+ All Categories
Home > Documents > ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces...

ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces...

Date post: 09-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
14
Available online at www.worldscientificnews.com ( Received 10 September 2019; Accepted 27 September 2019; Date of Publication 28 September 2019 ) WSN 136 (2019) 52-65 EISSN 2392-2192 -lacunary -convergence defined by Musielak Orlicz function Ayten Esi 1 , Nagarajan Subramanian 2 and Ayhan Esi 1 1 Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey 2 Department of Mathematics, SASTRA University, Thanjavur - 613 401, India 1-3 E-mail address: [email protected], [email protected] , [email protected] ABSTRACT We study some connections between -lacunary strong 3 - convergence with respect to a sequence of Musielak Orlicz function and -lacunary 3 - statistical convergence, where is a sequence of four dimensional matrices () = ( 1 … β„“ 1 …ℓ 1 … 1 … ()) of complex numbers. Keywords: Analytic sequence, x 2 space, difference sequence space, Musielak-modulus function, p- metric space, mn-sequences 2010 Mathematics Subject Classification: 40A05, 40C05, 40D05 1. INTRODUCTION Throughout , and Ξ› denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write 3 for the set of all complex triple sequences ( ), where , , ∈ β„•, the set of positive integers. Then, 3 is a linear space under the coordinate wise addition and scalar multiplication.
Transcript
Page 1: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

Available online at www.worldscientificnews.com

( Received 10 September 2019; Accepted 27 September 2019; Date of Publication 28 September 2019 )

WSN 136 (2019) 52-65 EISSN 2392-2192

𝝁-lacunary πŒπ‘¨π’–π’—π’˜πŸ‘ -convergence defined by Musielak

Orlicz function

Ayten Esi1, Nagarajan Subramanian2 and Ayhan Esi1

1Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey

2Department of Mathematics, SASTRA University, Thanjavur - 613 401, India

1-3E-mail address: [email protected], [email protected] , [email protected]

ABSTRACT

We study some connections between πœ‡-lacunary strong πœ’π΄π‘’π‘£π‘€3 - convergence with respect to a

π‘šπ‘›π‘˜ sequence of Musielak Orlicz function and πœ‡-lacunary πœ’π΄π‘’π‘£π‘€3 - statistical convergence, where 𝐴 is

a sequence of four dimensional matrices 𝐴(𝑒𝑣𝑀) = (π‘Žπ‘˜1β€¦π‘˜π‘Ÿβ„“1β€¦β„“π‘ π‘š1β€¦π‘šπ‘Ÿπ‘›1…𝑛𝑠(𝑒𝑣𝑀)) of complex numbers.

Keywords: Analytic sequence, x2 space, difference sequence space, Musielak-modulus function, p-

metric space, mn-sequences

2010 Mathematics Subject Classification: 40A05, 40C05, 40D05

1. INTRODUCTION

Throughout 𝑀, πœ’ and Ξ› denote the classes of all, gai and analytic scalar valued single

sequences, respectively. We write 𝑀3 for the set of all complex triple sequences (π‘₯π‘šπ‘›π‘˜), where

π‘š, 𝑛, π‘˜ ∈ β„•, the set of positive integers. Then, 𝑀3 is a linear space under the coordinate wise

addition and scalar multiplication.

Page 2: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-53-

We can represent triple sequences by matrix. In case of double sequences we write in the

form of a square. In the case of a triple sequence it will be in the form of a box in three

dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence spaces is

found in Hardy [9], Deepmala et al. [10, 11] and many others. Later on investigated by some

initial work on triple sequence spaces is found in Esi [2], Esi et al. [3-8], Şahiner et al. [12],

Subramanian et al. [13], Prakash et al. [14] and many others.

Let (π‘₯π‘šπ‘›π‘˜) be a triple sequence of real or complex numbers. Then the series

βˆ‘βˆžπ‘š,𝑛,π‘˜=1 π‘₯π‘šπ‘›π‘˜ is called a triple series. The triple series βˆ‘βˆžπ‘š,𝑛,π‘˜=1 π‘₯π‘šπ‘›π‘˜ give one space is said

to be convergent if and only if the triple sequence (π‘†π‘šπ‘›π‘˜) is convergent, where

π‘†π‘šπ‘›π‘˜ = βˆ‘

π‘š,𝑛,π‘˜

𝑖,𝑗,π‘ž=1

π‘₯π‘–π‘—π‘ž (π‘š, 𝑛, π‘˜ = 1,2,3, . . . ).

A sequence π‘₯ = (π‘₯π‘šπ‘›π‘˜) is said to be triple analytic if

supπ‘š,𝑛,π‘˜

|π‘₯π‘šπ‘›π‘˜|1

π‘š+𝑛+π‘˜ < ∞.

The vector space of all triple analytic sequences are usually denoted by Ξ›3. A sequence

π‘₯ = (π‘₯π‘šπ‘›π‘˜) is called triple entire sequence if

|π‘₯π‘šπ‘›π‘˜|1

π‘š+𝑛+π‘˜ β†’ 0 as π‘š, 𝑛, π‘˜ β†’ ∞.

