+ All Categories
Home > Documents > ç k h è î - ° 9 Ô < Q a 9 K B b5] rÚ ¶ k n...- 2 - @ G U \ a a r a 3 ø d O r 5 Ã @ O F ø d...

ç k h è î - ° 9 Ô < Q a 9 K B b5] rÚ ¶ k n...- 2 - @ G U \ a a r a 3 ø d O r 5 Ã @ O F ø d...

Date post: 24-May-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
35
ыƈŧѲʈp>\ĨƬ ы ƈ šѲ2503 ǧȟѫѨǨǮưϔΞļНQɜưΗыƈ ѡыƈɂʐƅѢ5]ārÚȁζĀƍūɮ Q˺χZƵљ_Ōơ]orʈp>\ĨƬ_ʡ_ư5 ѡыƈβƴɴЪѢ ǧȟѪѭǨǮǧȟѪѱǨǮ ǧȟѫѨǨѮɰ ыƈèΚͲ ѡſЩʼá˺ŅưȣÄ˿őĨƬĨėƶÄ ÑëűÄ˿ő ƛǧѢ
Transcript

2503

Q

Q

- 1 -

9

11

14

ao 15

17

N N 20

O 25

N 27

31 10 go 32 11 33

- 2 -

X00

25104001

25 29 10

X00

15K21740

27 29 5

A01

25104002

e

25 29 1

A01

25104003

25 29 4

A01

25104004 o i

25 29 1

A02

25104005 ―

25 29 14

A02

25104006 i

e

25 29 3

A02

25104007 go

25 29 4

A02

25104008

25 29 4

A03

25104009

i

25 29 5

A03

25104010

s

25 29 2

- 3 -

A03

25104011

go

25 29

3

12

A01

26104501

26 27 1

A01

26104503 i

26 27 1

A01

26104511

26 27 1

A01

26104515

26 27 1

A01

26104517 W

26 27 1

A01

26104519 W

26 27 1

A01

26104522 “ Wo

26 27 2

A01

26104526

26 27 3

A01

26104531 g

e i

26 27 3

A01

26104535

Wo

26 27 1

- 4 -

A01

26104538

26 27 “

1

A01

16H00819

28 29 2

A01

16H00825

e

28 29 1

A01

16H00829

i

28 29 1

A01

16H00832

a

28 29 1

A01

16H00835

28 29 2

A01

16H00842 e

go

28 29 3

A01

16H00853

28 29 ―

1

A01

16H00855

28 29 1

A01

16H00856

i

28 29 “

1

A01

16H00857 i

28 29

1

A02

26104502 Wo

26 27 1

- 5 -

A02

26104504

26 27 3

A02

26104507 Wo

26 27 1

A02

26104513 W

o i

26 27 1

A02

26104514 W

o

26 27 1

A02

26104527 W

i e o

26 27 2

A02

26104532 o

26 27 2

A02

26104533 W o

26 27 3

A02

26104534

26 27 1

A02

26104539

26 27 2

A02

26104540

26 27 1

A02

16H00821

28 29 3

A02

16H00826

28 29 2

- 6 -

A02

16H00828

28 29 1

A02

16H00830 i

28 29 1

A02

16H00836 e

28 29 2

A02

16H00840

28 29 α 1

A02

16H00847

28 29 4

A02

16H00848

28 29 2

A02

16H00849β

28 29 3

A02

16H00850

28 29 1

A02

16H00852 a

28 29 1

A02

16H00858 Wo

28 29 1

A03

26104508

WtWo

26 27 1

A03

26104509

go

26 27 1

- 7 -

A03

26104510 h o

i

26 27 2

A03

26104520

i

26 27 2

A03

26104521

26 27 3

A03

26104523

go

26 27 2

A03

26104524 i

26 27 1

A03

26104525 gu

i

26 27 α 1

A03

26104528 i

26 27 1

A03

26104529

i

26 27 1

A03

26104537

26 27 1

A03

26104541

t

26 27

1

A03

16H00818

Wo

28 29 2

A03

16H00822

i C

28 29 1

- 8 -

A03

16H00823

go

28 29 1

A03

16H00824

28 29 2

A03

16H00827 s

28 29 1

A03

16H00833

28 29 3

A03

16H00834t

28 29 5

A03

16H00837

t

28 29 2

A03

16H00839

go

28 29 ―

3

A03

16H00841

t

28 29 α 1

A03

16H00843i

28 29 1

A03

16H00844e

i gW

28 29 1

A03

16H00851

28 29 1

69

- 9 -

sWuN go gu peWO Q

s N ro N e

gu peWO

Wu N

W roO N

ru u e

N N ro i

c ruW O c

uW O

N ru ro N

i N g

u g i ― e oOc ru

s i s g

u g i e o Nc N

gu o

Y c roO N W

u N N u i r

o Os N s guN e

e roO

c N go

W Y N i roO

e W i N u N h

u g W Oc N u W

s gN guW c WOc

NW

0 [ O

Q e N ru gN i W

WO c W o

i W O c N o

s W 1012

i c N oc 1023

W s W p O ruc i o N W

i N go c Oc

i c c ro N N c

o Y O N s n Wu

N s ro ss O c N “

go N e N

WN

i c goO N s n

1 A

1

- 10 -

i N N uN

N ru

s N e c c i O Wu N

e gu i “

ru i O

WuN W

WN

i O

Wu

a N e i

O oN e

W gu i

OA02 “

WN W “ gNA03gu O

Wu N s i

gN e t gN i O ―

gN N N i

i O oN

N gu O e o A01A03 g i O

Wu N guN e i

o i O Wu Y

gW e O gu

Oc o N i c

NA01 “NA02 ― i c ruN i O

i N N N N “ W

i gN W gu

O oN

i c N [ i Oe Nc

a guN g W ro gN

s O

pa N i “

W i Oi guQ o

u N u c

e ss O i W au N go cic N

gW au i c O i ruNc

gW c u c Oe N “ i

N N o W

gu e O

s

- 11 -

c g gN o N oN gu go gu

W sWuN gu peWO hN o d gu peWO

go

0 5 2

0

0 c

N i s

gW oOe o

i N W ro

oOc N

N h

u gN

P N g i c

gu W β oc

ruN 0 1 e o

Q Nc W gW i

roO5 ruN W i

PaCS-MD i N 100

gW Ne

i N roOc

NNatureNScienceNNat. Chem.NNat. Commun.NNat. Chem. Biol.NJ. Am. Chem. Soc.NAngew. Chem. Int. Ed.NProc.

