%1‘? L11! '•• zu mszfts mnt: ·•!• ::/hs: • •t•.••••:!I?'AX ~ZTJZC L23I7 6•2:•0ZI! 0318 °0•1* us¤r•!x•= oma! In-III! • t!0.t!••1¥§ .3:·:2¢ .333 $•Z:9!!I* ESI! 'naucme :r6t6x!z•• ¢••n!•• Jg-I/II • •t!t!tt.t!MVIZ .30f··= LIISITE :•2:9?1!•? 11533 'uzxne mens! :n=:u•!s•tI•e €;·P!1I • tt!.Itn°¢•. . ' „JSTSC L237 *,2:**ZIT L11! •nw•!•!•«:• :a•!‘t:ms ··;·0·;—s•11•«• • •••.••••f•!

Etf:. .£Zi-E 3•L:=*?¤? .SIr•3 'gsr-es- -1.;: :.•“::;ns <rs•I1/;•§. • •••.••••:v‘

E·ZZ" .?37 *,E:**I?ä° LES! ·:·::¤ss -;•i: :u·P‘£::••rs !;•:•11:;•!9 • t••.••••¤

E? vi? .237 :;-2:**7 t:§!f.2 •e•:;!:: su: sm 'vmcsxnn meta! 'Z1:!'·°°!i·*'·~.•*· = 0•»•.0•t•*":?3;** .237 Z:-2:!‘!S? LSI! 'mcn ·•1•c:!• far meter •. 1 ‘nv’ • ••t.t!•°· wm!Elli" .Z2l?! !2·2:FOII¥ L'§!I °!I:t v!11:1!! far TKÜY O. E I¤·• • tl.8!'1'ZSVI2221*: L.”3I°5 16•2:FIII‘? "Jeésg ?I hlt af 0•!I'$7220 I5°Tl0l°?!I’a3lTÜüb! 2J!LII7I I•2aFl1II 'PLIS IUB7 !§T7I Z!!I7I§'6013 2:0] 6•2:l$7 'PRGYIIS I! LIK 'IH!8' 6820 ISI?} 6•2:!IU? °2?8ITII T5!$T_ (eq ZI ‘17U8

· 6035 LIITI 1•2:1!.¤ **12: ms um cxxsunm •:•IIl•006•? Läß I0•2!II¤7 ’N!!!7 ÜGIYZI EFFIEISY ! 2 I 'ISFU•·10•1 Z" TWO•'Y' HB 6866 S'.! 6026060065 P!F7•6tI'!7•572870 6075060$I!!FT*P0•°0°7|B6I066lLl!•00•56066 !IO'•?!7E7•20•87I 60ß6008 Il T!!t••0° TIB 6866 laß 6856#6 !C7•0•7I7•2660050 I! lflllt TIC 6800 El 6870VTÜ 'I!8•!Ü760073 1* M8! N8 6008 laß 6070wet Yu•9•¥I1' ·60090 ZF FE! T«¤ 64:00 Eu! 60:1)•c18 *2l!•1„¥IIlI

Page 215: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

204

wiö EF?Z¢30•‘?13( IF ?!!E!•YV' *!l' 'WOPS!•PI•C.°’ °‘*€!I #003 ELSE mx;*0150 IF Eh¥Z•0 III 0|73•0 WSI *;*200 E.SE *029-0130 FU! l•U3 TI! I3] .*6160 !\NT•n°mI*•¢L£,‘lIIII‘|!!I!!•£•¢I!I>••.•9Jw3a§•|!::»•m;;·yg3;;··qm;*3ZEIl:»/·••IS€ZZ:IJ·‘II•!1')»~0I*3 •IE!T I#$1Si ¤'J°*T•NlIT'!:l!I••••.!I'•<;•¢ ¤T•IL¤I¥zum:a¤:¤:w•c•$!=|,:::a,1;·s.m•·rs¤!•n1«,g:¤;•_;;•;yq;g;;;_;;°2!KSI '€!';!!|3I•3liL023£I.X‘¤•II3‘CII.3JS',!'•°*OYI•(PH|/I•ß|II!lL¤2£Lx•·7¤•'=I

.~ wi'!*•P20(DSF FH! l]•3"YÜF*!•3N/I'3Ü”3°3‘3°z.’K3:‘•l•€|!"•,$$#0210 I‘I•|!Ii!:S¢•0!IX?:PI•F!T0?:!!!9•!