A sequence π‘₯ = (π‘₯π‘šπ‘›π‘˜) is called triple gai sequence if ((π‘š + 𝑛 + π‘˜)! |π‘₯π‘šπ‘›π‘˜|)1

π‘š+𝑛+π‘˜ β†’ 0

as π‘š, 𝑛, π‘˜ β†’ ∞. The triple gai sequences will be denoted by πœ’3.

2. DEFINITIONS AND PRELIMINARIES

A triple sequence π‘₯ = (π‘₯π‘šπ‘›π‘˜) has limit 0 (denoted by 𝑃 βˆ’ limπ‘₯ = 0) (i.e)

((π‘š + 𝑛 + π‘˜)! |π‘₯π‘šπ‘›π‘˜|)1/π‘š+𝑛+π‘˜

β†’ 0 as π‘š, 𝑛, π‘˜ β†’ ∞. We shall write more briefly as 𝑃 βˆ’π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘›π‘‘ π‘‘π‘œ 0.

Definition 2.1 An Orlicz function (see [15]) is a function M: [0,∞) β†’ [0,∞) which is

continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) β†’ ∞

as x β†’ ∞. If convexity of Orlicz function M is replaced by M(x + y) ≀ M(x) + M(y), then this

function is called modulus function.

Lindenstrauss and Tzafriri (see [16]) used the idea of Orlicz function to construct Orlicz

sequence space.

A sequence 𝑔 = (π‘”π‘šπ‘›) defined by

Page 3: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-54-

π‘”π‘šπ‘›(𝑣) = sup{|𝑣|𝑒 βˆ’ (π‘“π‘šπ‘›π‘˜)(𝑒): 𝑒 β‰₯ 0},π‘š, 𝑛, π‘˜ = 1,2, …

is called the complementary function of a Musielak-Orlicz function 𝑓. For a given Musielak-

Orlicz function 𝑓, (see [17]) the Musielak-Orlicz sequence space 𝑑𝑓 is defined as follows

𝑑𝑓 = {π‘₯ ∈ 𝑀3: 𝐼𝑓(|π‘₯π‘šπ‘›π‘˜|)

1/π‘š+𝑛+π‘˜ β†’ 0 as π‘š, 𝑛, π‘˜ β†’ ∞},

where 𝐼𝑓 is a convex modular defined by

𝐼𝑓(π‘₯) = βˆ‘

∞

π‘š=1

βˆ‘

∞

𝑛=1

βˆ‘

∞

π‘˜=1

π‘“π‘šπ‘›π‘˜(|π‘₯π‘šπ‘›π‘˜|)1/π‘š+𝑛+π‘˜, π‘₯ = (π‘₯π‘šπ‘›π‘˜) ∈ 𝑑𝑓 .

We consider 𝑑𝑓 equipped with the Luxemburg metric

𝑑(π‘₯, 𝑦) = βˆ‘

∞

π‘š=1

βˆ‘

∞

𝑛=1

βˆ‘

∞

π‘˜=1

π‘“π‘šπ‘›π‘˜ (|π‘₯π‘šπ‘›π‘˜|

1/π‘š+𝑛+π‘˜

π‘šπ‘›π‘˜)

is an extended real number.

Definition 2.2 Let mnk(β‰₯ 3) be an integer. A function x: (M Γ— N Γ— K) Γ— (M Γ— N Γ— K) Γ—β‹―Γ—(M Γ— N Γ— K) Γ— (M Γ— N Γ— K) [m Γ— n Γ— k βˆ’ factors] β†’ ℝ(β„‚) is called a real or complex mnk-

sequence, where β„•, ℝ and β„‚ denote the sets of natural numbers and complex numbers

respectively. Let m1, m2, …mr, n1, n2, … , ns, k1, k2, … , kt ∈ β„• and X be a real vector space of

dimension w, where m1, m2, …mr, n1, n2, … , ns, k1, k2, … , kt ≀ w. A real valued function

𝑑𝑝(π‘₯11, … , π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘)

=βˆ₯ (𝑑1(π‘₯11, 0), … , 𝑑𝑛(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0)) βˆ₯𝑝

on 𝑋 satisfying the following four conditions:

(i) βˆ₯ (𝑑1(π‘₯11, 0), … , 𝑑𝑛(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0)) βˆ₯𝑝= 0 if and and only if

𝑑1(π‘₯11, 0), … , π‘‘π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0) are linearly dependent,

(ii) βˆ₯ (𝑑1(π‘₯11, 0), … , π‘‘π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0)) βˆ₯𝑝 is

invariant under permutation,

(iii) For 𝛼 ∈ ℝ,

βˆ₯ (𝛼𝑑1(π‘₯11, 0), … , π‘‘π‘š1,π‘š2,β€¦π‘šπ‘,𝑛1,𝑛2,…,π‘›π‘ž,π‘˜1,π‘˜2,…,π‘˜π‘‘(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0)) βˆ₯𝑝

= |𝛼| βˆ₯ (𝑑1(π‘₯11, 0), … , 𝑑𝑛(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘,𝑛1,𝑛2,…,π‘›π‘ž,π‘˜1,π‘˜2,…,π‘˜π‘‘ , 0)) βˆ₯𝑝

(iv) For 1 ≀ 𝑝 < ∞,

𝑑𝑝((π‘₯11, 𝑦11), (π‘₯12, 𝑦12)… (π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ , π‘¦π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘))

Page 4: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-55-

= (𝑑𝑋(π‘₯11, π‘₯12, … π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘)𝑝 +