Natl. Acad. Sci. U. S. A. e o 983 goO

983 N54 Oi N N N Yo

N goO o hu gN 150

e oO gu gu P go

N ru o e WO i

Nc P gu ro ruQ

WY Qdynamic encapsulation Qfunctional compactness Qasymmetric functional

conversion N i gW oO

A 0

ru go i d go N5

523 go guN go t gW

e N s ic oO o N N

s e Ne c

oOc N N N N go 73 g

oc ― uW O

P gu go N P i N

N N gN o

― N goO

Q

- 12 -

PCCP

go

0

N ru o a

456 13 au e oO

oN ru 5s

e N gu goO5

2018 1 N ru

Physical Chemistry Chemistry Physics (PCCP)

i gN

i c oO

3s sWu P sWu O

N W

o gW PaCS-MD Calnos QM/MM RWFE-SCFi c gN ru

oO N

N N N

N π― e N

e i c oO o a N

W a gu gN o p.17 Oc Q

e gu i “ ru i W u oO

c Yu 1 A01 A03“Dynamic Encapsulation ” 0 N gu

gN “ ” i N P

gu oO

“ ru i c gNc g

i W gW GDynamic

Encapsulation” goOc N i

i OGDynamic

Encapsulation Wo gW

i N e go

N i gW

O

A02 N

β N i o gW guN N N N

N AFM e oc YN gW t e

goOc WuN gN

go N N O oN

go O a Ne

gN go p.18 Oc Q

i gu e t gN i

W u goO

1 A02 A01 ”Functional Compactness ” 0 N

guN s goO N

gu i c W s e oO oN

t gW

- 13 -

N

hu uW c goO N

Wu i u

gu guW W

N N go

sO Nc

i o p

a N Wu

i o c goO N

N

W

Y Oc N go W

i Oc Q s N o

guW W gNc ”Functional Compactness

” aoOc N Q hu gu i

gu NA03 NA03 i

O W e Og gN W

guW Oc N oFunctional Compactness W

N e N i e i WY O

A03 N Wu D e c

g N go O o

Wu o ) go Oe

Wu gu i go Oc

Q guN e i o i

W u goO

c Yu 1 A03 0 A01 A02

“ Asymmetric Functional Conversion ” 0

WuQ e ic WO N o

P i gN 2s pa

c W Q e goO Y 2s

e o Q W N i Q W W c Oc

ruN H+, Na+, Cl- NDNA CPD, (6-4) photolyase

W 2 gu oO Na+àCl-

NNa+àH+ NCl-àH+ go N

gu NAsymmetric Functional Conversion roO Wc N WuH+

Cl- Ne Na+ oc ru N

pa e c roO

Q N W W

N ru gW gu W

guW guW Oc Asymmetric Functional Conversion DNA e N

e oc gW ruW O

- 14 -

ho N i o ho sWu gu peWO oN

ro N sWu gu peWO

A

u e o “ 75%g roO N go o

u Y o roO gN g

o N N N N i

gu goOc N W

gN i c oO oN

ro N

c N W i c oO

A

2 30 gu go c N 300 N

10 YoO e s e N

o o e uWoOc 30 g g W N 10%

u N W c ic O N o “

gu i N W o WO c

N gu i “ Yo N g roO

“ 90 u34 goOc W Wo

N o Y go gu YN

g goO go g

u e N 2 e oOc

N WOc N W Y N P

i N Wu i Occ W N i

“ e gW oO

A

10 Yoc e o i Nc o N

gu e

roO oN N ruW W

ro 1 roO pa g W WN o

io N 10% u

roO c N go N ro N

gu N N gu roOc

c 3 gu N gN oN

i c oOg gNc N Yu e o

gWO a W N

a c r e c O gu

c oO

- 15 -

3

Wu ao ro N gu peWO 3

i O

0 3

u N hu g P Q

gu gNc eNW Q e tWo

goO c e Q e g gN e

W a c 10 i guWoO auNe P

O

N 2 25 12 N Q e i Y u

WN gu Y roO N Straub N

Sheves N WuN”What is soft molecular system?” gu 1

26 3 N gN go Q

e gu roO oN 2 gu go

26 3 N Wu N Q Wu e

sWu gN Yu roO

e 34 ru ro 3 26 6 N Ni

u Q e Y sWu n

N oO 26 e o N

N N N N “N oro N

Wu Q e Y N Y sWu roO

0 0 0 12

0 1 c

ru Wu Q i gNQ i

i o N O W a c oO

A01 A03 0

0

c au P N goO

A01 WuW N MM MD QM

o QM/MM O c MM go WuW

N go guW NMD i N

MD X NMD 3D-RISM i N11

1 6 gN Yu goOe

N N YN N N

goO

o i ro N

go W go N

e o ru N

e go N

ro gW WN Yo 4 ru 0 e

- 16 -

oO

NA03 sWu e o N N N

” WO c oruN

AA

N N N N N

N N N

N u i 9 e oO g

u N gu o Q i c

oO

N N N N N

N gu

N u7 roO gu N

gu Q i c oO

e N gu i c N

Q ” W Y o sWu roO

c A03 18 N gu ”

gN oO

c ru W N Y W

goO Y A01 A03 N go W

“ i c N 1 Angew. Chem. Int. Ed.

goO 0 N Y

gu NA01 A03 NA01 A03 NA01 A03 NA01 A03 NA01 A03

N gu A02 A03 NA02 A03 NA02 A03 NA02

A03 N o gu A02 A02 NA02 A02WN

guN Q sWu e uWo N

Wu e oO guN o e N

o ruW O W aoO

3

0

1 0 0

0

e e gN N

e i goO NQ i e N

e oOc ruNQ NQ NQ ro

i gW ic goO

1 A

Physical Chemistry Chemical Physics “Complex Molecular Systems: Supramolecules, Biomolecules

and Interfaces.” i g 2018 1 30 N au i

goO

- 17 -

o sWuN gW e N

Wu d gN gu peWO N

sWu gu peWO oru N o c g iO

A01

N ic “ g

i N

PaCS-MD go J. Chem. Theory Comput. Phys. 2015, p.198 O PaCS-MD i c N

gN “i c go J. Chem. Theory Comput.