HSBC ¤•!I:§•!3:S•$C:#•£If!l2 3(~¢ES¢ Y.•‘¤¤I*-E=l€••'*¤;=I·.S••I•E•.!•t;·: E•;'~!”F••59Ö·E•.I*é'2.:?°#•*"I!·I*••§•ClZ~-1-2#·. éf.!N2:t3•·•¥:5!'!!.:::·•$«.*•·1.s=•::.;·é•·t?•s•·:*•v• :=•·; ·-·«=·• sz ‘•::;: -:3Suit-; =•=

-7222 IF I'II10•3‘Z‘ Wü •1S!I SGS *€2ä·l·M35-; '••;'I•I§!I‘:E•0I¥Z!2!?‘•€271 III3!I’•I|E!0•!:EOI3 *0233 ·•:0&SSTä0¤•S3I!!l!!II/II'!I:SIT|!T!•SI|!'!T8}-'S'.I3€II!!z.i·'J!¤? 33°lEI•!l 'T|UN21'EI]H!:!STl«II0•Il•"lI]Ü./!J!!lI

~L $33 IZS'3¥0PiE•'Sl!. 31 I !!::lS*¤I?•‘:••'S!¤.· IEM•2?*-* I!S°•’•?¤IS•*'$I!lIt!::*!SYB!YI|£•ISI. !.°!!'!!!!I)

ZF 3I€I?F1II•|IISYI% III! öi·>6° EU! H270 -•;0•' !l|!!!•1lI¥l•!#10*3 !•!.1••!H•-:311 !•fY73•:S!€!?•!!!I!!!!I!¥•§!I1l·C•If:*Y!P••I!-OEM)!"·.*9‘.·£!-INI}!-1300 !!•IY!S•'3I1!I•3III!!I!!¤1•§I1_1l•§•IZ;/'!?¥•?'-€•E!!*!"•.•*VI1·MV’!’#1130 I? HLX! TFSI! *122 S'..'£*!£30~:2:t *•¢1:|¤T0 HQ? · ‘-;;ä *x•=:·‘ :$.•;I:·•!*:•-;:31 *FS•F:•<;·£*"!/1::•;i•·I: ';2•;.1•l1-:157 ,•Z‘.'!S•f!ZT1!!!'1‘·•§1:S°;2·•:1•Z•:.i YZ•‘•é;E·!:; ‘•.•?I. Z;·••v!$·-::1*: xr uns HB 6::34 um•ll§=I ‘•IS:§T3 •;13ü-1;% $E•-.1·'•!9•••¤·m••?!-122 i'1•e'G•'EH:!2•P$•Iäl‘T‘&•12!Z '•!IS!I••W!l.00I!t•I•i3!3•„*363-'VI·!0‘•*!£*°•2.!S·l#••*i1*123% 'l6§••I§!!•3¢13I•i„0O13•.*3i3fV!•1I*•**ß’•1..'S•E(·•!'S•*’2?·:S3!' S? !•! T! If•Z2*6 F'!I?•!.'l0•123I UFISIIÜZNICFTII:#I3$• I.*!2•t.1•u*1370 E]•IY!!lIIIII!!I:•I!!!T§3l•I!·C•IIl!F!7)•IF]!•!!"‘•.s•!!I!·I•1!I!