π‘‘π‘Œ(𝑦11, 𝑦12, … π‘¦π‘š1,π‘š2,β€¦π‘šπ‘,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘)𝑝)1/𝑝

(or)

(v) 𝑑((π‘₯11, 𝑦11), (π‘₯12, 𝑦12),… (π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠 , π‘¦π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘))

: = sup{𝑑𝑋(π‘₯11, π‘₯12, … π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘),

π‘‘π‘Œ(𝑦11, 𝑦12, … π‘¦π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘)},

for π‘₯11, π‘₯12, … π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ ∈ 𝑋, 𝑦11, 𝑦12, … π‘¦π‘š1,π‘š2,β€¦π‘šπ‘Ÿ,𝑛1,𝑛2,…,𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘ ∈ π‘Œ

is called the 𝑝-product metric of the Cartesian product of π‘š1, π‘š2, β€¦π‘šπ‘Ÿ , 𝑛1, 𝑛2, … ,𝑛𝑠, π‘˜1, π‘˜2, … , π‘˜π‘‘ metric spaces is the 𝑝-norm of the π‘šΓ— 𝑛 Γ— π‘˜-vector of the norms of the

π‘š1, π‘š2, β€¦π‘šπ‘Ÿ , 𝑛1, 𝑛2, … , 𝑛𝑠, π‘˜1, π‘˜2, … , π‘˜π‘‘ subspaces.

Definition 2.3 The triple sequence ΞΈi,β„“,j = {(mi, nβ„“, kj)} is called triple lacunary if there exist

three increasing sequences of integers such that

π‘š0 = 0, β„Žπ‘– = π‘šπ‘– βˆ’π‘šπ‘Ÿβˆ’1 β†’ ∞ as 𝑖 β†’ ∞

and

𝑛0 = 0, β„Žβ„“ = 𝑛ℓ βˆ’ π‘›β„“βˆ’1 β†’ ∞ as β„“ β†’ ∞.

π‘˜0 = 0, β„Žπ‘— = π‘˜π‘— βˆ’ π‘˜π‘—βˆ’1 β†’ ∞ as 𝑗 β†’ ∞.

Let π‘šπ‘–,β„“,𝑗 = π‘šπ‘–π‘›β„“π‘˜π‘—, β„Žπ‘–,β„“,𝑗 = β„Žπ‘–β„Žβ„“β„Žπ‘—, and πœƒπ‘–,β„“,𝑗 is determine by

𝐼𝑖,β„“,𝑗 = {(π‘š, 𝑛, π‘˜):π‘šπ‘–βˆ’1 < π‘š < π‘šπ‘– and π‘›β„“βˆ’1 < 𝑛 ≀ 𝑛ℓ and π‘˜π‘—βˆ’1 < π‘˜ ≀ π‘˜π‘—},

π‘žπ‘˜ =π‘šπ‘˜π‘šπ‘˜βˆ’1

, π‘žβ„“ =π‘›β„“π‘›β„“βˆ’1

, π‘žπ‘— =π‘˜π‘—

π‘˜π‘—βˆ’1.

Let 𝐹 = (π‘“π‘šπ‘›π‘˜) be a π‘šπ‘›π‘˜-sequence of Musielak Orlicz functions such that

lim𝑒→0+supπ‘šπ‘›π‘˜π‘“π‘šπ‘›π‘˜(𝑒) = 0. Throughout this paper πœ’π΄π‘’π‘£π‘€3 -convergence of 𝑝-metric of π‘šπ‘›π‘˜-

sequence of Musielak Orlicz function determinated by 𝐹 will be denoted by π‘“π‘šπ‘›π‘˜ ∈ 𝐹 for every

π‘š, 𝑛, π‘˜ ∈ β„•.

The purpose of this paper is to introduce and study a concept of triple lacunary strong

πœ’π΄π‘’π‘£π‘€3 -convergence of 𝑝-metric with respect to a π‘šπ‘›π‘˜-sequence of Musielak Orlicz function.

We now introduce the generalizations of triple lacunary strongly πœ’π΄π‘’π‘£π‘€3 -convergence of

𝑝-metric with respect a π‘šπ‘›π‘˜-sequence of Musielak Orlicz function and investigate some

inclusion relations.

Page 5: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-56-

Let 𝐴 denote a sequence of the matrices 𝐴𝑒𝑣𝑀 = (π‘Žπ‘˜1β€¦π‘˜π‘Ÿβ„“1β€¦β„“π‘ π‘š1β€¦π‘šπ‘Ÿπ‘›1…𝑛𝑠,π‘˜1,π‘˜2,…,π‘˜π‘‘(𝑒𝑣𝑀)) of

complex numbers. We write for any sequence π‘₯ = (π‘₯π‘šπ‘›π‘˜),

𝑦𝑖𝑗(𝑒𝑣) = 𝐴𝑖𝑗𝑒𝑣𝑀(π‘₯) = βˆ‘

∞

π‘š1β€¦π‘šπ‘Ÿ

βˆ‘

∞

𝑛1…𝑛𝑠

βˆ‘

∞

π‘˜1,π‘˜2,…,π‘˜π‘‘

(π‘Žπ‘˜1β€¦π‘˜π‘Ÿβ„“1β€¦β„“π‘ π‘š1β€¦π‘šπ‘Ÿπ‘›1…𝑛𝑠(𝑒𝑣𝑀)) β‹…

((π‘š1β€¦π‘šπ‘Ÿ + 𝑛1…𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)! |π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β€¦π‘šπ‘Ÿ+𝑛1…𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

if it exits for each π‘–π‘—π‘ž and 𝑒𝑣𝑀. We 𝐴𝑒𝑣𝑀(π‘₯) = (π΄π‘–π‘—π‘žπ‘’π‘£π‘€(π‘₯))

π‘–π‘—π‘ž, 𝐴π‘₯ = (𝐴𝑒𝑣𝑀(π‘₯))

𝑒𝑣𝑀.