Phys. 2018, p.491 O o N uWo

gN

H3O+ gu i c ru go

Proc. Natl. Acad. Sci. U.S.A. 2015, p.141Oc Grotthussi O

N J. Am. Chem. Soc. 2015, p.152 N

Wu oO SFG

gu N go SFG “ CalnosWu W goO SFG A02

goO e uW O N goQM/MM RWFE-SCF Wu

i gN e go

roOA03 gN

N

i c e o Nat. Commun. 2015,

p.142Oe A03 go

i J. Am. Chem. Soc. 2013; Sci. Adv. 2017,

p.6; 396 oO

gN go goO

A03 F Nat. Commun. 2015,

p.129 π―

Angew. Chem. Int. Ed. 2015, p.130

Ne A03 gu

go Angew. Chem. Int. Ed. 2015, p.158 O

N QM/MM“ go W c ruN

J. Phys. Chem B 2016, p.297 ABC

Biochemistry 2016, p.311 a

goO

- 18 -

A02

N i N

i pO

a Wpgoc YN

gN

go go J. Phys. Chem. Lett. 2016, p.243 Oc

”functional compactness ” W goO

N go gu

pO c

gN

Y c go Nat. Commun. 2015,

p.154 O

c gN

WoO

N i

N10

go Phys. Chem. Chem. Phys. 2018, p.466 O

go WuN sWuN a

goOc i o N

hu e i c go

Biophys. Rev. 2018, p.506 O

N e

o gN

goO β2 SIVSFP O

hu e N h c g

oO Angew. Chem. Int. Ed. 2018, Inner Cover , p.507

N Wo N i

100 W i c

go Nat. Chem. Biol. 2016, p.251 O

pi gN

s e

c goO N

o ― goO

NCRISPR Cas9DNA i (HS-AFM)

goOHS-AFM Napo-Cas9

NCas9-RNA gN3 r

uDNA i c goOe NCas9

HNH g Wo N DNA go

NDNA i c ro(Nat. Commun. 2017, p. 429)O

Angewandte

A Journal of the Gesellschaft Deutscher Chemiker

Chemie

www.angewandte.org

2018–57/20

International Edition

..Cold ion trap laser spectroscopy …… reveals the molecular recognition of a binding motif, SIVSF, which mimics theadrenergic receptor. As described by S. Ishiuchi, M. Fujii, and co-workers in theirCommunication on page 5626 ff. , SIVSF distinguishes the difference in the molecularstructures of various ligands and recognizes whether the ligand is the proper one or not.

- 19 -

A03

go Na+

gN g WK+ go Nature 2015,

p. 127 O o go

Nature 2018 O e uW c

Chem. Rev. 2 go a 2014,

p. 15; 2018, p. 512 O

e guN

2 β

10 c go Nat. Commun. 2015, p. 129O o gu

go Angew. Chem. Int. Ed. 2015, p. 130 O

ro π guW N

Wo gu go

gN go Nat. Chem. 2014, p. 54 O

ro N

i c N

u i c go Nat. Commun. 2017,

p. 422 O

i P goO

WuN

N

ic go Nat. Chem. 2014, p. 131 O go

roOA03 N

i c guN i c

u go Angew. Chem. Int. Ed. 2018, p. 514 O

c YuN W c P

go Angew. Chem. Int. Ed. 2016, p. 289 O

Wu Y c

go J. Am. Chem. Soc. 2017, p. 450 O gu

c i c go Angew. Chem. Int. Ed. 2017,

p. 380 O

- 20 -

o N N N s

Wu gu peWO oru N o c g iO

N gW e N d gN N

N gN 9 A: gu peWO

Q gu go sWu N L gu peWO

o N au ro c go

go sWu go sWu N gu peW i NQL

gu peWOO

a ro sWu gu peWO

i A01 1. L▲D.P. Tran, K. Takemura, K. Kuwata and *A. Kitao "Protein-Ligand Dissociation Simulated by Parallel Cascade Selection

Molecular Dynamics" J. Chem. Theory Comput., , 14, 404−417 (2018). 2. ▲ *N. Yoshida, *M. Higashi, H.Motoki, S. Hirota "Theoretical Analysis of the domain-swapped dimerization of cytochrome

c: An MD and 3D-RISM approach " J. Chem. Phys., , 148, 025102 (2018). 3. ▲ F. Lu, N. Kitamura, T. Takaya, K. Iwata, *T. Nakanishi, *Y. Kurashige "Experimental and theoretical investigation of

fluorescence solvatochromism of dialkoxyphenyl-pyrene molecules" Phys. Chem. Chem. Phys., , 20, 3258-3264 (2018)

4. ▲*P. Pongprayoon and *T. Mori "The critical role of dimer formation in monosaccharides binding to human serum albumin"Phys. Chem. Chem. Phys., , 20(5), 3249-3257 (2018).

5. L▲*A. Kitao and K. Takemura, "High anisotropy and frustration: the keys to regulating protein function efficiency in crowded environments" Curr. Opin. Struct. Biol., , 42, 50-58 (2017).

6. L▲*K. Yagi and B. Thomsen, “Infrared spectra of protonated water clusters, H+(H2O)4, in Eigen and Zundel forms studied by vibrational quasi-degenerate perturbation theory” J. Phys. Chem. A, , 121 (12), 2386-2398 (2017).

7. ▲*T. Kawasaki and *K. Kim "Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water" Sci. Adv., 3(8), , e1700399 (7pages) (2017).

8. L▲ H.M. Dokainish, D. Yamada, T. Iwata, H. Kandori and *A. Kitao "Electron Fate and Mutational Robustness in the Mechanism of (6-4) Photolyase-Mediated DNA Repair" ACS Catalysis, , 7(7), 4835-4845 (2017).

