+ All Categories
Home > Documents > . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan...

. Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan...

Date post: 18-Jan-2018
Category:
Upload: annis-quinn
View: 216 times
Download: 0 times
Share this document with a friend
Description:
3 HMP - Definitions Markov Process: X – Markov Process M – Transition Matrix u M ij = Pr(X n+1 = j| X n = i) Hidden Markov Process : Y – Noisy Observation of X N – Noise/Emission Matrix u N ij = Pr(Y n = j| X n = i) M N N XnXn X n+1 Y n+1 YnYn
23
. Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2
Transcript
Page 1: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

.

Entropy of Hidden Markov Processes

Or Zuk1 Ido Kanter2 Eytan Domany1 Weizmann Inst.1 Bar-Ilan Univ.2

Page 2: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

2

Overview Introduction Problem Definition Statistical Mechanics approach Cover&Thomas Upper-Bounds Radius of Convergence Related subjects Future Directions

Page 3: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

3

HMP - Definitions

Markov Process: X – Markov Process M – Transition Matrix Mij = Pr(Xn+1 = j| Xn = i)

Hidden Markov Process :Y – Noisy Observation of XN – Noise/Emission Matrix Nij = Pr(Yn = j| Xn = i)

M

NN

Xn Xn+1

Yn+1Yn

Page 4: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

4

Example: Binary HMP

0 1

p(1|0)

p(0|1)

p(1|1)

p(0|0)

)1|1()1|0()0|1()0|0(

pppp

0 1

q(0|0) q(1|0)q(0|1)

q(1|1)

)1|1()1|0()0|1()0|0(

qqqq

Transition Emission

Page 5: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

5

Example: Binary HMP (Cont.) For simplicity, we will concentrate on

Symmetric Binary HMP :

M = N =

So all properties of the process depend on two parameters, p and . Assume (w.l.o.g.) p, < ½

pppp

11

1

1

Page 6: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

6

HMP Entropy Rate Definition :

H is difficult to compute, given as a Lyaponov Exponent (which is hard to compute generally.) [Jacquet et al 04]

What to do ? Calculate H in different Regimes.

Page 7: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

7

Different Regimes p -> 0 , p -> ½ ( fixed) -> 0 , -> ½ (p fixed) [Ordentlich&Weissman 04] study several regimes. We concentrate on the ‘small noise regime’ -> 0.Solution can be given as a power-series in :

Page 8: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

8

Statistical Mechanics First, observe the Markovian Property :

Perform Change of Variables :

Page 9: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

9

Statistical Mechanics (cont.) Ising Model :

, {-1,1} Spin Glasses

+ + + + - + - -

+ + - - - + + -

1

1

2

2

K

J

K

J

n

n

Page 10: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

10

Statistical Mechanics (cont.) Summing, we get :

Page 11: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

11

Statistical Mechanics (cont.) Computing the Entropy (low-temperature/high-field

expansion) :

Page 12: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

12

Cover&Thomas BoundsIt is known (Cover & Thomas 1991) :

We will use the upper-bounds C(n), and derive their orders :

Qu : Do the orders ‘saturate’ ?

Page 13: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

13

Cover&Thomas Bounds (cont.)

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

eps

p

Upperbound / Lowerbound Average

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

eps

p

Upperbound Minus Lowerbound

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

eps

p

Relative Error Upperbound Minus Lowerbound / Average

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

eps

p

Relative Error Upperbound Minus Lowerbound / (1-Average)

0

0.5

1

1.5

2

2.5

3

n=4

Page 14: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

14

Cover&Thomas Bounds (cont.) Ans : Yes. In fact they ‘saturate’ sooner than would have

been expected ! For n (K+3)/2 they become constant. We therefore have :

Conjecture 1 : (proven for k=1)

How do the orders look ? Their expression is simpler when expressed using = 1-2p, which is the 2nd eigenvalue of P.

Conjecture 2 :

Page 15: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

15

First Few Orders :

Note : H0-H2 proven. The rest are conjectures from the upper-bounds.

Page 16: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

16

First Few Orders (Cont.) :

Page 17: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

17

First Few Orders (Cont.) :

Page 18: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

18

Radius of Convergence : When is our approximation good ? Instructive : Compare to the I.I.D. model

For HMP, the limit is unknown. We used the fit :

Page 19: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

19

Radius of Convergence (cont.) :

Page 20: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

20

Radius of Convergence (cont.) :

Page 21: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

21

Relative Entropy Rate

Relative entropy rate :

We get :

Page 22: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

22

Index of Coincidence Take two realizations Y,Y’ (of length n) of the same HMP. What is the probability that they

are equal ? Exponentially decaying with n.

We get :

Similarly, we can solve for three and four (but not five) realizations. Can give bounds on the entropy rate.

Page 23: . Entropy of Hidden Markov Processes Or Zuk 1 Ido Kanter 2 Eytan Domany 1 Weizmann Inst. 1 Bar-Ilan Univ. 2.

23

Future Directions Proving conjectures Generalizations (e.g. any alphabets, continuous case) Other regimes Relative Entropy of two HMPs

Thank You


Recommended