Definition 2.4 Let ΞΌ be a valued measure on β„• Γ— β„• Γ— β„• and F = (fm1…mrn1…nsk1,k2,…,ktijq

) be a

mnk-sequence of Musielak Orlicz function , A denote the sequence of four dimensional infinte

matrices of complex numbers and X be locally convex Hausdorff topological linear space whose

topology is determined by a set of continuous semi norms Ξ· and

(X, β€–(d(x111, 0), d(x122, 0), … , d(xm1,m2,…mrβˆ’1n1,n2,…nsβˆ’1k1,k2,…,ktβˆ’1 , 0))β€–p) be a p-metric

space, q = (qijq) be triple analytic sequence of strictly positive real numbers.

By w3(p βˆ’ X) we denote the space of all sequences defined over

(X, β€–(d(x111, 0), d(x122, 0), … , d(xm1,m2,…mrβˆ’1n1,n2,…nsβˆ’1k1,k2,…,ktβˆ’1 , 0))β€–p)ΞΌ

.

In the present paper we define the following sequence spaces:

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111), 𝑑(π‘₯122),… , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1))‖𝑝]πœ‡

= πœ‡limπ‘Ÿπ‘ π‘‘[π‘“π‘–π‘—π‘ž(β€–π‘πœƒ

𝛼(π‘₯), , (𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝)]π‘žπ‘–π‘—π‘ž

β‰₯ πœ– = 0,

where

π‘πœƒπ›Ό(π‘₯) =

1

β„Žπ‘Ÿπ‘ π‘‘π›Ό βˆ‘

π‘–βˆˆπΌπ‘Ÿπ‘ π‘‘

βˆ‘

π‘—βˆˆπΌπ‘Ÿπ‘ π‘‘

βˆ‘

π‘žβˆˆπΌπ‘Ÿπ‘ π‘‘

πœ‚π΄π‘–π‘—π‘’π‘£π‘€ (((π‘š1β€¦π‘šπ‘Ÿ + 𝑛1…𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)!

|π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β€¦π‘šπ‘Ÿ+𝑛1…𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

),

uniformly in 𝑒, 𝑣, 𝑀

[Ξ›π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

Page 6: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-57-

= πœ‡supπ‘Ÿπ‘ π‘‘[𝑓𝑒𝑣𝑀(β€–π‘πœƒ

𝛼(π‘₯), (𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝)]π‘žπ‘–π‘—π‘ž

β‰₯ π‘˜ = 0,

where 𝑒 =

(

1 1 β‹―11 1 β‹―1...1 1 β‹―1

)

.

The main aim of this paper is to introduce the idea of summability of triple lacunary

sequence spaces in 𝑝-metric spaces using a three valued measure. We also make an effort to

study πœ‡-of lacunary triple sequences with respect to a sequence of Musielak Orlicz function in

𝑝-metric spaces and three valued measure πœ‡. We also plan to study some topological properties

and inclusion relation between these spaces.

3. MAIN RESULTS

Proposition 3.1 Let ΞΌ be a three valued measure,

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

and

[Ξ›π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

are linear spaces.

Proof. It is routine verification. Therefore the proof is omitted.

The inclusion relation between

[π›˜π€πŸππ›‰

π›‚πŸ‘πͺπ›ˆ

, β€–(𝐝(𝐱𝟏𝟏𝟏, 𝟎), 𝐝(𝐱𝟏𝟐𝟐, 𝟎), … , 𝐝(𝐱𝐦𝟏,𝐦𝟐,β€¦π¦π«βˆ’πŸπ§πŸ,𝐧𝟐,β€¦π§π¬βˆ’πŸπ€πŸ,𝐀𝟐,…,π€π­βˆ’πŸ , 𝟎))‖𝐩]𝛍

and

[πš²π€πŸππ›‰

π›‚πŸ‘πͺπ›ˆ

, β€–(𝐝(𝐱𝟏𝟏𝟏, 𝟎), 𝐝(𝐱𝟏𝟐𝟐, 𝟎),… , 𝐝(𝐱𝐦𝟏,𝐦𝟐,β€¦π¦π«βˆ’πŸπ§πŸ,𝐧𝟐,β€¦π§π¬βˆ’πŸπ€πŸ,𝐀𝟐,…,π€π­βˆ’πŸ , 𝟎))‖𝐩]𝛍

Page 7: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-58-

Theorem 3.1 Let ΞΌ be a three valued measure and A be a mnk-sequence the four dimensional

infinite matrices Auv = (ak1…krβ„“1…ℓsm1…mrn1…nsk1,k2,…,kt(uvw)) of complex numbers and F = (fmnk

ijq) be

a mn-sequence of Musielak Orlicz function. If x = (xmnk) triple lacunary strong Auvw-

convergent of orer Ξ± to zero then x = (xmnk) triple lacunary strong Auvw-convergent of order