9. L▲M. Kamiya, and *S. Hayashi "Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation” J. Phys. Chem. B, , 121, 3842-3852 (2017).

10. ▲*T. Furuta, and M. Sakurai "Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding" Biochemistry, , 55(48), 6730-6738 (2016).

11. ▲W.-L. Hsu, T.Furuta, and *M. Sakurai "ATP Hydrolysis Mechanism in a Maltose Transporter Explored by QM/MM Metadynamics Simulation" J. Phys. Chem. B, , 120(43), 11102-11112 (2016).

12. L▲Y. Nishihara and *A. Kitao "Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor" Proc. Natl. Acad. Sci. U.S.A., , 112(25), 7737-7742 (2015).

13. L▲R. Harada and *A. Kitao "Non-targeted parallel cascade selection molecular dynamics (nt-PaCS-MD) for enhancement of the conformational sampling of proteins" J. Chem. Theory Comput., , 11(11), 5493-5502 (2015).

14. ▲N. Kikkawa, L. Wang, and *A. Morita "Microscopic Barrier Mechanism of Ion Transport through Liquid-Liquid Interface" J. Am. Chem. Soc., 137(25), 8022-8025 (2015).

15. ▲ *T. Ishiyama, A. Morita, and T. Tahara "Molecular Dynamics Study of Two-Dimensional Sum Frequency Generation Spectra at Vapor/Water Interface" J. Chem. Phys., , 142(21), 212407 (13 pages) (2015).

16. L▲C, Cheng, M, Kamiya, Y, Uchida, *S, Hayashi “Molecular mechanism of wide photoabsorption spectral shifts of color variants of human cellular retinol binding protein II” J. Am. Chem. Soc., , 137, 13362-13370 (2015).

17. L▲K. Tamura and *S. Hayashi “Linear response path following: a molecular dynamics method to simulate global conformational changes of protein upon ligand binding” J. Chem. Theory Comput., , 11, 2900-2917 (2015).

18. L▲R. Hayashi, K. Sasaki, S. Kudo, S. Nakamura, Y. Inoue, H. Noji, and *K. Hayashi "Giant acceleration of diffusion observed in a single-molecule experiment on F1-ATPase" Phys. Rev. Lett., 114, 248101 (2015).

19. *H. Torii "Amide I vibrational properties affected by hydrogen bonding out-of-plane of the peptide group" J. Phys. Chem. Lett., , 6 (4), 727-733 (2015).

20. ▲T. Ohto, E. H. G. Backus, C.-S. Hsieh, M. Sulpizi, M.Bonn and *Y. Nagata “Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water” J. Phys.Chem. Lett., , 6, 4499-4503 (2015).

21. T. Ishiyama, T. Imamura, and *A. Morita "Theoretical Studies of Structures and Vibrational Sum Frequency Generation Spectra at Aqueous Interfaces" Chem. Rev., , 114(17), 8447-8470 (2014).

- 21 -

A02 1. L▲ M. Mizuno, A. Nakajima, H. Kandori, and *Y. Mizutani “Structural Evolution of a Retinal Chromophore in the

Photocycle of Halorhodopsin from Natronobacterium pharaonis” J. Phys. Chem. A, , 122, 2411-2423 (2018). 2. ▲H. Oikawa, T. Takahashi, S. Kamonprasertsuk and *S. Takahashi “Microsecond resolved single-molecule FRET time

series measurements based on the line confocal optical system combined with hybrid photodetectors” Phys. Chem. Chem. Phys., , 20(5), 3277-3285 (2018).

3. L▲T. Sekiguchi, M. Tamura, H.Oba, P. Çarçarbal, R. R. Lozada-Garcia, A. Zehnacker-Rentien, G. Grégoire, *S. Ishiuchi, and *M. Fujii “Molecular recognition by a short partial peptide of adrenergic receptor – Bottom-up approach” Angew. Chem. Int. Ed., , in press (2018).

4. ▲*H. Okajima, T. Shinmyozu and *A. Sakamoto “Selective resonance Raman enhancement of large amplitude inter-ring vibrations of [34](1,2,4,5)cyclophane radical cation; a model of π-stacked dimer radical ions” Phys. Chem. Chem. Phys.,

, 20, 3395 - 3402 (2018). 5. L▲T. Oshima, T. Ichiba, K. S. Qin, K. Muraoka, J. J. M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama,

K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama and K. Maeda* "Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light" Angew. Chem. Int. Ed., , in press (2018).

6. ▲*T. Takaya, M. Anan, and *K. Iwata "Vibrational relaxation dynamics of β-carotene and its derivatives with substituents on terminal rings in electronically excited states as studied by femtosecond time-resolved stimulated Raman spectroscopy in the near-IR region" Phys. Chem. Chem. Phys., , 20(5), 3320-3327 (2018).

7. L▲*Y. Mizutani "Time-resolved Resonance Raman Spectroscopy and Application to Studies on Ultrafast Protein Dynamics,", Bull. Chem. Soc. Jpn., 90, 1344 - 1371 (2017).

8. ▲*M. Shibata, *H. Nishimasu, N. Kodera, S. Hirano, T. Ando, T. Uchihashi and *O. Nureki "Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy" Nat. Commun., , 8, 1430 (2017).

9. ▲T. Kozai, T. Sekiguchi, T. Satoh, H. Yagi, *K. Kato and *T. Uchihashi" Two-step process for disassembly mechanism of proteasome α7 homo-tetradecamer by α6 revealed by high-speed atomic force microscopy" Sci. Rep., , 7, 15373 (2017).

10. ▲S. Yoshidomi, M. Mishima, S. Seyama, *M. Abe, Y. Fujiwara, and *T. Ishibashi "Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time Resolved UV-vis and IR Spectroscopy: Notable Nitrogen-Atom Effects" Angew. Chem. Int. Ed., , 56, 2984-2988 (2017).

11. ▲M. Kondoh, M. Mizuno, and *Y. Mizutani “Importance of Atomic Contacts in Vibrational Energy Flow in Proteins” J. Phys. Chem. Lett., , 7, 1950–1954 (2016).