· ul! E.’]!•¢7II•I!I!1lII•-IIISTSINH-CM I 1 ."!!!\•'E3•I!) |‘•.•0PlI1-·I•1l!l*18% IF HOF]! TU HB RI *130~I330 S!•F]!•IN *I!'I|$2330 EITIIIPUI!-1320 F']-l'•IUV!*\•IF]!•II'•FF!€lrH3! ll? IH360 l!"l!•·!0lIVl•t#é2I°Yl'!••2•lIVI•l0U*Hä CUJLCITI |•3:FIII] "!!3INE IXUTUHH I! NIE I|lI‘°H3}! LEZIYI 3•I2:!l!I' CSP! °%°I"E Tl 'I‘ 'lllff °t°E2!] TU °I° ’GU37 °61370 LGS]! *•I]s!I!I" IIS]! °l‘¥°!!l•°°l °! ?l0!°$° HP 'I‘

_ IZSCSI °I°LIM! !•!2:'IiIY IISII °%°:°!¢„ VV P'.IC"$°|' S90'! '

Page 216: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

205

·11'4•‘·+£A'G :-;i:.‘R!!I' JS1! ‘% =‘ Q, : •;•' "ce E' '•1•¢'J .5131*3 !·I:P!!11T JI! 'Z TEE'; '|‘53°-1-:12 ;3C«‘I?G ?•Z:¥’*I¤Y USIIß 'S'1"‘0ZL‘CT'•1*é‘J LECNE 10•1:P!IP1I QSI! '%°¥'G'„E3Y!N!°#140 LSCBIE 3-Z2:NI!I7 JSEI! ' |0.|0|'1¢·;-•> LJCATZ 3•E7:P|III QSI! ° |!.|!•‘:!!·;•SJ L3237! 3•J•:P!!‘|? QSI! ' I!.•!l°IG-1-aß LEG'!.22ATE Lamstrsr usr! • ••.••••::z

640 LZESTE ’•1Z:F!I!T USE! ° •|.O0•°:3•!·?(• LIST! ?„Z‘:’SI1|? 2E! ‘ ••.••|'%!1”•!E‘!0 LEUTE '-3':!'!!|I’ QSEYI ° |•.•0•°¢¢I•'!!-1:11 Eiwt ••::;s•t::r man ·

••.•••·:P•!•1'.2C LEUTE '•&6:P*!!|' GSI! '

||.|0¢‘1P!#12-3 ECIN! 1J•1E:"I!T QSI! ° $9.|!0'!3!'I1-12%-5 JEH? ;'!•E":P!ZI!T :SI! ° *|.•••'12I.13P!?II-120 ·.JC3"E S0•37:P!I!Y JEH! ' :•,¤••'10•£!&·) LJIZT! Z3-!1:P*!!1T 31113 ' •*.•••‘%!I.1!!ITII_ -197 LZEF! Z€•é§:§lI!IT :G1!3 ’ ••.!0l'¢3I4GT%•-120 ·.£{!•’E !2·l:PF!YT JGS! °i°1‘GF?€ZT -7 'MIYTI NEM? PEN! E?’1E1Z"£* 1*1 SSW. 1ITCZ.'.!?§’Y$'-.90 LISTE lE•1:.'*Z‘1T i’?TEIE’•C" EE'; ‘•!!

“EB£I’ ?J2'§TF|?!°-;s>·;· ;-•s:=1!u* ' 1 3 r Zmr ; - Zim ; ;mr•·Z;l1 *7 1•Z 'J *=.2£A°G .••Z·l:“I5° ;SI1!!' Utl! ’1!F*"*!7‘?7?’°"!";==3·Z·#:t s'sn£r' E-1:if JC}-! Z•T*:1?Z‘LT AI

/

Page 217: ~. COMPUTER SIMULATION OF CONTINUOUS …...f — 12. data set from source #14 162 f - 13. data set from source #15 163 f — 14. data set from source #17 batch 164 i i data set from

Recommended