Ξ± to zero with respect to mnk-sequence of Musielak Orlicz function, (i.e)

[πœ’π΄π‘πœƒ

𝛼3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

βŠ‚ [πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Proof. Let F = (fmnkijq) be a mnk-sequence of Musielak Orlicz function and put supfmnk

ijq (1) =T. Let

π‘₯ = (π‘₯π‘šπ‘›π‘˜) ∈ [πœ’π΄π‘πœƒπ›Ό

2π‘žπœ‚, β€–(𝑑(π‘₯11, 0), 𝑑(π‘₯12, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

and πœ– > 0. We choose 0 < 𝛿 < 1 such that π‘“π‘šπ‘›π‘˜π‘–π‘—π‘ž (𝑒) < πœ– for every 𝑒 with 0 ≀ 𝑒 ≀

𝛿 (𝑖, 𝑗, π‘ž ∈ β„•). We can write

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

= [πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

+

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

where the first part is over ≀ 𝛿 and second part is over > 𝛿. By definition of Musielak Orlicz

function of π‘“π‘šπ‘›π‘˜π‘–π‘—π‘ž

for every π‘–π‘—π‘ž, we have

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

≀ πœ–π»2 + (3π‘‡π›Ώβˆ’1)𝐻2 β‹… [πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Therefore

π‘₯ = (π‘₯π‘šπ‘›π‘˜) ∈ [πœ’π΄π‘“π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

Page 8: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-59-

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Theorem 3.2 Let ΞΌ be a three valued measure and A be a mnk-sequence of the four dimensional

infinite matrices Auvw = (ak1…krβ„“1…ℓsm1…mrn1…ns(uvw)) of complex numbers, q = (qijq) be a mnk-

sequence of positive real numbers with 0 < infqijq = H1 ≀ supqijq = H2 > ∞ and F = (fmnkijq)

be a mnk-sequence of Musielak Orlicz function. If limmu,v,wβ†’βˆžinfijqfijq(uvw)

uvw> 0, then

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

= [πœ’π΄π‘πœƒ

𝛼3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0),β‹― , 𝑑(π‘₯π‘š1,π‘š2,β‹―π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β‹―π‘›π‘ βˆ’1π‘˜1,π‘˜2,β‹―,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

.

Proof. If lim𝑒,𝑣,π‘€β†’βˆžinfπ‘“π‘–π‘—π‘žπ‘“π‘–π‘—π‘ž(𝑒𝑣𝑀)

𝑒𝑣𝑀> 0, then there exists a number 𝛽 > 0 such that

π‘“π‘–π‘—π‘ž(𝑒𝑣𝑀) β‰₯ 𝛽𝑒 for all 𝑒 β‰₯ 0 and 𝑖, 𝑗, π‘ž ∈ β„•. Let

π‘₯ = (π‘₯π‘š1 β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘) ∈ [πœ’π΄π‘“π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Clearly

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

β‰₯ 𝛽 [πœ’π΄π‘πœƒ

𝛼3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

.

Therefore

π‘₯ = (π‘₯π‘š1 β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘) ∈ [πœ’π΄π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

By using Theorem 3.1, the proof is complete.

We now give an example to show that

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

β‰  [πœ’π΄π‘πœƒ

𝛼3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

Page 9: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-60-

in the case when 𝛽 = 0. Consider 𝐴 = 𝐼, unit matrix,

πœ‚(π‘₯) = ((π‘š1β‹―π‘šπ‘Ÿ + 𝑛1⋯𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)!

|π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β‹―π‘šπ‘Ÿ+𝑛1⋯𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

, π‘žπ‘–π‘—π‘ž = 1

for every 𝑖, 𝑗, π‘ž ∈ β„• and

π‘“π‘šπ‘›π‘˜π‘–π‘—π‘ž (π‘₯) =

|π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|1/((π‘š1β€¦π‘šπ‘Ÿ+𝑛1…𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘)(𝑖+1)(𝑗+1)(π‘ž+1))

((π‘š1β€¦π‘šπ‘Ÿ + 𝑛1…𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)!)1/π‘š1β€¦π‘šπ‘Ÿ+𝑛1…𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

(𝑖, 𝑗, π‘ž β‰₯ 1, π‘₯ > 0)

in the case 𝛽 > 0. Now we define π‘₯π‘–π‘—π‘ž = β„Žπ‘Ÿπ‘ π‘‘π›Ό if 𝑖, 𝑗, π‘ž = π‘šπ‘Ÿπ‘›π‘ π‘˜π‘‘ for some π‘Ÿ, 𝑠, 𝑑 β‰₯ 1 and π‘₯π‘–π‘—π‘ž =

0 otherwise. Then we have,

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

β†’ 1

as π‘Ÿ, 𝑠, 𝑑 β†’ ∞

and so

π‘₯ = (π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘) βˆ‰ [πœ’π΄π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

In this section we introduce natural relationship between πœ‡ be a three valued measure of

triple lacunary 𝐴𝑒𝑣𝑀- statistical convergence of order 𝛼 and πœ‡ be a three valued measure of

triple lacunary strong 𝐴𝑒𝑣𝑀-convergence of order 𝛼 with respect to π‘šπ‘›π‘˜-sequence of Musielak

Orlicz function.