12. L▲H. Kuramochi, S.Takeuchi, K. Yonezawa, H. Kamikubo, M. Kataoka, T. Tahara “Probing ultrafast photoreceptive responses inside photoactive yellow protein with time-domain Raman” Nat. Chem., , 9, 660-666 (2016).

13. ▲K. Matsuzaki, R. Kusaka, S. Nihonyanagi, S. Yamaguchi, T. Nagata, T. Tahara “Partially hydrated electrons at the air/water interface observed by UV-excited time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy” J. Am. Chem. Soc., , 138, 7551-7557 (2016).

14. L▲*T. Ikeya, T. Hanashima, S. Hosoya, M. Shimazaki, S. Ikeda, M. Mishima, P. Güntert and *Y. Ito "In-cell structure determination of proteins at near-physiological concentration" Sci. Rep., , 6, 38312 (2016).

15. L▲#H. Isojima, #R. Iino, Y. Niitani, H. Noji, *M. Tomishige (#Equal contribution) “Direct observation of intermediate states during the stepping motion of kinesin-1” Nat. Chem. Biol., , 12, 290-297 (2016).

16. L▲#M. Baba, #K. Iwamoto, R. Iino, H. Ueno, M. Hara, A.Nakanishi, J. Kishikawa, *H. Noji, and *K. Yokoyama (#Equal contribution) “Rotation of artificial rotor axles in rotary molecular motors” Proc. Natl. Acad. Sci. U.S.A., , 113, 11214-11219 (2016) .

17. ▲M. Saito, S. Kamonprasertsuk, S. Suzuki, K. Nanatani, H. Oikawa, K. Kushiro, M. Takai, P.-T. Chen, E. H.-L. Chen, R. P.-Y. Chen, and *S.Takahashi “Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by Confocal Method of Single-Molecule Fluorescence Spectroscopy” J. Phys. Chem. B, , 120(34), 8818-8829 (2016).

18. L▲T. Otosu, K. Ishii, T. Tahara “Microsecond protein dynamics observed at the single molecule level” Nat. Commun., , 6, 7685 (2015).

19. ▲M. Miyazaki, R.Ohara, K. Daigoku, K. Hashimoto, J. R. Woodward, C. Dedonder, *C. Jouvet, and *M, Fujii “Electron-Proton Decoupling in Excited State Hydrogen Atom Transfer in the Gas Phase” Angew. Chem. Int. Ed., , 54(50), 15089-15093 (2015).

20. ▲K. Mizuse, K. Kitano, H. Hasegawa and *Y. Ohshima "Quantum unidirectional rotation directly imaged with molecules" Sci. Adv., , 1, e1400185 (2015).

21. LH. Yomoda, Y. Makino, Y. Tomonaga, T. Hidaka, *I. Kawamura, T. Okitsu, A. Wada, *Y. Sudo, *A. Naito "Color Discriminating Retinal Configurations of Sensory Rhodopsin I by Photo-Irradiation Solid State NMR Spectroscopy." Angew. Chem. Int. Ed., , 53 (27), 6960-6964 (2014).

- 22 -

A03 1. L▲A. Pushkarev, K. Inoue, 12 , *H. Kandori, and *O. Beja, “A distinct abundant group of microbial rhodopsins

discovered via functional metagenomics” Nature, in press (2018). 2. L▲*H. Kandori, K. Inoue and S. P. Tsunoda, “Light-driven sodium-pumping rhodopsin: A new concept of active transport”,

Chem. Rev., , in press (2018). 3. ▲ K. Mase, Y. Sasaki, *Y. Sagara, 2 , *N. Yanai, and *N. Kimizuka, "Stimuli-responsive dual-color photon upconversion: an S-T

absorption sensitizer in a soft luminescent cyclophane", Angew. Chem. Int. Ed., , 57, 2806-2810 (2018). 4. ▲ F. Lu, *T. Takaya, K. Iwata, I. Kawamura, 3 , and *T. Nakanishi, “A guide to design functional molecular liquids

with tailorable properties using pyrene-fluorescence as a probe”, Sci. Rep., , 7, 3416 (2017). 5. ▲ M. Yamashina, M. Akita, T. Hasegawa, S. Hayashi, and *M. Yoshizawa, "Polyaromatic nanocapsule as a sucrose receptor

in water", Science Adv., , 3, e1701126 (2017). 6. ▲K. Yazaki, M. Akita, S. Prusty, D. K. Chand, T. Kikuchi, H. Sato, and *M. Yoshizawa, "Polyaromatic molecular peanuts",

Nat. Commun., , 8, 15914 (2017). 7. LR. Taniguchi, 9 , Y. Otani, 4 , *J. Aoki, and *O. Nureki, "Structural insights into ligand recognition by the

lysophosphatidic acid receptor LPA6", Nature, , 548, 356-360 (2017). 8. L▲*K. Oohora, 4 , and *T. Hayashi, "Manganese(V) porphycene complex responsible for inert C–H bond

hydroxylation in a myoglobin matrix", J. Am. Chem. Soc., , 139, 18460–18463 (2017). 9. L▲ W. Piao, *K. Hanaoka, T. Fujisawa, S. Takeuchi, 3 , T. Tahara, T. Nagano, and *Y. Urano, “Development of an

azo-based photosensitizer activated under mild hypoxia for photodynamic therapy”, J. Am. Chem. Soc., , 139, 13713-13719 (2017).

10. ▲B. Maity, S. Abe, and *T. Ueno, “Observation of gold sub-nanocluster nucleation within a crystalline protein cage”, Nat. Commun., ,8, 1480 (2017).

11. L*Y. Shomura, 10 , S. Hirota, and *Y. Higuchi, "Structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase", Science, , 357, 928-932 (2017).

12. L▲K. Yuyama, M. Ueda, S. Nagao, *S. Hirota, *T. Sugiyama, and *H. Masuhara, "A single spherical assembly of protein amyloid fibrils formed by laser trapping", Angew. Chem. Int. Ed., , 56, 6739-6743 (2017).

13. L▲ K. Inoue, S. Ito, Y. Kato, Y. Nomura, M. Shibata, T. Uchihashi, S. P. Tsunoda, and *H. Kandori, "Natural light-driven inward proton pump", Nat. Commun., 7, , 13415 (2016).