Definition 3.1 Let ΞΌ be a three valued measure and ΞΈ be a triple lacunary mnk-sequence. Then

a mnk-sequence x = (xm1…mrn1…nsk1,k2,…,kt) is said to be ΞΌ-lacunary statistically convergent of

order Ξ± to a number zero if for every Ο΅ > 0, ΞΌ(limmrstβ†’βˆžhrstβˆ’Ξ±|KΞΈ(Ο΅)|) = 0, where |KΞΈ(Ο΅)|

denotes the number of elements in

πΎπœƒ(πœ–) = πœ‡ {(𝑖, 𝑗, π‘ž) ∈ πΌπ‘Ÿπ‘ π‘‘: ((π‘š1β‹―π‘šπ‘Ÿ + 𝑛1⋯𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)! β‹…

|π‘₯π‘š1β€¦π‘šπ‘Ÿπ‘›1β€¦π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β‹―π‘šπ‘Ÿ+𝑛1⋯𝑛𝑠+π‘˜1,π‘˜2,β‹―,π‘˜π‘‘

β‰₯ πœ– = 0}.

The set of all triple lacunary statistical convergent of order 𝛼 of π‘šπ‘›π‘˜ βˆ’ sequences is

denoted by (π‘†πœƒπ›Ό)πœ‡.

Page 10: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-61-

Let πœ‡ be a three valued measure and 𝐴𝑒𝑣𝑀 = (π‘Žπ‘˜1β‹―π‘˜π‘Ÿβ„“1β‹―β„“π‘ π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘(𝑒𝑣𝑀)) be an four

dimensional infinite matrix of complex numbers. Then a π‘šπ‘›π‘˜-sequence π‘₯ =

(π‘₯π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘) is said to be πœ‡-triple lacunary 𝐴-statistically convergent of order 𝛼 to

a number zero if for every πœ– > 0, πœ‡(limπ‘Ÿπ‘ π‘‘β†’βˆžβ„Žπ‘Ÿπ‘ π‘‘βˆ’π›Ό|πΎπ΄πœƒ(πœ–)|) = 0, where |πΎπ΄πœƒ(πœ–)| denotes the

number of elements in

πΎπ΄πœƒ(πœ–) = πœ‡ {(𝑖, 𝑗, π‘ž) ∈ πΌπ‘Ÿπ‘ π‘‘: ((π‘š1β‹―π‘šπ‘Ÿ + 𝑛1⋯𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)! β‹…

|π‘₯π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β‹―π‘šπ‘Ÿ+𝑛1⋯𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

β‰₯ πœ– = 0}.

The set of all triple lacunary 𝐴-statistical convergent of order 𝛼 of π‘šπ‘›π‘˜-sequences is

denoted by (π‘†πœƒπ›Ό(𝐴))

πœ‡.

Definition 3.2 Let ΞΌ be a three valued measure and A be a mnk-sequence of the four

dimensional infinite matrices Auvw = (ak1β‹―krβ„“1β‹―β„“sm1β‹―mrn1β‹―nsk1,k2,…,kt(uvw)) of complex numbers and

let q = (qijq) be a mnk-sequence of positive real numbers with 0 < infqijq = H1 ≀ supqijq =

H2 < ∞. Then a mnk-sequence x = (xm1β‹―mrn1β‹―nsk1,k2,…,kt) is said to be ΞΌ-lacunary Auvw-

statistically convergent of order Ξ± to a number zero if for every Ο΅ > 0,

ΞΌ(limrstβ†’βˆžhrstβˆ’Ξ±|KAΞΈΞ·(Ο΅)|) = 0, where |KAΞΈΞ·(Ο΅)| denotes the number of elements in

πΎπ΄πœƒπœ‚(πœ–) = πœ‡ {(𝑖, 𝑗, π‘ž) ∈ πΌπ‘Ÿπ‘ π‘‘: ((π‘š1β‹―π‘šπ‘Ÿ + 𝑛1⋯𝑛𝑠 + π‘˜1, π‘˜2, … , π‘˜π‘‘)! β‹…

|π‘₯π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘|)1/π‘š1β‹―π‘šπ‘Ÿ+𝑛1⋯𝑛𝑠+π‘˜1,π‘˜2,…,π‘˜π‘‘

β‰₯ πœ– = 0}.

The set of all πœ‡-lacunary π΄πœ‚-statistical convergent of order 𝛼 of π‘šπ‘›π‘˜-sequences is

denoted by (π‘†πœƒπ›Ό(𝐴, πœ‚))

πœ‡.

The following theorems give the relations between πœ‡-lacunary 𝐴𝑒𝑣𝑀-statistical

convergence of order 𝛼 and πœ‡-lacunary strong 𝐴𝑒𝑣𝑀-convergence of order 𝛼 with respect to a

π‘šπ‘›π‘˜-sequence of Musielak Orlicz function.

Theorem 3.3 Let ΞΌ be a three valued measure and F = (fijq) be a mnk-sequence of Musielak

Orlicz function. Then

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

βŠ† [πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β‹―π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β‹―π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

if and only if πœ‡ (limπ‘–π‘—π‘žβ†’βˆžπ‘“π‘–π‘—π‘ž(𝑒)) > 0, (𝑒 > 0).