14. L▲ D. Yamada, H. M. Dokainish, T. Iwata, 5 , A. Kitao and *H. Kandori, "Functional conversion of CPD and (6-4) photolyases by mutation", Biochemistry, , 55, 4173-4183 (2016).

15. L▲K. Inoue, Y. Nomura and *H. Kandori, "Asymmetric functional conversion of eubacterial light-driven ion pumps", J. Biol. Chem., , 291, 9883-9893 (2016).

16. ▲Y.-G. Huang, 12 , and *O Sato, "Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework", , Nat. Commun., 7, 11564 (2016).

17. ▲ S. Kanegawa, 3 , H. Okajima, A. Sakamoto, T. Iwata, H. Kandori, K. Yoshizawa, and *O. Sato, “Directional electron transfer in crystals of [CrCo] dinuclear complexes achieved by chirality-assisted preparative Mmethod”, J. Am. Chem. Soc., , 138, 14170-14173 (2016).

18. L▲H. E. Kato, K. Inoue, 19 , *H. Kandori, and *O. Nureki, “Structural basis for Na+ transport mechanism by a light-driven Na+ pump”, Nature, , 521, 48-53 (2015).

19. ▲ M. Yamashina, 3 , S. Takeuchi, T. Tahara, and *M. Yoshizawa, "Preparation of highly fluorescent host-guest complexes with tunable color upon encapsulation", J. Am. Chem. Soc., , 137, 9266-9269 (2015).

20. ▲ P. Duan, *N. Yanai, Y. Kurashige, and *N. Kimizuka, “Aggregation-induced photon upconversion through control of the triplet energy landscapes of the solution and solid states”, Angew. Chem. Int. Ed., 5 , 4, 7554-7549 (2015).

21. L▲ K. Inoue, 4 , S. Hayashi, H. Kandori, and *Y. Sudo, “Converting a light-driven proton pump into a light-gated proton channel”, J. Am. Chem. Soc., , 137, 3291-3299 (2015).

22. ▲ S. Horiuchi, 2 , K. Yamamoto, 4 , Y. Kurashige, T. Yanai, and *T. Murahashi, “Multinuclear metal binding ability of a carotene”, Nat. Commun., , 6, 7742 (2015).

23. ▲Y. Ishikawa, 3 , Y. Kurashige, T. Yanai, and *T. Murahashi, “Modulation of benzene or naphthalene binding to palladium cluster sites by the backside-ligand effect”, Angew. Chem. Int. Ed., , 54, 2482-2486 (2015).

24. ▲S. Kang, H. Zheng, *T. Liu, 12 , and *O. Sato, “A ferromagnetically coupled Fe42 cyanide-bridged nanocage”, Nat. Commun., , 6, 5955 (2015).

25. L▲*O. P. Ernst, D. T. Lodowski, M. Elstner, P. Hegemann, L. S. Brown, and H. Kandori, “Microbial and animal rhodopsins: Structures, functions, and molecular mechansims” Chem. Rev., , 114, 126-163 (2014).

26. ▲M. Yamashina, Y. Sei, M. Akita, and *M. Yoshizawa, “Safe storage of radical initiators within a polyaromatic nanocapsule”, Nat. Commun., , 5, 4662 (2014).

27. ▲Z.-S. Yao, 11 , and *O. Sato, “Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex”, Nat. Chem., , 6, 1079-1083 (2014).

28. ▲*M. J. Hollamby, 11 , and *T. Nakanishi, “Directed assembly of optoelectronically active alkyl‒π-conjugated

- 23 -

molecules by adding n-alkanes or π-conjugated species”, Nat. Chem , , 6, 690-696 (2014). 29. ▲N. Kishi, M. Akita, M. Kamiya, S. Hayashi, H.-F. Hsu, and *M. Yoshizawa, “Facile catch and release of fullerenes using a

photoresponsive molecular tube”, J. Am. Chem. Soc., , 135, 12976-12979 (2013).

i guN Physical Chemistry Chemical Physics i goO

Themed collection “Complex molecular systems: supramolecules, biomolecules and interfaces” p. 2917 -3852) Guest Edited by T. Tahara, A. Kitao, Y. Mizutani, H. Kandori and M. Fujii Royal Society of Chemistry, 2018

URL : http://www.yawaraka.org/

97 2018 4 20

1 25 10 5 N 3 3

152 2 26 11 28–29

21 N 44 94 N

121 3 27 7 9–11

4 N 24 N 44

97 N 145 4 28 10 27-28

4 α 18 N 4 N 45

97 N 131 5 29 6 26-28

4 N 24 N 45

93 N 105

1 H26.3.10-11 What is soft molecular system? 14 2 H26.3.26 α Y 36

3 H26.6.28 Over the Barriers of Transition Paths: Dynamical Processes in Proteins and Complex Molecular Systems 38

4 H26.8.2-3 s 55

5 H26.9.20 c i 34

6 H26.9.25 Regulating structure formation and function of biomolecular systems with softness 300

7 H26.12.12-13 α e go 25

8 H27.1.24-25 21

9 H27.3.16-17 π “ 30

10 H27.5.1-2 11

11 H27.9.14 i e 300

- 24 -

12 H27.10.1 s Theory, Measurement and Creation of Porphyrinoid Compounds as Soft Molecular Systems 25

13 H27.10.28-29 α e s Y 28

14 H28.3.1-2 Q e 18

15 H28.3.10 ― go 76

16 H28.6.10-11 Progress on Sum-Frequency Generation Spectroscopy 53

17 H28.9.26 WRHI International Workshop on Advanced Laser Spectroscopy for Soft Molecular Systems 45

18 H28.11.27 s What connects the softness of biomolecules to their functions 100

19 H28.12.3 Y ― 83

20 H29.1.21 43

21 H29.3.14-15 Present and Future of Ultrafast Spectroscopy 56 22 H29.5.13 eWo 59

23 H29.6.20 e 60

24 H29.9.14 26

25 H29.9.20 e ee 100

26 H29.10.6 WRHI International Workshop on Advanced Laser Spectroscopy for Soft Molecular Systems 43

27 H29.12.2 eWo ― 56

28 H30.3.6-7

89

H27.7.11

DNA gW

e i O DNA 3D e o -

30

H28.7.23, 26 .