Page 11: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-62-

Proof. Let πœ– > 0 and π‘₯ = (π‘₯π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘) ∈ [πœ’π΄π‘“π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

. If πœ‡ (limπ‘–π‘—π‘žβ†’βˆžπ‘“π‘–π‘—π‘ž(𝑒)) > 0, (𝑒 > 0), then

there exists a number 𝑑 > 0 such that π‘“π‘–π‘—π‘ž(πœ–) > 𝑑 for 𝑒 > πœ– and 𝑖, 𝑗, π‘ž ∈ β„•. Let

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

β‰₯ β„Žπ‘Ÿπ‘ π‘‘βˆ’π›Όπ‘‘π»1πΎπ΄πœƒπœ‚(πœ–).

It follows that

[πœ’π΄π‘“π‘†πœƒ

𝛼3πœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Conversely, suppose that πœ‡ (limπ‘–π‘—π‘žβ†’βˆžπ‘“π‘–π‘—π‘ž(𝑒)) > 0 does not hold, then there is a number

𝑑 > 0 such that πœ‡ (limπ‘–π‘—π‘žβ†’βˆžπ‘“π‘–π‘—(𝑑)) = 0. We can select a lacunary π‘šπ‘›-sequence πœƒ =

(π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘) such that π‘“π‘–π‘—π‘ž(𝑑) < 3βˆ’π‘Ÿπ‘ π‘‘ for any 𝑖 > π‘š1β‹―π‘šπ‘Ÿ , 𝑗 >

𝑛1⋯𝑛𝑠, π‘˜ > π‘˜1, π‘˜2, … , π‘˜π‘‘. Let 𝐴 = 𝐼, unit matrix, define the π‘šπ‘›π‘˜-sequence π‘₯ by putting π‘₯π‘–π‘—π‘ž =

𝑑 if

π‘š1, π‘š2, β‹―π‘šπ‘Ÿβˆ’1𝑛1, 𝑛2, β‹―π‘›π‘ βˆ’1π‘˜1, π‘˜2, … , π‘˜π‘‘βˆ’1 < 𝑖, 𝑗, π‘ž <

π‘š1, π‘š2, β€¦π‘šπ‘Ÿπ‘›1, 𝑛2, … π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘ +π‘š1,π‘š2, β€¦π‘šπ‘Ÿβˆ’1𝑛1, 𝑛2, … π‘›π‘ βˆ’1π‘˜1, π‘˜2, … , π‘˜π‘‘βˆ’12

and π‘₯π‘–π‘—π‘ž = 0 if

π‘š1, π‘š2, β€¦π‘šπ‘Ÿπ‘›1, 𝑛2, … π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘ +π‘š1,π‘š2, β€¦π‘šπ‘Ÿβˆ’1𝑛1, 𝑛2, … π‘›π‘ βˆ’1π‘˜1, π‘˜2, … , π‘˜π‘‘βˆ’1

2

≀ 𝑖, 𝑗, π‘ž ≀ π‘š1,π‘š2, β‹―π‘šπ‘Ÿπ‘›1, 𝑛2, β‹―π‘›π‘ π‘˜1, π‘˜2, … , π‘˜π‘‘.

We have

π‘₯ = (π‘₯π‘š1β‹―π‘šπ‘Ÿπ‘›1β‹―π‘›π‘ π‘˜1,π‘˜2,…,π‘˜π‘‘) ∈ [πœ’π΄π‘“π‘πœƒπ›Ό

3π‘žπœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … ,

𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

but π‘₯ βˆ‰ [πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

.

Theorem 3.4 Let ΞΌ be a three valued measure and F = (fijq) be a mnk-sequence of Musielak

Orlicz function. Then

Page 12: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-63-

[πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

βŠ‡ [πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

if and only if πœ‡ (sup𝑒supπ‘–π‘—π‘žπ‘“π‘–π‘—π‘ž(𝑒)) < ∞.

Proof. Let

π‘₯ ∈ [πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

.

Suppose that β„Ž(𝑒) = supπ‘–π‘—π‘žπ‘“π‘–π‘—π‘ž(𝑒) and β„Ž = supπ‘π‘’β„Ž(𝑒). Since π‘“π‘–π‘—π‘ž(𝑒) ≀ β„Ž for all 𝑖, 𝑗, π‘ž

and 𝑒 > 0, we have for all 𝑒, 𝑣, 𝑀

[πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

≀ β„Žπ»2β„Žπ‘Ÿπ‘ π‘‘βˆ’π›Ό|πΎπ΄πœƒπœ‚(πœ–)| + |β„Ž(πœ–)|

𝐻2 .