7.23 Q , 7.26 N NHeLa

31

H28.11.19

N3D e o

-

26

11

25 9 30 3 O 55 N 523 O

SNS

Facebook 109 Ntwitter 116

- 25 -

p Wu guW gN

N ru o N Wu s gu

peWO W gW o

N “ N ― N W c

gu gu o N

N i c roO c Nc 3 s

sWuA01 NA02 NA03 3s uN

n i 10

gu goO

i o o pa

i c Wo N

34 N 35 gu Y c N

e oO Wu

aoO

e o N gu

ro 3 s WN t

Wo a WO c N

N

roO N h

i 10 N 3 4

a N ru ro

N o i o

N go 1 goO 100 roO

i o N10 30 5 28

goOc 1 i gN o

go goO

i e i o N

goO5 13 g 10,600 goO gu i O

gN o N N

N N go 25 9

goO5 55 N 523 goO YN ru i c N gN

W io N N go

i o 1 goO 100 150 roO

5 3 N 5 2 gu gN Yu

Wu ro WoO

3 Royal Society of Chemistry Physical Chemisty

Chemical Physics N 5 N N N N

ru “Themed issue: Complex molecular systems: supramolecules, biomolecules and interfaces”

o2018 1 goOc pa

e N Y 51 e o 936 O o4s

Ni u e o sWu N g o

gW oO

- 26 -

N Q i e N

oO o 150 N 36 N

53 N 61 N pa

guW c O o i N A01 N A02 N A03 W

c oOe 27 go

N13 goO

============================================================================

163

A01 A01: 7 NA02 A02: 13 NA03 A03: 10

A01 A02: 24 NA01 A03: 29 NA02 A03: 44 N3 : 23

: 13 -----------------------------------------------------------------------------------------------------------------------------------

i 60

A01 A01: 2 NA02 A02: 4 NA03 A03: 1

A01 A02: 9 NA01 A03: 15 NA02 A03: 16 N3 : 7

: 6

============================================================================ ru 54 N 6 N 60

e oO150 54 4 W Nat. Commun., J. Am. Chem. Soc., Angew.

Chem. Int. Ed. oc YuW O Nc

u ro N ― i O

o N P ro 179 Oc

ao6 Nat. Commun., Proc. Natl. Acad. Sci. U. S. A. e uW O

N N N i O

A02 A03 i c N

g β i β goOc

c o N

Wuc go J. Am. Chem. Soc. 2017 O

A01 A03 i c UCi gW goO β

gu UC e Nc

“ go Angew. Chem. Int. Ed. 2015 O

u ro 2gN 1 Angew. Chem. Int. Ed. goO

A03 Chand ] s

go gNc

i c N go Nat.

Commun. 2017 O Chand

Wgoc Nat. Commun. go N

gNChand roc c

roc gu oWO

C60metal ion

- 27 -

i

sWu gu peW a OO

L A01 N “ gu “ gN

“ W goOc NA02 NA02 NA02

NA02 NA03 W roO L A01 N D ru i o D

gN goO o D go D N

βgu c WN i go O

L A01 A02 N βg

n gN WoO oc i

gu c N i o W ro O L A01 N o “ gN “

o goOc “ N o gu

gNA02 e oO o go N

oO

L A01 N “ QM/MM RWFE-SCF “ o N “

goO MD “ QM/MM RWFE-SCF “ o NXeon CPU “ gN Wu oO o

MD o NGPU go “ goO

Y o N W roO

L A02 N

i o Nc gu i β CCD goO

A03 go gW e o W roO L A02 N β o N N

N N CCD N goO

sWu β N goO

NA01 NA03 NA03 W roO

L A02 N o HPLC

goOc N i goOe N

gN i o Y

oOc N “ o oO

L A02 OPO YAG guOPO N

WuW O a

gu NA01 NA01 W roO

L A03 go o N

PCRN N gN N W roOc

A01 N N NA02 N N NA03 N W roO

L A03 i o N gN

i gu gNA01 goO

L A03 β goO

NA02 NA02 ※ i

W roO oN go GPC N e N P

o roO

- 28 -

Wu go O Qgo O sWuN W N ” gu peWO

( )Cary670FT-IR 1 11,997,300 11,997,300

FUJITSU PRIMERGY 1 9,996,000 9,996,000 ⇒

BIO-RAD NGC Quest 10 1 8,400,000 8,400,000

β HITACHI DSC7000X 1 7,948,500 7,948,500

UNI-XS-E5N1U(HDDx2

10 748,160 7,481,600

1 6,332,130 6,332,130

ImageQuant LAS4000 1 5,460,000 5,460,000

TQ-600-2-3615T

1 3,581,005 3,581,005

1 2,224,800 2,224,800

. PHAROS-SP/R1 1 23,998,140 23,998,140

JEOL RESONANCE JNM-ECZ400S

1 7,495,200 7,495,200

Extrel CMS 19mmRF/D

TQ-600-2-3615T

Millennia eV 5MP-W

1 1 1

5,673,240

3,432,108

2,970,108

5,673,240

3,432,108

2,970,108

( .,

Ascend 40HM-W 1 11,995,776 11,995,776

2

)-

Continuum SureliteI I-20

1 5,501,520 5,501,520

JEOL RESONANCE

TQ-600-2-3015T

1 1

4,989,600

3,284,296

4,989,600

3,284,296

01)

TOPAS-800-PSM W 1 8,804,592 8,804,592

010 Laser Vision 1 6,572,000 6,572,000

- 29 -

a N N N sWuN d N N

W N N gu peWO

25 N N o

11 N 3,325,947 2 2 3 1,425,540 1 691,030

TSRC-WSQProtein Dynamics Telluride/CO/USA N 614,960 o

3 5,321,918 7 6,515,361

951,722 o

2 437,764 o 325,395 o

26 N N o

11 N 4,065,360 3 2 3 1,726,952

ICORS2014 • N 2 1,041,960 o

11 29,431,831 7 10,303,264

6,372,000 o

1,456,380 o “ 1,024,000 “ o

27 N N o

13 N 4,132,673 3 3 W

2 N 1 N 4 W 2,257,352 4 2 3 1,101,457

o 7 30,801,250

12 11,726,518

1,989,684 o 926,640

2 649,123 o

28 N N o

12 N 4,063,049 5 3 2,904,959

IBBI2016 3 - N 1,280,783

- 30 -

o 8 35,729,349

6 7,418,697

2 1,136,160 o 926,640

853,740 o 850,824 o

29 N N o

7 N 2,574,365 o W 6 WN

2,221,927 5 3

W 2 N 1 N 4 2,218,682 5 3

1,608,321 o 3 N 1,156,100

8 37,154,670

7 8,841,614 “ 2,464,000

5 1,424,280 6 1,368,414 o

g ro N gu peWO

A03 guWo hoo N N

6 goOc o N 4,000,000 N 1,000,000 5,000,000 goO

- 31 -

N Yo sWu gu peWO

h N i “ W

goO

Wu N guQ

o N

e uWo N

c

― Wu

ogNc

WoO N 26 29 4

oru gu

gN o i

Nc gW sWu goO oN

Wu N 29

gN s ” roOe

N N Wu

WN P i

goO

N 27 12 Wu Pacifichem2015 e

o N 5s goOc N

N N

N i N

sWuN oO i

W auWo N g

o cic N gW au

i c oO

ro go

Physical Chemistry Chemical Physics

ruW O N

ro W gu

W guW

gN tWu gW i N g

W ic oO

Q e o

ru o N N o gu

o iO Y NA01 go N

W i OA02 go pa

g W N o OA03 go

N Wu O oA03 go K+

e gu uW N Cs+

i o gu e O

N o goO

11 Q

i e N

27 9 14 )

- 32 -

go gu peWO

gu go g iO

Y W N roO

o β ro

i c O c N WuQ

goOc N

ru goO pa N gN

goO ao

c a

oO 27 e o Q N P

i 25 au guWo O

gN N

N goO N 5

54 32, 16, 6 N N N

N N N N N

N N N N N

goOc e

o go W c

O N guN c gN

Nd Y ru Nc

Y O

o 10 30

ro N 1 i gN

W WN go ru W i goO

i c gN

oO ru

a Wu

gN

Y g

oOc i o

o goO

c ru 5

goOc N

N i

130 Y N 73N N go

c ― uW O

2 NAdvanced

Matrials & Nanotechnology - 7

N N

27 2 7 -13 )

12 International Workshop "Theory,

Measurement and Creation of Porphyrinoid Compounds as Soft Molecular Systems", N

s N 27 10 1

- 33 -

i gu peWO

3 N 4 gNc

gu o roO Nc au

gN i o roO iO

W guW O ro go N N

go N gN WuW Oc W uuW

guW O gu W N W g

uW Oc ro o c W WOc

s roQ N goWO W

c YuWruW OQ e W c p

N uW N W guW O

e sau e oc O u oc N

gu O gu ro au

i O N u W WO u

WO Nc g roN W N u o guc

i O ruW O

goWO roO

N c WO ge c pOc

O W W i WOc

N N N N

guW O N sa WO

c W N ruW Oc u W N

ruW c gWO ruW

O i W O u N

c guW O eYu ruW O

n g WN W g ru o guW O

W W uW O ruW Nc W gu N

O ro s ro N i

WOc goc gu WO

Interntional Advisory Board, IABM. Sheves (Professor, Weizmann Institute of Science, Israel), J. E. Straub (Professor, Boston University,

USA), S. R. Meech (Professor, University of East Anglia, UK), P. M. Champion (Professor, Northeastern University, USA)

All IAB members participated in the associated international symposium held on June 26-28 and were greatly impressed by the

productivity and scope of the research presented, as well as by the full range of scientific work, collaboration, and outreach

conducted during the project. The number of papers published by the SMS group in high-impact journals was truly impressive, with approximately 115

papers appearing in journals having an impact factor of ~10 or higher. Nearly 700 papers have been published in total, and over

- 34 -

350 invited talks at international meetings were delivered by members of the collaboration. The group also organized five major

9ternational symposia and is in the process of editing a special issue for the prestigious international journal Physical Chemistry

Chemical Physics (PCCP), published by the Royal Society of Chemistry (RSC), entitled “Complex Molecular Systems:

Supramolecules, Biomolecules and Interfaces.”

Importantly, this KAKENHI grant has “seeded” 145 new collaborations, resulting in numerous joint publications. The IAB also

noted a particularly strong record of prizes awarded to both the leaders and the participants within this research collaboration. In the following, we outline specific new scientific directions that have been pioneered and highlight some of the new scientific

concepts that have evolved as a direct result of this project.

u 6 26 28 (2017) o gN e o e

N N N β aoO

c e o eg N115

10 e uW O 700 N 350guW u2017 6 Oc 5 gN o

Phys. Chem. Chem. Phys. g guW 2018 1 30 O

c Nc 145 o guW O

c u guW c goWO

Nc go o o O

New Concepts and Outstanding Achievements 1) Structural and Dynamic Encapsulation:

2) Dual Ensemble Protein Folding: 2 2

3) Functional Compactness in Biomolecules and Soft Molecular Crystals:

4) Discovery and Engineering of Cationic Protein Pumps

5) Functional Conversion of Ion Pumps N c N i Q

iO 6) Decoding Molecular Softness a e

7) Innovative Probes of Molecular Interfaces

Conclusions

The research accomplishments resulting from this KAKENHI grant were truly outstanding. The breadth of topics explored

through the large number of new collaborations greatly exceeded the high expectations of the IAB. The depth of scientific research

and the significant new concepts developed as a result of this project establish Japan as a world leader in the pioneering area of Soft Molecular

Systems. The IAB commends MEXT for its support of the fundamental

research that has been explored within this project. We enthusiastically

recommend that future extensions of the research developed in this

innovative project be supported.

e o guW O

o e o e

W roO

e o e Q

W gu i

O c e o

goc g i O P

c o e

i c i O


Recommended