It follows from πœ– β†’ 0 that

π‘₯ ∈ [πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

Conversely, suppose that πœ‡ (sup𝑒supπ‘–π‘—π‘žπ‘“π‘–π‘—π‘ž(𝑒)) = ∞. Then we have

0 < 𝑒111 < β‹― < π‘’π‘Ÿβˆ’1π‘ βˆ’1π‘‘βˆ’1 < π‘’π‘Ÿπ‘ π‘‘ < β‹―, such that π‘“π‘šπ‘Ÿπ‘›π‘ π‘˜π‘‘(π‘’π‘Ÿπ‘ π‘‘) β‰₯ β„Žπ‘Ÿπ‘ π‘‘π›Ό for π‘Ÿ, 𝑠, 𝑑 β‰₯ 1. Let

𝐴 = 𝐼, unit matrix, define the π‘šπ‘›π‘˜-sequence π‘₯ by putting π‘₯π‘–π‘—π‘ž = π‘’π‘Ÿπ‘ π‘‘ if 𝑖, 𝑗, π‘ž =

π‘š1π‘š2β‹―π‘šπ‘Ÿπ‘›1𝑛2⋯𝑛𝑠 for some π‘Ÿ, 𝑠, 𝑑 = 1,2, … and π‘₯π‘–π‘—π‘ž = 0 otherwise. Then we have

π‘₯ ∈ [πœ’π΄π‘†πœƒ

𝛼3πœ‚, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))β€–

𝑝]πœ‡

but

π‘₯ βˆ‰ [πœ’π΄π‘“π‘πœƒ

𝛼3π‘žπœ‚

, β€–(𝑑(π‘₯111, 0), 𝑑(π‘₯122, 0), … , 𝑑(π‘₯π‘š1,π‘š2,β€¦π‘šπ‘Ÿβˆ’1𝑛1,𝑛2,β€¦π‘›π‘ βˆ’1π‘˜1,π‘˜2,…,π‘˜π‘‘βˆ’1 , 0))‖𝑝]πœ‡

.

4. CONCLUSION

In this paper we have studied study some connections between πœ‡-lacunary strong πœ’π΄π‘’π‘£π‘€3 -

convergence with respect to a π‘šπ‘›π‘˜ sequence of Musielak Orlicz function and πœ‡-lacunary

πœ’π΄π‘’π‘£π‘€3 -statistical convergence, where 𝐴 is a sequence of four dimensional matrices 𝐴(𝑒𝑣𝑀) =

Page 13: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-64-

(π‘Žπ‘˜1β€¦π‘˜π‘Ÿβ„“1β€¦β„“π‘ π‘š1β€¦π‘šπ‘Ÿπ‘›1…𝑛𝑠(𝑒𝑣𝑀)) of complex numbers. The results of this of this paper are more general

than earlier results.

References

[1] T. Apostol, Mathematical Analysis, Addison-Wesley, London, 1978.

[2] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions,

Research and Reviews: Discrete Mathematical Structures, 1(2) (2014) 16-25.

[3] A. Esi, N. Subramanian and M.K.Ozdemir, Riesz triple probabilistic of almost lacunary

Cesaro C111 statistical convergence of 3 defined by a Musielak-Orlicz function. World

Scientofic News 116 (2019) 115-127.

[4] A. Esi, N.Subramanian and A.Esi, On triple sequence spaces of X3 of rough -statistical

convergence in probability defined by Musielak-Orlicz function of p-metric space.

World Scientofic News 132 (2019) 270-276.

[5] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global

Journal of Mathematical Analysis, 2(1) (2014) 6-10.

[6] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in

probabilistic normed space. Appl. Math. and Inf. Sci. 9(5) (2015) 2529-2534.

[7] A. Esi, N. Subramanian and A. Esi, On triple sequence space of Bernstein operator of

rough Ξ»-convergence Pre-Cauchy sequences. Proyecciones Journal of Mathematics,

36(4) (2017) 567-587.

[8] A. Esi, N. Subramanian and A. Esi, Triple rough statistical convergence of sequence of

Bernstein operators. Int. J. Adv. Appl. Sci. 4(2) (2017) 28-34.

[9] G. H. Hardy, On the convergence of certain multiple series. Proc. Camb. Phil. Soc. 19

(1917) 86-95.

[10] Deepmala, N. Subramanian and V. N. Mishra, Double almost (Ξ»mΞΌn) in Ο‡2-Riesz space.

Southeast Asian Bulletin of Mathematics, 41(3) (2017) 385-395.

[11] Deepmala, L. N. Mishra and N. Subramanian, Characterization of some Lacunary Ο‡Auv2 -

convergence of order Ξ± with p-metric defined by mn sequence of moduli Musielak.

Appl. Math. Inf. Sci. Lett. 4(3) (2016) 111-118.

[12] A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical

convergence. Selcuk J. Appl. Math. 8(2) (2007) 49-55.

[13] N. Subramanian and A. Esi, Some New Semi-Normed Triple Sequence Spaces Defined

By A Sequence Of Moduli. Journal of Analysis & Number Theory, 3(2) (2015) 79-88.

Page 14: ΞΌ-lacunary X3Auvw-convergence defined by Musielak Orlicz ...Β Β· sequence spaces in -metric spaces using a three valued measure. We also make an effort to study πœ‡-of lacunary triple

World Scientific News 136 (2019) 52-65

-65-

[14] T. V. G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, Lacunary Triple

sequence 3 of Fibonacci numbers over probabilistic p-metric spaces. International

Organization of Scientific Research, 12(1), Version IV (2016), 10-16.

[15] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. Israel J. Math. 10 (1971)

379-390.

[16] P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and

Applied Mathematics, 65 Marcel Dekker, Inc. New York, 1981.

[17] J. Musielak, Orlicz Spaces, Lectures Notes in Math., 1034, Springer-Verlag, 1983.


Recommended